首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Community level effects of predation by two invertebrate predators, the opossum shrimp (Neomysis intermedia), and the larva of the phantom midge (Chaoborus flavicans) were studied and compared. N. intermedia appeared abundantly in the shallow eutrophic Lake Kasumigaura and had a significant impact on the zooplankton community. The predation pressure by Neomysis was highest on cladocerans, followed by rotifers, and finally copepods. At high densities (maximum nearly 20 000 individuals m–2), Neomysis excluded almost all cladocerans, rotifers and copepods from the lake.Zooplankton communities were established in experimental ponds, into which C. flavicans was introduced. The predator's density was around 1 individual l–1, and was probably controled by cannibalism. Although Chaoborus larvae feed on various zooplankton species, their predation impact on zooplankton populations was markedly selective. They eliminated medium- and small-sized cladocerans and calanoid copepods from the ponds, but rotifers increased.Although the feeding selectivities of Neomysis and Chaoborus individuals were similar, the predation effects on zooplankton communities by the two predators were different.  相似文献   

2.
Fauvet  Guillaume  Claret  Cécile  Marmonier  Pierre 《Hydrobiologia》2001,464(1-3):121-131
An enclosure study was conducted in Ranger Lake in south-central Ontario, Canada from 4 July to 5 August 1997 to determine predation effects of the larvae of the phantom midge fly Chaoboruson the zooplankton community. Zooplankton assemblages were established in 12 enclosures (2 m in diameter, 7.5 m deep). Three densities of fourth-instar Chaoborus trivittatus (0 l–1, 0.1 l–1 and 0.5 l–1) were introduced as predator treatments to the enclosures. Temperature, dissolved oxygen and zooplankton community composition were monitored for six weeks. To determine if the zooplankton community composition changed, a repeated measures multivariate analysis was performed on percent biomass of Bosmina and calanoid copepods. There were no significant differences in mean taxon percent biomass among predator treatments. There were significant differences in mean taxon percent biomass between water layers (epilimnion and metalimnion). There were also significant differences in lengths of Bosmina and calanoid copepods among predator treatments at the end of the experiment. Crop content analysis of C. trivittatusshowed that Bosmina constituted 88–98% of the prey items found in the crops. These results demonstrate that the use of deep enclosures, a Chaoborus species which vertically migrates, and lower natural densities of Chaoborus may provide prey with an important natural refuge from predation and so allow a more accurate determination of the predation impact of Chaoborus trivittatusin temperate lakes where fish control Chaoborus densities.  相似文献   

3.
The gelatinous zooplankton of the Canada Basin were observed with a deep-diving remotely operated vehicle (ROV) during August–September, 2002. Taxa observed fell into four main groups: cnidarians, ctenophores, chaetognaths, and pelagic tunicates. We provide detailed data on the vertical distributions of many taxa from three sites which span the Canada Basin. The most common gelatinous organisms in the surface waters were the ctenophores Mertensia ovum and Bolinopsis infundibulum. These two species were found in very large numbers in the near-surface mixed layer. In the mesopelagic zone, below the transition from the Pacific water layer and the Atlantic water layer, the most common species was Sminthea arctica. Surprising numbers of the scyphomedusa Atolla tenella were found in the deep waters of the basin, along with an undescribed species of narcomedusae. The vertical distributions of the gelatinous zooplankton observed with the ROV show several trends related to the physical properties of the water and geographic location within the basin.  相似文献   

4.
During four cruises in continental shelf waters of the northern Gulf of Mexico in the winters of 1981–83, we performed quantitative studies on the grazing of the copepods Acartia tonsa, Centropages velificatus, and Eucalanus pileatus, on phytoplankton using natural particulate assemblages as food. Stations were in, or adjacent to the plume of the Mississippi River, thereby providing wide spectra of phytoplankton and suspended riverine particulate concentrations. Phytoplankton cell volume was converted to carbon, and this, coupled with carbon content measurements of these three copepod species, allowed comparisons of daily ingestion effort even though the copepods were of different sizes. Data were expressed in the same units (% of copepod body carbon ingested copepod –1 d–1) for each species. Over similar ranges of phytoplankton carbon concentrations (0.21–92.06 gCl–1), Acartia tonsa had higher carbon-specific ingestion rates (x = 22.31%, range = 0.08–152.37%) than C. velificatus (x = 2.8%, range = 0.00–31.09 %) or E. pileatus (x = 1.27%, range = 0.10–2.80%). Carbon-specific ingestion rates increased with increasing phytoplankton carbon concentration for A. tonsa (R2 = 0.81) and there was no evidence of saturated feeding on the carbon concentrations offered. A similar, but weaker trend was evident for E. pileatus (R2 = 0.71), but not C. velificatus (R2 = 0.49). Over a wide range of suspended particulate concentrations (10.6–95.2 mg l–1), there was no systematic effect of particulates on carbon-specific ingestion rate for any of the three copepod species. However, A. tonsa appeared more adept at grazing in highly turbid water than C. velificatus or E. pileatus.  相似文献   

