首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human tumour necrosis factor (TNF)-like weak inducer of apoptosis (hTWEAK) and two anti-hTWEAK mAbs were tested for their ability to elicit or block inflammatory responses in cultured human dermal fibroblasts and synoviocytes. Incubation with hTWEAK increased the production of prostaglandin E2, matrix metalloproteinase-1 (MMP-1), IL-6, and the chemokines IL-8, RANTES (regulated on activation, normal T expressed and secreted) and interferon-gamma-inducible protein-10 (IP-10) in culture supernatant of fibroblasts and synoviocytes. In combination with TNF or IL-1beta, hTWEAK further stimulated the secretion of prostaglandin E2, MMP-1, IL-6 and IL-8 up to fourfold, and IP-10 and RANTES up to 70-fold compared to TNF or IL-1beta alone. An anti-hTWEAK mAb, BCB10, blocked the effects of hTWEAK, whereas hTWEAK crosslinked by the anti-hTWEAK mAb, BEB3, further stimulated the inflammatory response of fibroblasts and synoviocytes. The anti-hTWEAK mAbs were ineffective in blocking or increasing the responses of TNF or IL-1beta and blocking anti-TNF mAb was ineffective in preventing the responses to TWEAK. These results were also confirmed at the RNA level for MMP-1, macrophage chemoattractant protein-1, RANTES, macrophage inflammatory protein-1alpha, IP-10 and IL-8. TWEAK in synergism with IL-1 and TNF may be an additional cytokine that plays a role in destructive chronic arthritic diseases.  相似文献   

2.
Human tumour necrosis factor (TNF)-like weak inducer of apoptosis (hTWEAK) and two anti-hTWEAK mAbs were tested for their ability to elicit or block inflammatory responses in cultured human dermal fibroblasts and synoviocytes. Incubation with hTWEAK increased the production of prostaglandin E2, matrix metalloproteinase-1 (MMP-1), IL-6, and the chemokines IL-8, RANTES (regulated on activation, normal T expressed and secreted) and interferon-γ-inducible protein-10 (IP-10) in culture supernatant of fibroblasts and synoviocytes. In combination with TNF or IL-1β, hTWEAK further stimulated the secretion of prostaglandin E2, MMP-1, IL-6 and IL-8 up to fourfold, and IP-10 and RANTES up to 70-fold compared to TNF or IL-1β alone. An anti-hTWEAK mAb, BCB10, blocked the effects of hTWEAK, whereas hTWEAK crosslinked by the anti-hTWEAK mAb, BEB3, further stimulated the inflammatory response of fibroblasts and synoviocytes. The anti-hTWEAK mAbs were ineffective in blocking or increasing the responses of TNF or IL-1β and blocking anti-TNF mAb was ineffective in preventing the responses to TWEAK. These results were also confirmed at the RNA level for MMP-1, macrophage chemoattractant protein-1, RANTES, macrophage inflammatory protein-1α, IP-10 and IL-8. TWEAK in synergism with IL-1 and TNF may be an additional cytokine that plays a role in destructive chronic arthritic diseases.  相似文献   

3.
Among oxysterols oxidized at C7 (7α-, 7β-hydroxycholesterol, and 7-ketocholesterol), 7β-hydroxycholesterol and 7-ketocholesterol involved in the cytotoxicity of oxidized low density lipoproteins (LDL) are potent inducers of apoptosis. Here, we asked whether all oxysterols oxidized at C7 were able to trigger apoptosis, to stimulate interleukin (IL)-1β and/or tumor necrosis factor (TNF)-α secretion, and to enhance adhesion molecule expression (intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin) on human umbilical venous endothelial cells (HUVECs). Only 7β-hydroxycholesterol and 7-ketocholesterol were potent inducers of apoptosis and of IL-1β secretion. TNF-α secretion was never detected. Depending on the oxysterol considered, various levels of ICAM-1, VCAM-1 and E-selectin expression were observed. So, oxysterols oxidized at C7 differently injure and activate HUVECs, and the α- or β-hydroxyl radical position plays a key role in apoptosis and IL-1β secretion.  相似文献   

