首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemical modification of amino acid residues with phenylglyoxal, N-ethylmaleimide and diethyl pyrocarbonate indicated that at least one residue each of arginine, cysteine and histidine were essential for the activity of sheep liver serine hydroxymethyltransferase. The second-order rate constants for inactivation were calculated to be 0.016 mM-1 X min-1 for phenylglyoxal, 0.52 mM-1 X min-1 for N-ethylmaleimide and 0.06 mM-1 X min-1 for diethyl pyrocarbonate. Different rates of modification of these residues in the presence and in the absence of substrates and the cofactor pyridoxal 5'-phosphate as well as the spectra of the modified protein suggested that these residues might occur at the active site of the enzyme.  相似文献   

2.
Reaction of spinach leaves ferredoxin-NADP+ reductase (NADPH:ferredoxin oxidoreductase, EC 1.6.7.1) with alpha-dicarbonyl compounds results in a biphasic loss of activity. The rapid phase yields modified enzyme with about 30% of the original activity, but no change in the Km for NADPH. Only partial protection against inactivation is provided by NADP+, NADPH and their analogs, whereas ferredoxin affords complete protection. The reductase inactivated to 30% of original activity shows a loss of about two arginyl residues, whereas only one residue is lost in the NADP+-protected enzymes. The data suggest that the integrity of at least two arginyl residues are requested for maximal activity of ferredoxin-NADP+ reductase: one residue being located near the NADP+-binding site, the other presumably situated in the ferredoxin-binding domain.  相似文献   

3.
Chemical modification of chicken liver fatty acid synthetase with the reagent ethoxyformic anhydride causes inactivation of the palmitate synthetase and enoyl reductase activities of the enzyme complex, but without significant effect on its beta-ketoacyl reductase or beta-ketoacyl dehydratase activity. The second-order rate constant of 0.2 mM-1 X s-1 for loss of synthetase activity is equal to the value for enoyl reductase, indicating that ethoxyformylation destroys the ability of the enzyme to reduce the unsaturated acyl intermediate. The specificity of this reagent for histidine residues is indicated by the appearance of a 240 nm absorption band for ethoxyformic histidine corresponding to the modification of 2.1 residues per enzyme dimer, and by the observation that the modified enzyme is readily reactivated by hydroxylamine. A pK value of 7.1 obtained by studies of the pH rate-profile of inactivation is consistent with that of histidine. Moreover, inactivation by ethoxyformic anhydride is unaffected by reversely blocking essential SH groups of the enzyme with 5,5'-dithiobis(2-nitrobenzoic acid), and therefore does not involve the reaction of these groups. The reaction of tyrosyl groups is excluded by an unchanged absorption at 278 nm. In other experiments, it was shown that inactivation of synthetase is protected by pyridine nucleotide cofactors and nucleotide analogs containing a 2'-phosphate group, and is accompanied by the loss of 2.4 NADPH binding sites. These results implicate the presence of a histidine residue at or near the binding site for 2'-phosphate group of pyridine nucleotide in the enoyl reductase domain of the synthetase.  相似文献   

4.
Chemical modification of ferredoxin--NADP+ reductase from the cyanobacteria Anabaena has been performed using the alpha-dicarbonyl reagent phenylglyoxal. Inactivation of both the diaphorase and cytochrome-c reductase activities, characteristic of the enzyme, indicates the involvement of one or more arginyl residues in the catalytic process of the enzyme. The determination of the rate constants for the inactivation process under different conditions, including those in which substrates, NADP+ and ferredoxin, as well as other NADP+ analogs were present, indicates the involvement of two different groups in the inactivation process, one that reacts very rapidly with the reagent (kobs = 8.3 M-1 min-1) and is responsible for the binding of NADP+, and a second less reactive group (kobs = 0.9 M-1 min-1), that is involved in the binding of ferredoxin. Radioactive labeling of the enzyme with [14C]phenylglyoxal confirms that two groups are modified while amino acid analysis of the modified protein indicates that the modified groups are arginine residues. The identification of the amino acid residues involved in binding and catalysis of the substrates of ferredoxin--NADP+ reductase will help to elucidate the mechanism of the reaction catalyzed by this important enzyme.  相似文献   

