首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Our prior studies have shown that pentoxyresorufin-O-dealkylation (PROD) can be measured spectrophotometrically with simultaneous monitoring of stoichiometry of NADPH/substrate and NADP/product as 10:1:10:1 [Rastogi et al. FEBS Letters 512 (2002) 121-124]. In the present investigation, mechanism of action of other enzymes in modulating the stoichiometry of alkoxyphenoxazones metabolism to 1:1 for electron donor/substrate and oxidized electron donor/product in the same incubation mixture was studied. The spectrophotometric analysis reveals 10:1 ratio between NADPH and pentoxyresorufin (PRF)-ethoxyresorufin (ERF) in microsomal system. The high ratio of electron donor to substrate is due to the presence of the other forms of P-450, which may participate in endogenous metabolism of compounds, thereby reducing the ratio to 4:1 and 7:1 for NADPH/PRF-ERF. Incubation of dicumarol in the microsomal PROD or ethoxyresorufin-O-dealkylase (EROD) assay led to significant decrease in the consumption of NADPH with a ratio of 4:1 and 7:1 for NADPH/PRF-ERF which is due to inhibition of NADPH cytochrome c (P-450) reductase. In post mitochondrial fraction (S-9), the ratio of 11:1 and 15:1 is seen for NADPH/PRF-ERF. The addition of dicumarol in S-9 fraction showed enhanced rate of alkoxyphenoxazone utilization, suggesting the possibility of reduced resorufin product as a feedback inhibitor. Equating the ratio of NADPH/substrate(s) derived after endogenous utilization of NADPH with the ratio after accounting for NADPH consumption following dicumarol addition in either S-9 or microsomal fraction, a 1:1 mol of NADPH/substrate(s) and oxidized electron donor/product is obtained. The results further suggest that cytosolic fraction may interfere in monitoring the formation of resorufin during dealkylation of alkoxyphenoxazones making dicumarol a mandatory cofactor.  相似文献   

2.
A simple spectrophotometric method to monitor the catalytic activity of microsomal cytochrome P-450 IIB1/2 has been developed. The method employs measurement of utilization of NADPH, consumption of the substrate, pentoxyresorufin (PRF) and formation of the product, resorufin (RF) in the same reaction mixture containing hepatic microsomes from phenobarbital treated rats. The velocity of NADPH utilization (16.36 nmole/min/nmole P-450), PRF consumption (1.58 nmole/min/nmole P-450) and RF formation (1.57 nmole/min/nmole P-450) suggested a stoichiometry of 1:1 between the substrate and the product alongwith utilization of 10 molecules of NADPH. However, the Km for the enzyme activity (nmole RF formed/min/nmole P-450) using varying concentrations of PRF and NADPH as substrates were found to be 11.6 and 20.2 microM, respectively. The spectrophotometric method was compared with fluorometric method in terms of linearity with time, P-450 content and Vmax, Km values observed for the reaction. Inhibition studies with metyrapone and SKF 525A in the utilization of NADPH, consumption of PRF and formation of RF suggested that the method could be useful in monitoring the effect of various inhibitors on the P-450 IIB1/2 reaction.  相似文献   

3.
7-Hydroxyphenoxazin-3-one, commonly known as resorufin, strongly inhibits benzo(a)pyrene-induced mutation in the Ames bacterial reversion assay. The antimutagenic mechanism is due in part to redox cycling of resorufin with the concommitant transfer of reducing equivalents from NADPH to molecular oxygen. The diversion of electrons from cytochrome P-450 enzymes results in a large decrease in the percent of benzo(a)pyrene metabolized by rat liver microsomes as measured by HPLC. Resorufin stimulated a non-stoichiometric consumption of NADPH and was reduced in S-9 or microsomal solutions. These processes were sensitive to dicumarol and NADP inhibition to different degrees in each liver fraction. This suggests two pathways are involved in resorufin redox cycling, one involving DT-diaphorase and the other with NADPH cytochrome P-450 reductase. Oxygen was shown to be an electron acceptor for S-9 mediated resorufin redox cycling, but was not consumed by a microsomal solution in the presence of resorufin and NADPH.  相似文献   