4.
Previous studies have shown that polymorphonuclear leukocyte (PMN) adherence to endothelial cells (EC) induces transient increases in EC cytosolic free calcium concentration ([Ca2+]i) that are required for PMN transit across the EC barrier (Huang, A.J., J.E. Manning, T.M. Bandak, M.C. Ratau, K.R. Hanser, and S.C. Silverstein. 1993. J. Cell Biol. 120:1371–1380). To determine whether stimulation of [Ca2+]i changes in EC by leukocytes was induced by the same molecules that mediate leukocyte adherence to EC, [Ca2+]i was measured in Fura2-loaded human EC monolayers. Expression of adhesion molecules by EC was induced by a pretreatment of the cells with histamine or with Escherichia coli lipopolysaccharide (LPS), and [Ca2+]i was measured in single EC after the addition of mAbs directed against the EC adhesion proteins P-selectin, E-selectin, intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), or platelet/endothelial cell adhesion molecule-1 (PECAM-1). Both anti–P- and anti–E-selectin mAb, as well as anti–VCAM-1 mAb, induced transient increases in EC [Ca2+]i that were comparable to those induced by 200 μM histamine. In contrast, no effect was obtained by mAbs directed against the endothelial ICAM-1 or PECAM-1. PMN adherence directly stimulated increases in [Ca2+]i in histamine- or LPS-treated EC. mAbs directed against leukocyte CD18 or PECAM-1, the leukocyte counter-receptors for endothelial ICAM-1 and PECAM-1, respectively, did not inhibit PMN-induced EC activation. In contrast, mAb directed against sialyl Lewis x (sLex), a PMN ligand for endothelial P- and E-selectin, completely inhibited EC stimulation by adherent PMN. Changes in EC [Ca2+]i were also observed after adherence of peripheral blood monocytes to EC treated with LPS for 5 or 24 h. In these experiments, the combined addition of mAbs to sLex and VLA-4, the leukocyte counter-receptor for endothelial VCAM-1, inhibited [Ca2+]i changes in the 5 h–treated EC, whereas the anti–VLA-4 mAb alone was sufficient to inhibit [Ca2+]i changes in the 24 h-treated EC. Again, no inhibitory effect was observed with an anti-CD18 or anti–PECAM-1 mAb. Of note, the conditions that induced changes in EC [Ca2+]i, i.e., mAbs directed against endothelial selectins or VCAM-1, and PMN or monocyte adhesion to EC via selectins or VCAM-1, but not via ICAM-1 or PECAM-1, also induced a rearrangement of EC cytoskeletal microfilaments from a circumferential ring to stress fibers. We conclude that, in addition to their role as adhesion receptors, endothelial selectins and VCAM-1 mediate endothelial stimulation by adhering leukocytes.  相似文献   

5.
FK506 suppresses activation of T cells; however, it down-regulates E-selectin, ICAM-1 and VCAM-1 expression in inflamed tissues. In this study, we investigated the effect of FK506 on expression of those adhesion molecules on human vascular endothelial cells (HMVEC). Culture supernatant from peripheral blood mononuclear cells (PBMC) stimulated with anti-CD3 plus anti-CD2 antibodies effectively induced the expression of E-selectin, ICAM-1 and VCAM-1 on HMVEC, and treatment with FK506 down-regulated their expression. Culture supernatant contained tumor necrosis factor (TNF) alpha and interleukin (IL)-1beta, which effectively induced adhesion molecules, and FK506 suppressed both cytokine secretions. TNFalpha content in culture supernatant was parallel to the induction of adhesion molecules by the culture supernatant. IL-1beta content was not enough to induce those adhesion molecules. Anti-TNFalpha antibody completely inhibited those expressions. FK506 did not inhibit either TNFalpha- or IL-1beta-induced expression of adhesion molecules, or viability of HMVEC. These results indicate that FK506 suppresses migration of inflammatory cells through the inhibition of TNFalpha secretion from leukocytes.  相似文献   