5.
Both activities of rabbit lung lysolecithin:lysolecithin acyltransferase (EC 3.1.1.5), hydrolysis and transacylation, are inactivated by diethylpyrocarbonate. The reaction follows pseudo-first-order kinetics, and second-order rate constants of 1.17 mM-1min-1 for hydrolysis and 0.56 mM-1 min-1 for transacylation were obtained at pH 6.5 and 37 degrees C. The rate of inactivation is dependent on pH, showing the involvement of a group with a pK of 6.5. The difference spectra showed an increase in absorbance at 242 nm, indicating the modification of histidine residues. The activity lost by diethylpyrocarbonate modification can be partially recovered by hydroxylamine treatment. The statistical analysis of residual fractional activity versus the number of modified histidine residues leads to the conclusion that two histidine residues are essential for the hydrolytic activity, whereas transacylation activity depends on only one essential histidine. The substrate and substrate analogs protected the enzyme against inactivation by diethylpyrocarbonate, suggesting that the essential residues are located at or near the active site of the enzyme.  相似文献   

6.
Chemical modification of rat hepatic NADPH-cytochrome P-450 reductase by sodium 2,4,6-trinitrobenzenesulfonate (TNBS) resulted in a time-dependent loss of the reducing activity for cytochrome c. The inactivation exhibited pseudo-first-order kinetics with a reaction order approximately one, and a second-order constant of 4.8 min-1 X M-1. The reducing activities for 2,6-dichloroindophenol and K3Fe(CN)6 were also decreased by TNBS. Almost complete protection of the NADPH-cytochrome P-450 reductase from inactivation by TNBS was achieved by NADP(H), while partial protection was obtained with a high concentration of NADH. NAD, FAD and FMN showed no effect against the inactivation. 3-Acetylpyridine-adenine dinucleotide phosphate, adenosine 2',5'-bisphosphate and 2'AMP protected the enzyme against the chemical modification. Stoichiometric studies showed that the complete inactivation was caused by modification of three lysine residues per molecule of the enzyme. But, under the conditions where the inactivation was almost protected by NADPH, two lysine residues were modified. From those results, we propose that one residue of lysine is located at the binding site of the 2'-phosphate group on the adenosine ribose of NADP(H), and plays an essential role in the catalytic function of the NADPH-cytochrome P-450 reductase.  相似文献   

7.
Dihydrodiol dehydrogenase from pig liver was inactivated by diethylpyrocarbonate (DEP) and by rose bengal-sensitized photooxidation. The DEP inactivation was reversed by hydroxylamine and the absorption spectrum of the inactivated enzyme indicated that both histidine and tyrosine residues were carbethoxylated. The rates of inactivation by DEP and by photooxidation were dependent on pH, showing the involvement of a group with a pKa of 6.4. The kinetics of inactivation and spectrophotometric quantification of the modified residues suggested that complete inactivation was caused by modification of one histidine residue per active site. The inactivation by the two modifications was partially prevented by either NADP(H) or the combination of NADP+ and substrate, and completely prevented in the presence of both NADP+ and a competitive inhibitor which binds to the enzyme-NADP+ binary complex. The DEP-modified enzyme caused the same blue shift and enhancement of NADPH fluorescence as did the native enzyme, suggesting that the modified histidine is not in the coenzyme-binding site of the enzyme. The results suggest the presence of essential histidine residues in the catalytic region of the active site of pig liver dihydrodiol dehydrogenase.  相似文献   

8.
Sheep liver 5,10-methylenetetrahydrofolate reductase was subjected to specific chemical modification with phenylglyoxal, diethyl pyrocarbonate and N-bromosuccinimide. The second-order rate constants for inactivation were calculated to be 54 M-1 X min-1, 103 M-1 X min-1 and 154 M-1 X min-1 respectively. This inactivation could be prevented by incubation with substrates or products, suggesting that the residues modified, namely arginine, histidine and tryptophan, are essential for enzyme activity.  相似文献   