4.
Fatty acid monooxygenation by cytochrome P-450BM-3   总被引:8,自引:0,他引:8  
Cytochrome P-450BM-3 is a catalytically self-sufficient enzyme which monooxygenates saturated and unsaturated fatty acids, alcohols, and amides. The protein has two domains: one which contains heme and is P-450-like and the other which contains FAD and FMN and is P-450 reductase-like. Both domains are on a single polypeptide chain. Utilizing a plasmid containing the gene encoding P-450BM-3, we have transformed the Escherichia coli strain DH5 alpha. This clone overexpresses P-450BM-3 to make approximately 20% of the soluble protein of this organism under optimal conditions. P-450BM-3 can be purified to homogeneity from the soluble fraction of the protein of these cells with a recovery of 50% making this cell line an excellent source of this important enzyme. Purified preparations of P-450BM-3 hydroxylate palmitic acid at a rate of 1600 mol/min/mol of heme at 25 degrees C. The stoichiometry of NADPH to oxygen utilized was 1 for all conditions; however, the ratio of oxygen or NADPH utilized per molecule of fatty acid substrate metabolized was different for different homologs of saturated fatty acids, when low concentrations (less than 100 microM) of substrate were used. Lauric and myristic acids were metabolized to two hydroxylated products, irrespective of the initial concentration of fatty acid in the reaction mixture, and the ratio of oxygen consumed to fatty acid hydroxylated was 1. High concentrations of palmitic acid (greater than 200 microM) led to the formation of three polar metabolites and a stoichiometry of 1:1 was observed for oxygen and palmitic acid utilization. These results indicate that a single hydroxyl group was inserted into each of these molecules. Lower concentrations (less than 50 microM) of palmitic acid were metabolized to additional polar metabolites, and the ratio of oxygen consumed to fatty acid substrate consumed approximated 3:1. These results can be explained best by a hypothesis that the initial hydroxylated compounds, which accumulate during the oxidation of palmitic acid by P-450BM-3, can be further oxidized by this enzyme to polyhydroxy- or hydroxy-ketone products.  相似文献   

5.
Stopped flow studies were undertaken to examine the kinetics of reduction of 5,6-benzoflavone-inducible P-450 LM4 by NADPH in the presence of NADPH-cytochrome P-450 reductase and phospholipid under anaerobic CO at 25 degrees C. The reaction exhibited biphasic kinetics irrespective of NADPH concentration or of the molar ratio of reductase to P-450 LM4. The apparent first order rate constants for the fast and slow phases were determined to be 0.9 to 1.0 and 0.25 s-1, respectively. With the reductase and P-450 LM4 present in equimolar amounts, the total amount of P-450 LM4 reduced increased linearly with NADPH concentration; the titration gave a stoichiometry of 2 mol of NADPH per mol of reductase-cytochrome complex. The NADPH concentration had no appreciable effect on the magnitude of the first order rate constants for the fast and slow phases. The kinetics obtained in the presence of benzphetamine were essentially indistinguishable from those seen in the absence of this substrate, while the amount of P-450 LM4 reduced in the fast phase, but not the rate constant for this phase, decreased when phospholipid was omitted from the reaction mixture. Nearly maximal rates of NADPH oxidation by P-450 LM2 OR LM4 were obtained with a molar ratio of reductase to P-450 LM of 1.0. Benzphetamine enhanced the oxidation of NADPH by P-450 LM2 but had no effect on the activity of P-450 LM4. Rates of NADPH oxidation in the presence of P-450 LM2 and LM4 decreased by 80 and 40%, respectively, when phospholipid was omitted from the reconstituted enzyme system. These studies provide evidence for the formation of a catalytically functional 1:1 complex between the reductase and P-450 LM4, and indicate that P-450 LM2 and LM4 differ in their dependence on phospholipid.  相似文献   