6.
7.
8.
This study investigated the effects of testosterone and 17-beta-estradiol on tumor necrosis factor-alpha (TNF-alpha)-induced endothelial expression of E-selectin and vascular cell adhesion molecule-1 (VCAM-1) and the potential roles of hormone receptors involved in these actions. Human umbilical vein endothelial cells (HUVEC) were stimulated with TNF-alpha in the presence or absence of testosterone or 17-beta-estradiol, and the expression of E-selectin and VCAM-1 was investigated. As shown by Western blot analysis, co-administration with testosterone or 17-beta-estradiol increased the expression of E-selectin and VCAM-1 induced by TNF-alpha at 6 h and 3 h, respectively. Similarly, RT-PCR analysis revealed a significant increase in the amount of mRNA for E-selectin and VCAM-1 after co-administration with testosterone or 17-beta-estradiol in TNF-alpha-stimulated HUVEC. The presence of mRNA and proteins for androgen receptor and estrogen receptor alpha in HUVEC was verified by RT-PCR and Western blot. Flow cytometric analysis showed that preincubation with androgen receptor antagonist cyproterone and estrogen receptor antagonist tamoxifen completely abrogated the upregulating effects of testosterone and 17-beta-estradiol on TNF-alpha-induced E-selectin and VCAM-1 expression, respectively. Expression of TNF receptors in TNF-alpha-stimulated HUVEC was not influenced by testosterone and 17-beta-estradiol. The data indicate that both testosterone and 17-beta-estradiol increase TNF-alpha-induced E-selectin and VCAM-1 expression in endothelial cells via a receptor-mediated system, and expression of TNF receptors are not changed in these actions. The implications of these results for the facilitory effects of both sex hormones on immune reactions are discussed.  相似文献   

9.
10.
The adhesion of lymphocytes to vascular endothelium is the first step in their passage from the blood into inflammatory tissues. By modulating endothelial cell (EC) adhesiveness for lymphocytes, cytokines may regulate lymphocyte accumulation and hence the nature and progression of inflammatory responses. IL-1, TNF, IFN-gamma, and IL-4 each increase EC adhesiveness for T cells when used alone in adhesion assays in vitro. As cytokines are more likely to act in combination at sites of inflammation in vivo, we have studied the stimulating effect of different combinations of cytokines on EC adhesiveness for T cells and polymorphonuclear leukocytes (PMN). Acting alone IL-1, TNF, IFN-gamma, and IL-4 each significantly enhanced EC adhesiveness for T cells (p less than 0.005), whereas only IL-1 (p less than 0.005) and TNF (p less than 0.005) but not IFN-gamma or IL-4 significantly enhanced adhesiveness for PMN. When EC were stimulated with optimal concentrations of TNF in combination with IL-4 or IFN-gamma, there was a significant further increase in adhesiveness for T cells (p less than 0.003), but not PMN, over that seen with TNF alone. The additive effect of TNF and IL-4 was more marked than that of TNF and IFN-gamma. Although approximately equal proportions of T cells and PMN bound to TNF-stimulated EC, nearly double the proportion of T cells compared with PMN bound EC preincubated with TNF and IL-4 together. A similar interaction with IL-4 or IFN-gamma was exhibited by lymphotoxin. mAb-inhibition studies indicated that the extra increase in binding caused by stimulating EC with TNF and IL-4 in combination was mediated by VCAM-1 whereas that caused by stimulating with TNF and IFN-gamma in combination was substantially mediated through leukocyte function-associated Ag-1- and VCAM-1-independent mechanisms. These observations suggest that whereas IL-1 and TNF alone are unselective in terms of leukocyte adhesion to EC, the combination of TNF (or LT) with IL-4 or IFN-gamma may be of key importance in determining the recruitment of a lymphocyte-predominant infiltrate in immune mediated inflammation, and in initiating the transition from acute to chronic inflammation.  相似文献   

