共查询到20条相似文献,搜索用时 0 毫秒
1.
Chyong‐Mei Chen Tai‐Fang C. Lu Man‐Hua Chen Chao‐Min Hsu 《Biometrical journal. Biometrische Zeitschrift》2012,54(5):641-656
Current status data arise due to only one feasible examination such that the failure time of interest occurs before or after the examination time. If the examination time is intrinsically related to the failure time of interest, the examination time is referred to as an informative censoring time. Such data may occur in many fields, for example, epidemiological surveys and animal carcinogenicity experiments. To avoid severely misleading inferences resulted from ignoring informative censoring, we propose a class of semiparametric transformation models with log‐normal frailty for current status data with informative censoring. A shared frailty is used to account for the correlation between the failure time and censoring time. The expectation‐maximization (EM) algorithm combining a sieve method for approximating an infinite‐dimensional parameter is employed to estimate all parameters. To investigate finite sample properties of the proposed method, simulation studies are conducted, and a data set from a rodent tumorigenicity experiment is analyzed for illustrative purposes. 相似文献
2.
3.
4.
5.
Recurrent event data are commonly encountered in biomedical studies. In many situations, they are subject to an informative terminal event, for example, death. Joint modeling of recurrent and terminal events has attracted substantial recent research interests. On the other hand, there may exist a large number of covariates in such data. How to conduct variable selection for joint frailty proportional hazards models has become a challenge in practical data analysis. We tackle this issue on the basis of the “minimum approximated information criterion” method. The proposed method can be conveniently implemented in SAS Proc NLMIXED for commonly used frailty distributions. Its finite-sample behavior is evaluated through simulation studies. We apply the proposed method to model recurrent opportunistic diseases in the presence of death in an AIDS study. 相似文献
6.
We consider frailty models with additive semiparametric covariate effects for clustered failure time data. We propose a doubly penalized partial likelihood (DPPL) procedure to estimate the nonparametric functions using smoothing splines. We show that the DPPL estimators could be obtained from fitting an augmented working frailty model with parametric covariate effects, whereas the nonparametric functions being estimated as linear combinations of fixed and random effects, and the smoothing parameters being estimated as extra variance components. This approach allows us to conveniently estimate all model components within a unified frailty model framework. We evaluate the finite sample performance of the proposed method via a simulation study, and apply the method to analyze data from a study of sexually transmitted infections (STI). 相似文献
7.
For multivariate failure time data, we propose a new class of shared gamma frailty models by imposing the Box-Cox transformation on the hazard function, and the product of the baseline hazard and the frailty. This novel class of models allows for a very broad range of shapes and relationships between the hazard and baseline hazard functions. It includes the well-known Cox gamma frailty model and a new additive gamma frailty model as two special cases. Due to the nonnegative hazard constraint, this shared gamma frailty model is computationally challenging in the Bayesian paradigm. The joint priors are constructed through a conditional-marginal specification, in which the conditional distribution is univariate, and it absorbs the nonlinear parameter constraints. The marginal part of the prior specification is free of constraints. The prior distributions allow us to easily compute the full conditionals needed for Gibbs sampling, while incorporating the constraints. This class of shared gamma frailty models is illustrated with a real dataset. 相似文献
8.
We present a parametric family of regression models for interval-censored event-time (survival) data that accomodates both fixed (e.g. baseline) and time-dependent covariates. The model employs a three-parameter family of survival distributions that includes the Weibull, negative binomial, and log-logistic distributions as special cases, and can be applied to data with left, right, interval, or non-censored event times. Standard methods, such as Newton-Raphson, can be employed to estimate the model and the resulting estimates have an asymptotically normal distribution about the true values with a covariance matrix that is consistently estimated by the information function. The deviance function is described to assess model fit and a robust sandwich estimate of the covariance may also be employed to provide asymptotically robust inferences when the model assumptions do not apply. Spline functions may also be employed to allow for non-linear covariates. The model is applied to data from a long-term study of type 1 diabetes to describe the effects of longitudinal measures of glycemia (HbA1c) over time (the time-dependent covariate) on the risk of progression of diabetic retinopathy (eye disease), an interval-censored event-time outcome. 相似文献
9.