6.
J D Dignam  H W Strobel 《Biochemistry》1977,16(6):1116-1123
(NADPH)-cytochrome P-450 reductase was purified to apparent homogeneity by a procedure utilizing nicotinamide adenine dinucleotide phosphate (NADP)-Sepharose affinity column chromatography. The purified flavoprotein has a molecular weight of 79 700 and catalyzes cytochrome P-450 dependent drug metabolism, as well as reduction of exogenous electron acceptors. Aerobic titration of cytochrome P-450 reductase with NADPH indicates that an air-stable reduced form of the enzyme is generated by the addition of 0.5 mol of NADPH per mole of flavin, as judged by spectral characteristics. Further addition of NADPH causes no other changes in the absorbance spectrum. A Km value for NADPH of 5 micron was observed when either cytochrome P-450 or cytochrome c was employed as electron acceptor. A Km value of 8 +/- 2 micron was determined for cytochrome c and a Km of 0.09 +/- 0.01 micron was estimated for cytochrome P-450.  相似文献   

7.
The regulation of steroidogenesis by luteinizing hormone (LH) was studied in granulosa cells during follicular development using a fluorescent reporter assay based on the metabolism of a fluorescent probe specific for cytochrome P-450SCC (cholesterol side-chain cleavage enzyme). Intact granulosa cells or mitochondria were obtained from the first (F1) second (F2) and third (F3) largest preovulatory follicles of the hen ovary and incubated with the fluorogenic substrate. Metabolism of this substrate by cytochrome P-450SCC generates the highly fluorescent resorufin anion (the fluorescent reporter). In both mitochondria and intact granulosa cells, incubated with the fluorescent substrate, an increase in resorufin fluorescence was observed and the increase was greater in samples derived from F1 than in samples from F2 or F3. In cells, LH added simultaneously with the P-450SCC substrate significantly increased resorufin fluorescence above control values in a time- and dose-dependent manner up to 2-3 h after the incubation was initiated. Forskolin and 8-bromo-cAMP also stimulated metabolism of the P-450SCC substrate significantly by 15 min. When granulosa cells were preincubated with LH before exposure to the P-450SCC substrate resorufin fluorescence was significantly attenuated compared to controls (not exposed to LH in the preincubation period). The decrease in resorufin fluorescence observed when cells were pretreated with LH, may be due to the release of cholesterol from endogenous pools and its competition with the exogenous fluorogenic for the substrate P-450SCC enzyme. In granulosa cells that were preloaded with the P-450SCC substrate, the stimulatory effect of LH treatment remained constant from 30 min to 2 h after hormone addition. The results show that this fluorescent probe can be used in a rapid assay for the continuous measurement of the acute effects of hormone agonists on cholesterol conversion to pregnenolone in steroidogenic cells.  相似文献   

8.
The application of cytochrome P-450 in substrate conversion is complicated both due to the limited stability and the cofactor regeneration problems. To overcome the disadvantages of NADPH consumption the transfer of the reduction equivalents from an electrode into the cytochrome P-450-system was studied: 1. NADPH was cathodically reduced at a mercury pool electrode. By immobilization of NADP on dialdehyde Sephadex the reductive recycling was possible. 2. Different forms of reduced oxygen were produced by the cathode: a) The reaction of O2- with deoxycorticosterone yields a carboxylic acid derivative. In contrast the cytochrome P-450 catalyzed NADPH-dependent reaction with the same substrate gives corticosterone, O2- represents only an intermediate in the activation of oxygen and is not the "activated oxygen" species. b) Molecular oxygen was reduced to HO2- and H2O2, respectively. The interaction of adsorbed cytochrome P-450 on the electrode surface with the reduced oxygen species in the absence of NADPH was studied. The electrochemically generated peroxide seems to be more active than added H2O2. 3. In a model of electro-enzyme-reactor several substrates were hydroxylated by microsomal cytochrome P-450 with cathodically reduced oxygen which substitutes NADPH.  相似文献   