5.
We analyzed the effects of planktivorous Holeshestes heterodon Eigenmann (Characidae) predation on the plankton community of a small subtropical reservoir, using four enclosures (volume about 17.5 m3), open to the sediment, established in the littoral zone. Two enclosures were stocked with fish (mean TL 5.7 cm), at a density of about 4–5 fish m–3 (approx. 8 g m–3), whereas two remained fishless. The experiment lasted a little longer than one month. In the fish enclosures, most Crustacea and Chaoborus larvae remained scarce, probably as a result of visually selective fish predation. In both fishless enclosures, Chaoborus larvae became abundant. However, in only one of these did large individuals become relatively numerous; this discrepancy in the demographic structure of the Chaoborus populations between the two fishless enclosures is unexplained. Only in the fishless enclosure without appreciable numbers of large Chaoborus did densities of Crustacea increase greatly. It is suggested that in the enclosure containing large Chaoborus individuals, crustacean populations were prevented from developing due to predation pressure, while the small Chaoborus larvae of the other enclosure could not readily consume these prey. Rotifers were low in abundance in the absence of fish, probably as a consequence of Chaoborus predation. Phytoplankton density increased in all four enclosures, due probably to the lack of water flow. Only in the fishless enclosure with high densities of crustaceans did phytoplankton abundance decrease markedly at the end of the experiment, perhaps because of grazing losses.  相似文献   

6.
The seasonal distribution of metazooplankton and large-sized ciliates was studied in four ponds of different salinity in the solar salterns of Sfax (Tunisia). Total zooplankton abundance varied from 1 × 103 to 4.7 × 106 ind m–3. Salinity had a negative effect on the abundance of copepods and rotifers which were absent in the pond with the highest salt concentration (180) in which the number of taxa was low and Artemia or the ciliate Fabrea largely dominated the zooplankton community. Temperature and the presence of Dunaliella salina as prey appeared as key factors in controlling the abundance of Artemia, while organic detritus appeared as important in the diet of Fabrea. Change in zooplankton species composition along the hypersaline gradient (40–90) was primarily related to salinity. However, our data suggest the importance of both the abundance and composition of food in the spatial and temporal variations of some zooplankton species.  相似文献   

7.
Weekly observations ofNeomysis intermedia in Lake Kasumigaura showed two major peaks in abundance during spring and autumn (more than 104 individuals m–2) and minimum levels in summer and winter (less than 103 individuals m–2). Their increase in abundance followed a high egg ratio, suggesting that the increase in abundance was caused by a high reproductive rate. Major contributors to mysid population decreases include fish predation and commercial fisheries, and possible horizontal migration of the mysids. N. intermedia showed two types of life history in the lake. One type (overwintering generation) has a life span of about 6–7 months and produces about 27 eggs per brood. Another, appearing from spring to autumn, matures in 3–6 weeks at a smaller size, and produces 12 eggs per brood. The reproductive season ofN. intermedia was continuous from March through November.  相似文献   

8.
The flatworm Stylochus tauricus Jacubova has been found associated with the barnacle Balanus improvisus Darwin, on which it feeds. The predation rate (the number of barnacles eaten by one polyclad in a month) ranges between 5–10. Inside the empty shells of B. improvisus some egg-plates of S. tauricus were observed. Pelagic Götte's larvae aged 2–3 days possess 4 lobes while those aged 7–8 days have 5 lobes. Flatworms can prey on the young of another species Balanus eburneus Gould, whereas predation on the mussels Mytilus galloprovincialis Lam. is rare. There is a direct correlation between predator abundance and prey ingested.  相似文献   