Summary . We consider methods for estimating the effect of a covariate on a disease onset distribution when the observed data structure consists of right-censored data on diagnosis times and current status data on onset times amongst individuals who have not yet been diagnosed. Dunson and Baird (2001, Biometrics 57, 306–403) approached this problem using maximum likelihood, under the assumption that the ratio of the diagnosis and onset distributions is monotonic nondecreasing. As an alternative, we propose a two-step estimator, an extension of the approach of van der Laan, Jewell, and Petersen (1997, Biometrika 84, 539–554) in the single sample setting, which is computationally much simpler and requires no assumptions on this ratio. A simulation study is performed comparing estimates obtained from these two approaches, as well as that from a standard current status analysis that ignores diagnosis data. Results indicate that the Dunson and Baird estimator outperforms the two-step estimator when the monotonicity assumption holds, but the reverse is true when the assumption fails. The simple current status estimator loses only a small amount of precision in comparison to the two-step procedure but requires monitoring time information for all individuals. In the data that motivated this work, a study of uterine fibroids and chemical exposure to dioxin, the monotonicity assumption is seen to fail. Here, the two-step and current status estimators both show no significant association between the level of dioxin exposure and the hazard for onset of uterine fibroids; the two-step estimator of the relative hazard associated with increasing levels of exposure has the least estimated variance amongst the three estimators considered. 相似文献
10.
Multistage models are used to describe individuals (or experimental units) moving through a succession of "stages" corresponding to distinct states (e.g., healthy, diseased, diseased with complications, dead). The resulting data can be considered to be a form of multivariate survival data containing information about the transition times and the stages occupied. Traditional survival analysis is the simplest example of a multistage model, where individuals begin in an initial stage (say, alive) and move irreversibly to a second stage (death). In this article, we consider general multistage models with a directed tree structure (progressive models) in which individuals traverse through stages in a possibly non-Markovian manner. We construct nonparametric estimators of stage occupation probabilities and marginal cumulative transition hazards. Empirical calculations of these quantities are not possible due to the lack of complete data. We consider current status information which represents a more severe form of censoring than the commonly used right censoring. Asymptotic validity of our estimators can be justified using consistency results for nonparametric regression estimators. Finite-sample behavior of our estimators is studied by simulation, in which we show that our estimators based on these limited data compare well with those based on complete data. We also apply our method to a real-life data set arising from a cardiovascular diseases study in Taiwan. 相似文献
11.
Correlated versus uncorrelated frailty Cox models: A comparison of different estimation procedures 下载免费PDF全文
In many studies in medicine, including clinical trials and epidemiological investigations, data are clustered into groups such as health centers or herds in veterinary medicine. Such data are usually analyzed by hierarchical regression models to account for possible variation between groups. When such variation is large, it is of potential interest to explore whether additionally the effect of a within‐group predictor varies between groups. In survival analysis, this may be investigated by including two frailty terms at group level in a Cox proportional hazards model. Several estimation methods have been proposed to estimate this type of frailty Cox models. We review four of these methods, apply them to real data from veterinary medicine, and compare them using a simulation study. 相似文献
12.
13.
We propose a new class of semiparametric frailty models for spatially correlated survival data. Specifically, we extend the ordinary frailty models by allowing random effects accommodating spatial correlations to enter into the baseline hazard function multiplicatively. We prove identifiability of the models and give sufficient regularity conditions. We propose drawing inference based on a marginal rank likelihood. No parametric forms of the baseline hazard need to be assumed in this semiparametric approach. Monte Carlo simulations and the Laplace approach are used to tackle the intractable integral in the likelihood function. Different spatial covariance structures are explored in simulations and the proposed methods are applied to the East Boston Asthma Study to detect prognostic factors leading to childhood asthma. 相似文献
14.
15.