9.
Ecdysone 20-monooxygenase, an enzyme which converts ecdysone to ecdysterone (the major moulting hormone of insects) has been characterized in cell-free preparations of tissues from African migratory locust. The product of the reaction has been identified as ecdysterone on the basis of several microchemical derivatization and chromatographic methods. Ecdysone 20-monooxygenase activity is located primarily in the microsomal fraction which also carries NADPH cytochrome c reductase and cytochrome P-450, as shown by sucrose density gradient centrifugation. Optimal conditions for the ecdysone 20-monooxygenase assay have been determined. The enzyme has a Km for ecdysone of 2.7 x 10(-7) M and is competitvely inhibited by ecdysterone (Ki = 7.5 x 10(-7) M). Ecdysone 20-monooxygenase is a typical cytochrome P-450 linked monooxygenase: the reaction requires O2 and is inhibited by CO, an effect partially reversed by white light. The enzyme is effectively inhibited by several specific monooxygenase inhibitors and by sulfhydryl reagents, but not by cyanide ions. Ecdysone elicits a type I difference spectrum when added to oxidized microsomes. NADPH acts as preferential electron donor. The transfer of reducing equivalents proceeds through NADPH cytochrome c (P-450) reductase: ecdysone 20-monooxygenase is inhibited by cytochrome c. Both NADPH cytochrome c reductase and ecdysone 20-monooxygenase are inhibited by NADP+ and show a similar Km for NADPH. The Malpighian tubules have the highest specific activity of ecdysone 20-monooxygenase, while fat body contain most of the cytochrome P-450 and NADPH cytochrome c reductase.  相似文献   

10.
Rat kidney microsomes have been found to catalyze the hydroxylation of medium-chained fatty acids to the omega- and (omego-1)-hydroxy derivatives. This reaction, which requires NADPH and molecular oxygen, is a function of monooxygenase system present in the kidney microsomes, containing NADPH-cytochrome c reductase and cytochrome P-450K. NADH is about half as effective as an electron donor as NADPH and there is an additive effect in the presence of both nucleotides. Cytochrome P-450K absorbs light maximally at 452-3 nm, when it is reduced and bound to carbon monoxide. The extinction coefficient of this complex is 91 mM(-1) cm(-1). Electrons from NADPH are transferred to cytochrome P-450K via the NADPH-cytochrome c reductase. The reduction rate of cytochrome P-450K is stimulated by added fatty acids and the reduction kinetics reveal the presence of endogenous substrates bound to cytochrome P-450K. Both cytochrome P-450K concentration and fatty acid hydroxylation activity in kidney microsomes are increased by starvation. On the other hand, phenobarbital treatment of the rats has no effect on either the hemoprotein or the overall hydroxylation reaction and 3,4-benzpyrene administration induces a new species of cytochrome P-450K not involved in fatty acid hydroxylation. Cytochrome P-450K shows, in contrast to liver P-450, high substrate specificity. The only substances forming enzyme-substrate complexes with cytochrome P-450K are the medium-chained fatty acids and certain derivatives of these acids. The chemical requirements for substrate binding include a carbon chain of medium length and at the end of the chain a carbonyl group and a free electron pair on a neighbouring atom. The distance between the binding site for the carbonyl group and the active oxygen is suggested to be in the order of 16 A. This distance fixes the ratio of omega- and (omega-1)-hydroxylated products formed from a certain fatty acid by the single species of cytochrome P-450K involved. The membrane microenvironment seems also to be of importance for the substrate specificity of cytochrome P-450K, since removal of the cytochrome from the membrane lowers its binding specificity to some extent. A comparison between the liver and kidney cytochrome P-450 systems suggests that the kidney cytochrome P-450K system is specialized for fatty acid hydroxylation.  相似文献   