9.
The mysid shrimp Neomysis integer is a common invertebrate predator in brackish waters of Western Europe and is thought to play a central role in the food web owing to its predation on zooplankton. Neomysis distribution and abundance were investigated for 3 years in brackish, shallow and hypertrophic Lake Ferring (surface area: 3.2 km2, mean depth: 1.4 m, salinity: 3–6, total P: 0.29–0.78 mg P l-1, Secchi depth: 0.14–0.22 m). Mean summer abundance of Neomysis varied from 53 to 882 ind. m-2. Neomysis density within the lake was relatively uniform and not related to sediment type, but increased with increasing depth. The high abundance of Neomysis is considered to reflect a fish stock almost completely dominated by small-sized fish species (mainly three-spined stickleback, Gasterosteus aculeatus). Three-spined stickleback density was high and catch per unit effort ranged between 30 and 80 per gill net. Stomach analyses showed that the sticklebacks preyed on Neomysis, but preferred specimens smaller than 3–4 mm, and only occasionally consumed those larger than 5–7 mm. In summer, between 33 and 67% of the Neomysis ingested by sticklebacks were smaller than 3 mm, while in the lake as a whole, only 5–14% were smaller than 3 mm. The periods when Neomysis is vulnerable to stickleback predation are restricted to a few weeks in late May and late July, when the new generations emerge. Sticklebacks therefore have a limited capacity for controlling large Neomysis, including gravid females.  相似文献   

10.
In a survey of eight lake systems located in north-central Florida, total zooplankton abundance showed a strong positive correlation (r2=0.87, a=0.01) with trophic state. Zooplankton abundance averaged 1.0 × 105 organisms · m–2 in oligotrophic systems and up to 8.2 × 105 organisms · m–2 in the eutrophic systems. Seasonal variations in total abundance were greatest in the eutrophic lakes where rotifers dominated and periodically produced sharp population peaks (approaching 2.0 × 106· m–2). In contrast, the more oligotrophic systems had relatively stable levels of total abundance and were dominated by copepods. Diversities of the major taxa in the lakes were variable with one to three species of copepods, zero to four species of cladocera, and two to seven species of rotifers dominant at any one time. Planktonic cladoceran communities were often composed of only one or two species. Low cladocera diversity in these subtropical systems was suggestive of increased predation pressure on this group of crustaceans. A comparison of the total crustacean abundance in the Florida systems to those of some of the Great Lakes indicated that lower standing crops of crustacean zooplankton in the Florida lakes may be a response to both predation and temperature.Contribution Number 043, Marine Science Programs Laboratory, Dauphin Island, Alabama, U.S.A.Contribution Number 043, Marine Science Programs Laboratory, Dauphin Island, Alabama, U.S.A.  相似文献   

11.
The stylochid flatworm, Imogine mcgrathi was confirmed as a predator of the pteriid oyster Pinctada imbricata. Occurring at an average of 3.2 per oyster spat collector bag, the flatworms were found to consume oysters at a rate of 0.035–0.057 d–1 in laboratory trials. Predation was affected by flatworm size with larger worms capable of consuming larger oysters and of consuming greater dry weights of oyster flesh. Irrespective of flatworm size, predation was generally confined to oysters less than 40 mm in shell height. Although all predation occurred at night, shading flatworms during the day did not significantly increase the rate of predation, but there were significant increases in the dry weight of oyster meat consumed. As a means of controlling flatworm infestations, salt, brine baths (250 g kg–1) and freshwater baths were effective in killing I. mcgrathi. The ease of use of hyper- or hyposaline baths then encouraged assessments of I. mcgrathi halotolerance. The flatworms were exposed to solutions ranging in salinity from 0 to 250 g kg–1for periods of from 5 min to 3 h. Despite showing both behavioural and physiological signs of stress, I. mcgrathi survived the maximum exposure time of 3 h at salinities in the range 7.5–60 g kg–1, inclusive. Beyond this range, the duration of exposure tolerated by flatworms decreased until 0 and 250 g kg–1, at which the flatworms no longer survived the minimum tested exposure of 5 min. Thus, despite the significant impact of other stylochids on commercial bivalves, at their current prevalence, I. mcgrathi can be controlled by exposing them to hyper- and hyposaline baths for the culture of P. imbricata in Port Stephens, NSW, Australia.  相似文献   