11.
Upregulation of adhesion proteins plays an important role in mediating inflammation. The induction of adhesive molecules has been well studied, but the reversibility of their expression has not been well characterized. A neutralizing anti-TNF monoclonal antibody (cA2) was used to study the down regulation of TNF-induced E-selectin, vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) on cultured human umbilical vein endothelial cells (HUVECs). Addition of cA2 following TNF stimulation of HUVECs enhanced the rate of E-selectin and VCAM-1 down-regulation from the cell surface and also reduced steady state E-selectin and VCAM-1 mRNA levels. The cA2-mediated disappearance of E-selectin, but not VCAM-1 protein was microtubule and not microfilament dependent. Neutralization of TNF only slightly reduced ICAM-1 cell surface levels following initial TNF stimulation, suggesting a slower turnover of ICAM-1 compared to E-selectin and VCAM-1. Microtubule inhibition during TNF stimulation partially inhibited E-selectin, VCAM-1 and ICAM-1 mRNA upregulation. VCAM-1 and ICAM-1 cell surface expression were similarly partially inhibited, however, E-selectin levels were unaffected, presumably due to the dual, opposing effect of inhibiting protein expression and inhibiting internalization. Microfilament inhibition during protein induction specifically inhibited the maximal expression of VCAM-1 protein and mRNA, without affecting E-selectin or ICAM-1. These data support the notion that E-selectin, VCAM-1, and ICAM-1 expression are differentially regulated on HUVECs and suggest that TNF neutralizing therapies may be effective because of their ability to reduce the levels of pre-existing adhesion proteins.  相似文献   

12.
We have injected human TNF, LPS, and IL-4 into the skin of baboons to examine regulation of endothelial leukocyte adhesion molecules (ELAM) in vivo and to determine which endothelial adhesion molecules correlate temporally and spatially with cytokine-induced T cell infiltration. The expression of adhesion molecules ELAM-1 (E-selectin), VCAM-1, and ICAM-1 (CD54) were quantified by immunocytochemical staining of frozen sections obtained from skin biopsies; T cell infiltration was measured by immunocytochemical staining of CD3+ T cells in serial sections. We found that injection of TNF causes late (24 to 48 h) T cell infiltration whereas injection of LPS, in doses that do not cause tissue necrosis, does not. The ability of TNF (but not LPS) to recruit T cells correlates with the ability of TNF to cause sustained endothelial cell adhesion molecule expression. Expression of VCAM-1 on post-capillary venules showed the highest degree of spatial localization with infiltrates. IL-4, although not proinflammatory by itself, can cause T cell infiltration in combination with an ineffective dose of TNF. The ability of IL-4 to augment TNF-induced inflammation best correlates with the ability of the combination of IL-4 and TNF to increase endothelial VCAM-1 expression. In contrast, IL-4 does not promote T cell infiltration or endothelial VCAM-1 expression in combination with LPS. In cytokine-injected tissues, VCAM-1 is also expressed on connective tissue cells other than endothelium, including smooth muscle and perineural cells, where it is induced by cytokines in parallel with endothelial VCAM-1. Overall, our data support the hypothesis that endothelial VCAM-1 expression contributes to T cell extravasation at sites of inflammation. Furthermore, we find that IL-4, a product a Ag-activated T cells, can interact with TNF to selectively promote VCAM-1 expression and the development of T cell-rich infiltrates, characteristic of Ag-induced inflammatory reactions.  相似文献   