11.
This laboratory has recently reported that, in a reconstituted enzyme system containing alcohol-induced isozyme 3a of liver microsomal cytochrome P-450, the sum of acetaldehyde generated by the monooxygenation of ethanol and of hydrogen peroxide produced by the NADPH oxidase activity is inadequate to account for the O2 and NADPH consumed. Studies on the stoichiometry have revealed the occurrence of an additional reaction involving an overall 4-electron transfer to molecular oxygen which is presumed to yield water: O2 + 2 NADPH + 2H+----2 H2O + 2 NADP+. The occurrence of a peroxidase reaction in which free H2O2 is reduced to water by NADPH was ruled out. When the 4-electron oxidase activity is taken into account, measurements of NADPH oxidation and O2 consumption are in accord with the amounts of products formed in the presence of various P-450 isozymes, either in the absence or presence of typical substrates, including those which undergo hydroxylation, N- or O-demethylation, or oxidation of hydroxymethyl to aldehyde groups. Of the substrates examined, some had no effect on the oxidase reaction yielding hydrogen peroxide or the 4-electron oxidase reaction, some were inhibitory, and some were stimulatory, but the same substrate did not necessarily have the same effect on the two reactions.  相似文献   

12.
The reduction of highly purified cytochrome P-450 from rabbit liver microsomes under anaerobic conditions requires 2 electrons per molecule. Similar results were obtained with dithionite, NADPH in the presence of NADPH-cytochrome P-450 reductase, or a photochemical system as the electron donor, with CO or other ligands, with substrate or phosphatidylcholine present, after denaturation to form cytochrome P-420, or with cytochrome P-450 partially purified from rat or mouse liver microsomes. The reduced cytochrome P-450 donates 2 electrons to dichlorophenolindophenol or to cytochrome c. Reoxidation of reduced cytochrome P-450 by molecular oxygen restores a state where 2 electrons from dithionite are required for re-reduction. Although these unexpected findings indicate the presence of an electron acceptor in addition to the heme iron atom, significant amounts of non-heme iron, other metals or cofactors, or disulfide bonds were not found, and free radicals were not detected by electron paramagnetic resonance spectrometry. Resolution of the cytochrome with acetone and acid yielded the apoenzyme, which did not accept electrons, and ferriprotoporphyrin IX, which accepted a single electron. A reconstituted hemoprotein preparation with the spectral characteristics of cytochrome P-420 accepted as much as 0.7 extra electron equivalent per heme. The midpoint oxidation-reduction potential of purified cytochrome P-450 from rabbit liver microsomes at pH 7.0 is -330 mv, and with CO present this value is changed to about -150 mv. The oxidation-reduction potential is unaffected by the presence of phosphatidylcholine or benzphetamine, a typical substrate. Laurate, aminopyrine, and benzphetamine undergo hydroxylation in the presence of chemically reduced cytochrome P-450 and molecular oxygen. Neither NADPH nor the reductase is required for substrate hydroxylation under these conditions.  相似文献   

13.
NADPH-cytochrome P-450 reductase with capacity to support cytochrome P-450-dependent drug metabolism and to reduce artificial electron acceptors has been purified to apparent homogeneity by solubilization with Renex 690 and chromatography on DEAE-Sephadex, Agarose and QAE-Sephadex. The purified protein migrates as a single band on native and SDS-polyacrylamide gel electrophoresis, exhibits a minimum molecular weight of 80,000 daltons and contains 1 molecule each of FAD and FMN per 80,000 molecular weight. The specific activity for cytochrome c as electron acceptor is 48.8 μmoles per min and for substrate hydroxylation of benzphetamine measured as NADPH oxidation in the presence of cytochrome P-450 and phosphatidylcholine is 2.5 μmoles per min.  相似文献   

14.
The mitochondrial cytochrome P-450(26), previously shown to catalyze 26-hydroxylation of 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol, was found to convert this substrate also into 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholestanoic acid. The formation of 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholestanoic acid increased with increasing incubation time and enzyme concentration. Addition of NAD+ to the incubation mixture did not increase the formation of the acid. Incubation with 5 beta-cholestane-3 alpha,7 alpha,12 alpha,26-tetrol, cytochrome P-450(26), ferredoxin, ferredoxin reductase and NADPH resulted in one major product, 3 alpha,7 alpha, 12 alpha-trihydroxy-5 beta-cholestanoic acid. The cytochrome P-450 required both ferredoxin, ferredoxin reductase and NADPH for activity. NADPH could not be replaced by NAD+ or NADP+.  相似文献   