12.
Blumenshine  S.C.  Hambright  K.D. 《Hydrobiologia》2003,491(1-3):347-356
Limnologists have long recognized the importance of predation in freshwater communities. The majority of study of predator effects has involved vertebrate predators, with emphasis on planktivorous fish. Documented effects of planktivorous fish have been so dramatic that manipulations of their populations are seen by many as potential tools in lake management. However, the success of such manipulations is often less than desired due to the ubiquitous complexity of food webs and the pervasiveness of compensatory responses to food web manipulation. Recently, enormous effort has been applied to the Lake Kinneret pelagic food web in effort to reduced the abundance of the planktivorous Kinneret bleak Acanthobrama terraesanctae and thereby increase the biomass of herbivorous zooplankton in the hopes of increasing water clarity. We compared potential predation pressure on Lake Kinneret herbivorous zooplankton by bleak and the other major zooplankton predators in the lake, the cyclopoid copepods Mesocyclops ogunnus and Thermocyclops dybowskii. We found that, despite having much lower biomass, cyclopoid copepods accounted for a greater portion of the predation mortality on herbivorous zooplankton than bleak. Our results suggest that reductions in predation pressure by bleak will not yield subsequent increases in herbivorous zooplankton biomass. Rather, reductions in bleak predation pressure may allow for increases in cyclopoid copepod abundance and thereby a net increase in predation pressure on herbivorous zooplankton.  相似文献   

13.
In Lake G»rdsjön (Southwest Sweden), liming as an experimental improvement of living conditions for pelagic algae, resulted in a significant increase of algal biomass and a reduction of mean cell size. The algal development was beneficial for small sized filter feeding zooplankton, particularly rotifers, which showed a significant increase. The increase in abundance of small sized zooplankton created better food conditions for the smaller instars, and thus a much better overall survival of Chaoborus larvae. The resulting, 6–7 times larger population of Chaoborus larvae significantly changed the structure of the crustacean zooplankton community. Bosmina coregoni, the fastest swimmer of the crustacean species suffered most and was strongly reduced by the increased predation from Chaoborus. The share of cladocerans decreased, while copepods increased in importance.  相似文献   

14.
The rotifer Synchaeta pectinata dominated gut content of first feeding Mirogrex larvae (7 mm, 10 days age) and was a selected prey of neuston-caught larvae up to 15 mm TL. A negative L-value (linear index of selection) applied to predation on nauplii and copepodites by 7 and 8 mm larvae; nevertheless, caloric intake was dominated by copepods in 8–10 mm larvae. Neuston-caught larvae 13–20 mm TL fed selectively on Cladocera, especially Bosmina, and on the rotifer Asplanchna spp.Growth, estimated from otolith ring counts and from analysis of size distribution data, ranged from 3 to 7 mm mo–1, with higher rates for early spawned larvae. When consumption as estimated from gut content, was compared to amounts of food required for growth, it appeared that the smallest larvae were underfed, while 13–16 mm fish obtained rations close to sufficiency.Rotifer standing stock biomass in Lake Kinneret has decreased in recent years, especially in winter, the spawning period of Mirogrex. Postulated causes are predation by an increasingly large population of Mirogrex larvae, and decrease of external supply. Larval distribution appeared to be linked to S. pectinata abundance; highest densities of both organisms occurred in the area of inflow from the Jordan and Golan streams. Larval food enrichment of inflow water by fish pond drainage might have caused observed increases in Mirogrex stock size since 1960.  相似文献   