13.
Hyperglycemia is the major cause of diabetic angiopathy. Aim of our study was to evaluate the impact of high glucose on cell growth and function of human "diabetic" endothelial cells (EC). Incubation of non-diabetic EC with glucose moderately inhibited cell growth and increased the expression of ICAM-1 and E-selectin. In the disease-specific EC, glucose treatment resulted also in moderately inhibited cell growth by 5-10%, increased basal expression of VCAM-1 by 10-20%, and an enhanced release of monocyte-chemoattractant-protein-1 (MCP-1) by 40-70%. The expression of ICAM-1 and E-selectin and the release of IL-6 and IL-8 was not affected. The usage of our disease-specific EC model might evaluate the impact of systemic factors of diabetic patients in the progression of endothelial dysfunction, and may be suitable to develop relevant therapeutic regimens.  相似文献   

14.
TNF-alpha alters leukocyte adhesion molecule expression of cultured endothelial cells like human umbilical vein endothelial cells (HUVEC). This study was designed to investigate the changes in vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and platelet endothelial cell adhesion molecule-1 (PECAM-1) expression with TNF-alpha stimulation in cultured human neonatal dermal lymphatic endothelial cells (HNDLEC). The real-time quantitative PCR analysis on HNDLEC showed that TNF-alpha treatment leads to increases of VCAM-1 and ICAM-1 mRNAs to the 10.8- and 48.2-fold levels of untreated cells and leads to a reduction of PECAM-1 mRNA to the 0.42-fold level of untreated cells. Western blot and immunohistochemical analysis showed that TNF-alpha leads to VCAM-1 and ICAM-1 expressions that were inhibited by antiserum to human TNF receptor or by AP-1 inhibitor nobiletin. In flow cytometry analysis, the number of VCAM-1- and ICAM-1-positive cells increased, and PECAM-1-positive cells decreased with TNF-alpha treatment. Regarding protein amounts produced in cells and amounts expressed on the cell surface, VCAM-1 and ICAM-1 increased in HNDLEC and HUVEC, and PECAM-1 decreased in HNDLEC in a TNF-alpha concentration-dependent manner. VCAM-1, ICAM-1, and PECAM-1 protein amounts in TNF-alpha-stimulated cells were lower in HNDLEC than in HUVEC. This suggests that the lymphatic endothelium has the TNF-alpha-induced signaling pathway, resulting in increased VCAM-1 and ICAM-1 expression to a weaker extent than blood endothelium and PECAM-1 reduction to a stronger extent than blood endothelium.  相似文献   

15.
16.
Vascular endothelial growth factor (VEGF) induces adhesion molecules on endothelial cells during inflammation. Here we examined the mechanisms underlying VEGF-stimulated expression of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin in human umbilical vein endothelial cells. VEGF (20 ng/ml) increased expression of ICAM-1, VCAM-1, and E-selectin mRNAs in a time-dependent manner. These effects were significantly suppressed by Flk-1/kinase-insert domain containing receptor (KDR) antagonist and by inhibitors of phospholipase C, nuclear factor (NF)-kappaB, sphingosine kinase, and protein kinase C, but they were not affected by inhibitors of mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) 1/2 or nitric-oxide synthase. Unexpectedly, the phosphatidylinositol (PI) 3'-kinase inhibitor wortmannin enhanced both basal and VEGF-stimulated adhesion molecule expression, whereas insulin, a PI 3'-kinase activator, suppressed both basal and VEGF-stimulated expression. Gel shift analysis revealed that VEGF stimulated NF-kappaB activity. This effect was inhibited by phospholipase C, NF-kappaB, or protein kinase C inhibitor. VEGF increased VCAM-1 and ICAM-1 protein levels and increased leukocyte adhesiveness in a NF-kappaB-dependent manner. These results suggest that VEGF-stimulated expression of ICAM-1, VCAM-1, and E-selectin mRNAs was mainly through NF-kappaB activation with PI 3'-kinase-mediated suppression, but was independent of nitric oxide and MEK. Thus, VEGF simultaneously activates two signal transduction pathways that have opposite functions in the induction of adhesion molecule expression. The existence of parallel inverse signaling implies that the induction of adhesion molecule expression by VEGF is very finely regulated.  相似文献   