9.
Ferredoxin-NADP reductase accounts for about 50% of the NADPH diaphorase activity of spinach leaf homogenates. The enzyme is bound to thylakoid membranes, but can be slowly extracted by aqueous buffers. Ferredoxin-NADP reductase can be extracted from the membranes by a 1- to 2-min treatment with a low concentration of trypsin. This treatment completely inactivates NADP photoreduction but does not affect electron transport from water to ferredoxin. It is shown that the inactivation is due to solubilization of ferredoxin-NADP reductase: the activity can be restored by addition of a very large excess of soluble enzyme in pure form. When ferredoxin-NADP reductase is added as a soluble enzyme after extraction or inactivation (by a specific antibody) of the membrane-bound enzyme, NADP photoreduction requires a very large excess of this enzyme, and the apparent Km for ferredoxin is also increased. These observations are discussed as related to the interactions of thylakoids with ferredoxin-NADP reductase.  相似文献   

10.
Eleven independent monoclonal antibodies, all IgG's, have been raised against the ferredoxin:NADP+ oxidoreductase of spinach leaves. All 11 monoclonal antibodies were able to produce substantial inhibition of the NADPH to 2,6-dichlorophenol indophenol (DCPIP) diaphorase activity of the enzyme, but none of the antibodies produced any significant inhibition of electron flow from NADPH to ferredoxin catalyzed by the enzyme. Spectral perturbation assays were used to demonstrate that antibody interaction with NADP+ reductase did not interfere significantly with the binding of either ferredoxin or NADP+ to the enzyme. Ultrafiltration binding assays were used to confirm that the monoclonal antibodies did not interfere with complex formation between ferredoxin and the enzyme. These results have been interpreted in terms of the likely presence of one or more highly antigenic epitopes at the site where the nonphysiological electron acceptor, DCPIP, binds to the enzyme. Furthermore, the results suggest that the site where DCPIP is reduced differs from both of the two separate sites at which the two physiological substrates, ferredoxin and NADP+/NADPH, are bound.  相似文献   

11.
Acetate kinase purified from Acinetobacter calcoaceticus was inhibited by diethylpyrocarbonate with a second-order rate constant of 620 M-1.min-1 at pH 7.4 at 30 degrees C and showed a concomitant increase in absorbance at 240 nm due to the formation of N-carbethoxyhistidyl derivative. Activity could be restored by hydroxylamine and the pH curve of inactivation indicates the involvement of a residue with a pKa of 6.64. Complete inactivation of acetate kinase required the modification of seven residues per molecule of enzyme. Statistical analysis showed that among the seven modifiable residues, only one is essential for activity. 5,5'-dithiobis(2-nitrobenzoic acid), p-chloromercuryphenylsulfonate, N-ethylmaleimide and phenylglyoxal did not affect the enzyme activity. These results suggest that the inactivation is due to the modification of one histidine residue. The substrates, acetate and ATP, protected the enzyme against inactivation, indicating that the modified histidine residue is located at or near the active site.  相似文献   

12.
Dansyl chloride, at low molar ratio, inactivates ferredoxin-NADP reductase (NADPH:ferredoxin oxidoreductase, EC 1.6.7.1). The complete protection afforded either by NADP or NADPH suggests a direct involvement of the active site. Experiments with [Me-14C] dansyl chloride showed that about 1.5 residues per flavin were dansylated: by differential labelling experiments using NADP, it has been proved that enzyme inactivation is due to dansylation of one residue. The group modified has been identified as the epsilon-amino group of a lysine. The pH-inactivation profile indicates that this essential group has an apparent pKa of 8.7. The dansylated flavoprotein seems to maintain its native conformation; it shows a fluorescent chromophore with a peak at 335 nm. The modified enzyme has lost the capacity to form a complex with NADP, nevertheless it interacts normally with ferredoxin. It is concluded that the loss of catalytic activity which parallels the dansylation of a lysyl residue occurs because this residue is essential for the binding of the pyridine nucleotide substrate. Protection experiments with a series of coenzyme analogs further indicate that this lysyl residue interacts, most likely, with the 2'-phosphate moiety of NADP(H).  相似文献   