15.
There is continuous interest in many countries in maintaining and manipulating the rich ecological value of hypersaline ecosystems for aquaculture. The Megalon Embolon solar saltworks (northern Greece) were studied in sites of increasing salinity of 60–144 ppt to evaluate Dunaliella salina abundance and microalgal composition, in relation to physical and chemical parameters. Cluster and ordination analyses were performed based on the biotic and abiotic data matrices. Using fresh aliquots from 60 and 140 ppt salinity waters, phytoplankton performance was appraised with flask cultures in the laboratory by varying the inorganic PO4-P concentration at 23 °C and 30 °C. At the saltworks, among the most abundant microalgae identified were species of the genera Dunaliella, Chlamydomonas, Amphora, Navicula, and Nitzschia. Dunaliella salina populations were predominant comprising 5–22% of the total microalgal assemblages during spring, but only 0.3–1.0% during the summer, when grazing by Artemia parthenogenetica and Fabrea salina was intense. D. salina cell density in April–July was in the range of 0.4–12.5 × 106 L−1 with typical densities of 1.5–4.5 × 106 L−1. Overall, microalgal densities were high in salinities of ≥100 ppt when inorganic-P concentrations were ≥0.20 mg L−1 within saltworks waters. Multivariate analysis of species abundance showed that algal growth responses were primarily related to variation in salinity and inorganic-P concentrations, but also to NO3-N concentration. In the laboratory, experiments indicated effective fertilization and denser microalgal growth under high inorganic PO4-P applications (4.0 and 8.0 mg L−1) at 60 ppt salinity and 23 °C. The lower PO4-P applications (0.6–2.0 mg L−1) were more effective at 60 ppt salinity and 30 °C. At 140 ppt salinity, microalgal growth response was less obvious at any of the corresponding phosphorus concentrations or temperatures. In both salinity experiments, Dunaliella salina bloomed easily and was predominant among the microalgae. Our observations indicate that Dunaliella salina populations and the overall rich microalgal profile of the saltworks, along with their performance in laboratory mono–and mixed cultures hold promise for mass cultivation within the M. Embolon saltworks basins.  相似文献   

16.
The effects of Nereis sp. on the flux of dissolved phosphate across the sediment-water interface has been studied in Palmones River estuary using benthic flux-chambers and intact cores. Diffusive fluxes of phosphate were calculated from pore water gradient concentration and compared with those obtained from benthic chambers experiments. The high abundance of Nereis in the upper sediment layers appears to play an important part in the dissolved oxygen profiles in the overlying water, but had no effect on the redox potential. A negative relationship was found between the Nereis abundance and the phosphate gradient; this gradient ranged between 40 µmol 1–1 cm–1 with 340 Nereis individuals m–2 and 20 µmol 1–1 cm–1 with 900 Nereis individuals m–2. The ratio of the in situ flux to the flux gradient concentration for dissolved phosphate increased with the abundance of Nereis (from 1.7 at low abundance to 5.8 at high abundance).  相似文献   

17.
Late-evening gut inspection of a dominant planktivore (smelt) and evaluation of densities, fecundities, and body-size distributions in dominant zooplankton prey (cladocerans) were made in day-to-day sequences in June–July (24 days in 1999 and 24 days in 2000). This was conducted as a field test of the hypothesis that species-specific population densities in cladocerans result from size-selective predation by a dominant fish assumed to be a general predator, switching from one prey to another as relative abundance changes. Little of the expected coincidence has been revealed between population density declines and increased numbers of a given prey in smelt diet. However, the data were consistent with the notion that fish would switch from one prey to another depending on the prey relative abundance (the number of prey a fish would see in its reaction field volume). Each cladoceran population fluctuated around its species-specific density level, lower or higher, depending on individual susceptibility to smelt predation, from 0.2 ind. l–1 in large-bodied Daphnia hyalina and Leptodora kindtii, to 30.0 ind. l–1 in small-bodied Daphnia cucullata andBosmina thersites. In spite of high fish-to-fish and day-to-day variability in both smelt diet and smelt selectivity for different prey, all cladocerans (also copepods and midge larvae) were equally persistent in smelt diet, and smelt selectivity was similar for small- and large-bodied prey categories, but lower for elongated-(Daphnia, Diaphanosoma) than for compact-body (Bosmina, Chydorus) species, when integrated for the entire sampling time. Closer examination of D. cucullata and B. thersites revealed strong smelt selection for later instars and females with greater clutches, showing that size distribution in a cladoceran population might be structured by fish predation in a similar way to that a cladoceran community (species relative abundance) is structured in a lake habitat. The birth-rate-compensation hypothesis is offered to explain why the value of food selectivity index in a planktivorous fish would remain the same for alternate prey categories with similar life-history traits, unless they differ in susceptibility to predation before the time of first reproduction.  相似文献   