17.
Using histochemical staining and FACS-analysis we have studied the basal and TNF-alpha induced expression of E-selectin, ICAM-1 and VCAM-1 in human umbilical vein endothelial cells (ECs) exposed to simulated hypogravity. Control ECs did not contain detectable amounts of E-selectin or VCAM-1 but were ICAM-1 positive. As soon as after 6-8 hrs of clinorotation at 5 RPM the cellular content of ICAM- 1 increased. Moreover, hypogravity potentiated the effect of inflammatory cytokines (TNF-alpha and IL-1) on ICAM-1 expression. No increase in E-selectin or VCAM-1 expression was observed in ECs exposed to hypogravity itself. However, hypogravity reduced E-selectin and VCAM-1 expression in cell cultures activated by cytokines, more visible at their low (5-10 U/ml) concentrations. Both, control and clinorotated ECs poorly supported spontaneous lymphocyte adhesion; the adhesion of PMA-activated leukocytes was 15-20-fold higher. The interaction of unstimulated lymphocytes with cytokine-activated endothelium was more noticeable but significantly lower in cultures exposed to hypogravity. Activated blood cells interacted with endothelium more effectively, particularly, under hypogravity. Obtained results suggest that EC adhesion molecule expression and endothelium-lymphocyte interaction are altered under simulated hypogravity conditions in direction of increase of endotlielial adhesiveness for activated blood cells.  相似文献   

18.
The effect of interferon gamma (IFN) and the inflammatory cytokines tumour necrosis factor alpha (TNF) and interleukin 1alpha (IL-1) on micro- and macrovascular endothelial cell (EC) proliferation and migration was analysed. Whereas both micro- and macrovascular EC were growth-inhibited in response to the aforementioned cytokines, only microvascular EC were sensitive to TNF, IL-1 and IFN as inhibitors of fibronectin-activated cell migration. In addition, because microvascular EC play a crucial role in angiogenesis, and the formation of new capillaries depends upon the presence of angiogenic polypeptides, we evaluated the synthesis of fibroblast growth factor (FGF) type 1 and 2, Vascular Endothelial Growth Factor (VEGF) and Hepatocyte Growth Factor (HGF) in our system. Both micro- and macrovascular EC produce large amounts of FGF-2, which is mainly localized in the nucleus, and almost undetectable levels of FGF-1. In addition, the two cell types synthesize notable levels of VEGF and no HGF. Whether these findings are relevant to the different in vivo functions of EC residing different districts remains the focus of additional studies.  相似文献   

19.
20.
Plasmodium falciparum malaria is a major cause of morbidity and mortality in African children, and factors that determine the development of uncomplicated (UM) versus cerebral malaria (CM) are not fully understood. We studied the ex vivo responsiveness of microvascular endothelial cells to pro-inflammatory stimulation and compared the findings between CM and UM patients. In patients with fatal disease we compared the properties of vascular endothelial cells cultured from brain tissue to those cultured from subcutaneous tissue, and found them to be very similar. We then isolated, purified and cultured primary endothelial cells from aspirated subcutaneous tissue of patients with CM (EC(CM) ) or UM (EC(UM) ) and confirmed the identity of the cells before analysis. Upon TNF stimulation in vitro, EC(CM) displayed a significantly higher capacity to upregulate ICAM-1, VCAM-1 and CD61 and to produce IL-6 and MCP-1 but not RANTES compared with EC(UM) . The shedding of endothelial microparticles, a recently described parameter of severity in CM, and the cellular level of activated caspase-3 were both significantly greater in EC(CM) than in EC(UM) . These data suggest that inter-individual differences in the endothelial inflammatory response to TNF may be an additional factor influencing the clinical course of malaria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号