13.
Dihydrofolate reductase (5,6,7,8-tetrahydrofolate: NADP+ oxidoreductase, EC 1.5.1.3) from an amethopterin-resistant strain of Lactobacillus casei was inactivated by 2,4-pentanedione. The inactivation appears to be due to the specific interaction of 2,4-pentanedione with lysyl residues. Inactivation is concomitant with with the modification of three lysyl residues. Both NADPH and dihydrofolate protect the enzyme against inactivation, suggesting that the critical residue(s) lies at or near their binding sites. Unlike native dihydrofolate reductase, 2,4-pentanedione-modified enzyme does not form binary complexes with either NADPH, dihydrofolate or amethopterin which are stable to gel filtration. Treatment of the modified enzyme with nucleophilic reagents such as hydroxylamine, failed to promote reactivation of the enzyme. Reactivation was achieved following gel filtration at pH 6.0 and was found to be dependent on the degree to which the enzyme was inactivated.  相似文献   

14.
The binding site of NADPH in NADPH-adrenodoxin reductase was examined using crystalline enzyme from bovine adrenocortical mitochondria by studies on the effects of photooxidation and chemical modifications of amino acid residues in the reductase. (1) Photoxication decreased the enzymatic activity of NADPH-adrenodoxin reductase. Photooxidation of the reductase was prevented by NADP+, adrenodoxin, or reduced glutathione, but not NAD+. Photoinactivation caused loss of a histidyl residue, but not of tyrosyl, tryptophanyl, cysteinyl, or methionyl residues of the reductase. It did not affect the circular dichroism spectrum of the reductase appreciably. (2) NADPH-adrenodoxin reductase activity was inhibited by diethyl pyrocarbonate and the inhibition was partially reversed by addition of hydroxylamine. The inhibition was prevented by NADP+, but not NAD+. (3) NADPH-adrenodoxin reductase activity was inhibited by 5,5'-dithiobis(2-nitrobenzoate) and the inhibition was reversed by reduced glutathione. It was also protected by NADP+, but not NAD+. The results indicate that a histidyl residue and a cysteinyl residue of NADPH-adrenodoxin reductase are essential for the binding of NADPH by the reductase.  相似文献   

15.
Yeast glutathione reductase exists in a single molecular form which exhibits preferred NADPH and weak NADH linked multifunctional activities. Kinetic parameters for the NADPH and NADH linked reductase, transhydrogenase, electron transferase and diaphorase reactions have been determined. The functional preference for the NADPH linked reductase reaction is kinetically related to the high catalytic efficiency and low dissociation constants for substrates. NADP+ and NAD+ may interact with two different sites or different kinetic forms of the enzyme. The active site disulfide and histidine are required for the reductase activity but are not essential to the transhydrogenase, electron transferase and diaphorase activities. Amidation of carboxyl groups and Co(II) chelation of glutathione reductase facilitate the electron transferase reaction presumably by encouraging the formation of an anionic flavosemiquinone.  相似文献   

16.
Incubation of malic enzyme (L-malate:NADP+ oxidoreductase (oxaloacetate-decarboxylating), EC 1.1.1.40) with ethoxyformic anhydride caused the time-dependent loss of its ability to catalyze reactions requiring the nucleotide cofactor NADP+ or NADPH, such as the oxidative decarboxylase, the NADP+ - stimualted oxalacetate decarboxylase, the pyruvate reductase, and the pyruvate-medium proton exchange activities. Similar loss of oxidative decarboxylase and pyruvate reductase activities was affected by photo-oxidation in the presence of rose bengal. The inactivation of oxidative decarboxylase activity by ethoxyformic anhydride was accompanied by the reaction of greater than or equal to 2.3 histidyl residues per enzyme site and was strongly inhibited by NADP+. Ethoxyformylation also impaired the ability of malic enzyme to bind NADP+ or NADPH. These results support the involvement of histidyl residue(s) at the nucleotide binding site of malic enzyme.  相似文献   