18.
Thiéry  Alain  Puente  Ludovic 《Hydrobiologia》2002,486(1):191-200
Physical and chemical variables, anostracan populations (Artemia parthenogenetica and Branchinella spinosa) and other biota were studied during 1996–1997 in a Camargue saltern (max. depth 1 m). The taxonomic composition and density of macroinvertebrates were investigated twice monthly, based on benthic substrate and water column samples. Fauna was composed of three groups in terms of numerical importance. The benthic macroinvertebrates were represented only by nematodes (< 50 ind. m–2 to > 500 ind. m–2 in November–December and May respectively). The zooplankton was dominated by crustaceans, one cladoceran, Moina salina (ranging from 670 to 2350 ind. m–2 in spring), two anostracans, Artemia parthenogenetica (< 50 ind. m–2 in autumn), and Branchinella spinosa (max. 190 ind. m–2 in December to absent in April), and two copepods, Cletocamptus retrogressus (max. density 2000 ind. m–2 in November), and Eurytemora velox (max. density 650 ind. m–2 in February–March). Insects (Chironomidae, Culicidae) were rare, with mean densities < 1 ind. m–2. The phenology of each crustacean population is discussed in relation to physical and chemical water variables. Salinity appeared to be of greatest importance regulating the population abundance.  相似文献   

19.
The vertical and temporal distribution of metazooplankton in the small hypertrophic, strongly stratified, temperate Lake Verevi (Estonia) was studied during 1998–2001. The zooplankton of Lake Verevi is characteristic of hypertrophic lakes, with a small number of dominant species, rotifers being the main ones, and juveniles prevailing among copepods. In 1999–2001, the average abundance of metazooplankton in the lake was 1570 × 103 ind m−3; in the epilimnion 2320 × 103 ind m−3, in the metalimnion 2178 × 103 ind m−3, and in the hypolimnion 237 × 103 ind m−3. The average biomass of metazooplankton was 1.75 g m−3; in the epi-, meta- and hypolimnion, accordingly, 2.16, 2.85 and 0.26 g m−3. The highest abundances – 19,136 × 103 ind m−3 and 12,008 × 103 ind m−3 – were registered in the lower half of the metalimnion in 24 May and 5 June 2001, respectively. Rotifer Keratella cochlearis f. typica (Gosse, 1851) was the dominating species in abundance. In biomass, Asplanchna priodonta Gosse, 1850, among the rotifers, and Eudiaptomus graciloides (Lilljeborg, 1888), among the copepods, dominated. According to the data from 2000–2001, the abundance and biomass of both copepods and rotifers were highest in spring. Zooplankton was scarce in the hypolimnion, and no peaks were observed there. During the summers of 1998 and 1999, when thermal stratification was particularly strong, zooplankton was the most abundant in the upper half of the metalimnion, and a distinct peak of biomass occurred in the second fourth of the metalimnion. Probably, the main factors affecting the vertical distribution of zooplankton in L. Verevi are fish, Chaoborus larvae, and chemocline, while food, like phytoplankton, composition and abundance may affect more the seasonal development of zooplankton.  相似文献   

20.
El-Shabrawy  Gamal M.  Dumont  Henri J. 《Hydrobiologia》2003,491(1-3):119-132
A prominent feature of Lake Nasser is the presence of khors (dendritic side extensions). We studied the zooplankton of the larger khors and coastal zone of the main lake in 1996 and 1997, and found an assemblage of rotifers, cladocerans and copepods that was partly tropical, partly temperate, at relatively high biomasses. Spatial differences were weak, but the upstream khors (Toushka and Korosko) were consistently richer than the downstream khors (El-Ramla and Kalabsha), with a rather sudden transition around km 150 at El Madiq. Summer standing crops were higher than those in winter by a factor 2–3. The zooplankton of the littoral of the main channel showed the same spatial pattern as that in the khors, being more abundant in spring (average 82300 ind m–3) than in autumn (average 72700 ind m–3). Zooplankton dry weight increased from 4 g m–2 at khor El-Ramla to 7 g m–2 at khor Toushka. These rather high values had low variation. The number of species, diversity and evenness all showed a high degree of similarity among the khors and in the littoral of the main lake. The lake fish fauna is poor, lacking a pelagic planktivore. The predominance of medium-sized Copepoda (one calanoid, two cyclopoids) in the zooplankton suggests that fish predation is moderate. This is confirmed by the persistence of two Daphnia species at low abundance, although rather strong variations in time suggest that Cladocera suffer from summer predation by invertebrates (copepods) as well as vertebrates (mostly larval fish). Because the zooplankton is underutilised by higher trophic levels, we suggest to assess the benefits of introducing a pelagic zooplanktivorous fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号