Grunwald GK Bruce SL Jiang L Strand M Rabinovitch N 《Biometrical journal. Biometrische Zeitschrift》2011,53(4):578-594
We propose a likelihood-based model for correlated count data that display under- or overdispersion within units (e.g. subjects). The model is capable of handling correlation due to clustering and/or serial correlation, in the presence of unbalanced, missing or unequally spaced data. A family of distributions based on birth-event processes is used to model within-subject underdispersion. A computational approach is given to overcome a parameterization difficulty with this family, and this allows use of common Markov Chain Monte Carlo software (e.g. WinBUGS) for estimation. Application of the model to daily counts of asthma inhaler use by children shows substantial within-subject underdispersion, between-subject heterogeneity and correlation due to both clustering of measurements within subjects and serial correlation of longitudinal measurements. The model provides a major improvement over Poisson longitudinal models, and diagnostics show that the model fits well. 相似文献
16.
We consider a nonparametric (NP) approach to the analysis of repeated measures designs with censored data. Using the NP model of Akritas and Arnold (1994, Journal of the American Statistical Association 89, 336-343) for marginal distributions, we present test procedures for the NP hypotheses of no main effects, no interaction, and no simple effects. This extends the existing NP methodology for such designs (Wei and Lachin, 1984, Journal of the American Statistical Association 79, 653-661). The procedures do not require any modeling assumptions and should be useful in cases where the assumptions of proportional hazards or location shift fail to be satisfied. The large-sample distribution of the test statistics is based on an i.i.d. representation for Kaplan-Meier integrals. The testing procedures apply also to ordinal data and to data with ties. Useful small-sample approximations are presented, and their performance is examined in a simulation study. Finally, the methodology is illustrated with two real life examples, one with censored and one with missing data. It is indicated that one of the data sets does not conform to any set of assumptions underlying the available methods and also that the present method provides a useful additional analysis even when data sets conform to modeling assumptions. 相似文献
17.
In this paper, a new measure for assessing the temporal variation in the strength of association in bivariate current status data is proposed. This novel measure is relevant for shared frailty models. We show that this measure is particularly convenient, owing to its connection with the relative frailty variance and its interpretability in suggesting appropriate frailty models. We introduce a method of estimation and standard errors for this measure. We discuss its properties and compare it to an existing measure of association applicable to current status data. Small sample performance of the measure in realistic scenarios is investigated using simulations. The methods are illustrated with bivariate serological survey data on a pair of infections, where the time-varying association is likely to represent heterogeneities in activity levels and/or susceptibility to infection. 相似文献
18.
19.
Multivariate current status data, consist of indicators of whether each of several events occur by the time of a single examination. Our interest focuses on inferences about the joint distribution of the event times. Conventional methods for analysis of multiple event-time data cannot be used because all of the event times are censored and censoring may be informative. Within a given subject, we account for correlated event times through a subject-specific latent variable, conditional upon which the various events are assumed to occur independently. We also assume that each event contributes independently to the hazard of censoring. Nonparametric step functions are used to characterize the baseline distributions of the different event times and of the examination times. Covariate and subject-specific effects are incorporated through generalized linear models. A Markov chain Monte Carlo algorithm is described for estimation of the posterior distributions of the unknowns. The methods are illustrated through application to multiple tumor site data from an animal carcinogenicity study. 相似文献
20.
Joint frailty models for recurring events and death using maximum penalized likelihood estimation: application on cancer events 总被引:1,自引:0,他引:1
Rondeau V Mathoulin-Pelissier S Jacqmin-Gadda H Brouste V Soubeyran P 《Biostatistics (Oxford, England)》2007,8(4):708-721
The observation of repeated events for subjects in cohort studies could be terminated by loss to follow-up, end of study, or a major failure event such as death. In this context, the major failure event could be correlated with recurrent events, and the usual assumption of noninformative censoring of the recurrent event process by death, required by most statistical analyses, can be violated. Recently, joint modeling for 2 survival processes has received considerable attention because it makes it possible to study the joint evolution over time of 2 processes and gives unbiased and efficient parameters. The most commonly used estimation procedure in the joint models for survival events is the expectation maximization algorithm. We show how maximum penalized likelihood estimation can be applied to nonparametric estimation of the continuous hazard functions in a general joint frailty model with right censoring and delayed entry. The simulation study demonstrates that this semiparametric approach yields satisfactory results in this complex setting. As an illustration, such an approach is applied to a prospective cohort with recurrent events of follicular lymphomas, jointly modeled with death. 相似文献