17.
Glutathione reductase from S. cerevisiae (EC 1.6.4.2) catalyzes the NADPH oxidation by glutathione in accordance with a "ping-pong" scheme. The catalytic constant kcat) is 240 s-1 (pH 7.0, 25 degrees C); kcat for the diaphorase reaction is 4-5 s-1. The enzyme activity does not change markedly at pH 5.5-8.0. At pH less than or equal to 7.0, NADP+ acts as a competitive inhibitor towards NADPH and as a noncompetitive inhibitor towards glutathione. NADP+ increases the diaphorase activity of the enzyme. The maximal activity is observed, when the NADP+/NADPH ratio exceeds 100. At pH 8.0, NADP+ acts as a mixed type inhibitor during the reduction of glutathione. High concentrations of NADP+ also inhibit the diaphorase activity due to the reoxidation of the reduced enzyme by NADP+ at pH 8.0. The redox potential of glutathione reductase calculated from the inhibition data is--306 mV (pH 8.0). Glutathione reductase reduces quinoidal compounds in an one-electron way. The hyperbolic dependence of the logarithm of the oxidation constant on the one electron reduction potential of quinone is observed. It is assumed that quinones oxidize the equilibtium fraction of the two-electron reduced enzyme containing reduced FAD.  相似文献   

18.
Uridine phosphorylase from Escherichia coli is inactivated by diethyl pyrocarbonate at pH 7.1 and 10 degrees C with a second-order rate constant of 840 M-1.min-1. The rate of inactivation increases with pH, suggesting participation of an amino acid residue with pK 6.6. Hydroxylamine added to the inactivated enzyme restores the activity. Three histidine residues per enzyme subunit are modified by diethyl pyrocarbonate. Kinetic and statistical analyses of the residual enzymic activity, as well as the number of modified histidine residues, indicate that, among the three modifiable residues, only one is essential for enzyme activity. The reactivity of this histidine residue exceeded 10-fold the reactivity of the other two residues. Uridine, though at high concentration, protects the enzyme against inactivation and the very reactive histidine residue against modification. Thus it may be concluded that uridine phosphorylase contains only one histidine residue in each of its six subunits that is essential for enzyme activity.  相似文献   

19.
A flavoprotein with properties similar to those of ferredoxin:NADP+ oxidoreductases found in the leaves of higher plants has been purified to apparent homogeneity from bean sprouts, a nonphotosynthetic plant tissue. The absorbance and circular dichroism spectra of the bean sprout protein are similar to those of spinach leaf ferredoxin:NADP+ oxidoreductase and an antibody raised against the spinach enzyme recognized the bean sprout enzyme. The bean sprout enzyme catalyzed ferredoxin-dependent electron transfer from NADPH to equine cytochrome c at a high rate but, unlike the spinach enzyme, exhibited little NADPH to 2,6-dichlorophenol indophenol diaphorase activity. The bean sprout enzyme forms a 1:1 electrostatically stabilized complex with ferredoxins isolated from either bean sprouts or spinach leaves.  相似文献   

20.
Treatment with diethylpyrocarbonate results in a first-order loss of the malate oxidative decarboxylase activity of NAD-malic enzyme. First-order plots are biphasic, with about 40-50% activity loss in the first phase. The inactivation process is not saturable, and the second-order rate constant is 4.7 M-1 S-1. Malate (250 mM) provides complete protection against inactivation (as measured by a decrease in the inactivation rate), and less malate is required with Mg2+ present. Partial protection (50%) is afforded by either NAD+ (1 mM) or Mg2+ (50 mM). Treatment of modified (inactive) enzyme with hydroxylamine restores activity to 100% of the control when corrected for the effect of hydroxylamine on unmodified enzyme. A total of 10-13 histidine residues/subunit are acylated concomitant with loss of activity while 1-2 tyrosines are modified prior to any activity loss. The presence of Mg2+ and malate at saturating concentrations protect 1-2 histidine residues/subunit. The intrinsic fluorescence of the enzyme decreases with time after addition of diethylpyrocarbonate, but the rate constant for this process is at least 10-fold too low to account for the biphasicity observed in the first order plots. The histidine modified which is responsible for loss of activity has a pK of 8.3 as determined from the pH dependence of the rate of inactivation. The histidine titrated is still modified under conditions where the residue is completely protonated but at a rate 1/100 the rate of the unprotonated histidine. The results suggest that 1-2 histidines are in or near the malate binding site and are required for malate oxidative decarboxylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号