15.
Microsomal estrogen synthetase (cytochrome P-450ES), also known as aromatase, was purified from fresh human placenta microsomes by DEAE-Trisacryl and testosterone-agarose chromatography. Estrogen synthetase assays were done with androstenedione as substrate, NADPH as electron donor, and a partially purified P-450 reductase from human placenta as the electron carrier. The specific cytochrome P-450 content of the purified P-450 was 0.67 nmol mg-1 of protein, and the preparation contained no cytochrome P-420. The absorbance maximum was 448.5 nm. The specific estrogen synthetase activity of the purified P-450ES fraction was 35 nmol min-1 nmol-1 of cytochrome P-450 or 23.3 nmol min-1 mg-1 of protein. The latter value shows a 179-fold purification with a yield greater than 1% in the two-step procedure. Kinetic constants for the reaction were measured with androstenedione as the aromatizable substrate. The Km was 1.4 nM and the Vmax was 37 nmol min-1 nmol-1 of P-450. The purified enzyme aromatized androstenedione and testosterone at identical rates; androstenedione gave only estrone, and testosterone gave only estradiol-17 beta. Dehydroepiandrosterone was not detectably aromatized or otherwise metabolized. Neither 16 alpha-hydroxytestosterone nor 16 alpha-hydroxyandrostenedione was aromatized. No hydroxysteroid dehydrogenase or reductase was detected in direct assays. No free reaction intermediates were detected in aromatization assay incubation mixtures. The purity of the product and the simplicity of the preparation recommend it for use in further studies of the enzyme.  相似文献   

16.
The interaction of trans-cinnamic acid with the cytochrome P-450 of microsomes derived from washed potato slices has been studied. The washing process increased the specific content of microsomal electron transport components and hence provided a useful material in which to study the interaction. Evidence is presented that the trans-cinnamic acid interacts with the cytochrome P-450, and that this interaction is analogous to "type 1" interactions of other cytochrome P-450 systems. This evidence includes the formation of a "type 1" substrate binding spectrum, an increased rate of reduction of cytochrome P-450 by NADPH in the presence of trans-cinnamic acid, an increased oxygen uptake and NADPH oxidation when trans-cinnamic acid is added to the microsomes in the presence of NADPH, and a close correlation between biophysical parameters of electron transport in the cytochrome P-450 system and enzymological parameters of the trans-cinnamic acid 4-hydroxulation reaction. The investigation has been extended to cytochrome P-450 systems of other tissues and it has been found that the trans-cinnamic acid 4-hydroxylation reaction cannot account for the presence of most of th cytochrome P-450 in several tissues. This suggests that other functions of higher plant cytochrome P-450 chains exist, and that the substrate specificityof the hemoprotein may vary in different plant tissues.  相似文献   

17.
We have studied the role of NADPH cytochrome P-450 reductase in the metabolism of arachidonic acid and in two other monooxygenase systems: aryl hydrocarbon hydroxylase and 7-ethoxyresorufin-o-deethylase. Human liver NADPH cytochrome P-450 reductase was purified to homogeneity as evidenced by its migration as a single band on SDS gel electrophoresis, having a molecular weight of 71,000 Da. Rabbits were immunized with the purified enzyme and the resulting antibodies were used to evaluate the involvement of the reductase in cytochrome P-450-dependent arachidonic acid metabolism by bovine corneal epithelial and rabbit renal cortical microsomes. A highly sensitive immunoblotting method was used to identify the presence of NADPH cytochrome P-450 reductase in both tissues. We used these antibodies to demonstrate for the first time the presence of cytochrome c reductase in the cornea. Anti-NADPH cytochrome P-450 reductase IgG, but not anti-heme oxygenase IgG, inhibited the NADPH-dependent arachidonic acid metabolism in both renal and corneal microsomes. The inhibition was dependent on the ratio of IgG to microsomal protein where 50% inhibition of arachidonic acid conversion by cortical microsomes was achieved with a ratio of 1:1. A higher concentration of IgG was needed to achieve the same degree of inhibition in the corneal microsomes. The antibody also inhibited rabbit renal cortical 7-ethoxyresorufin-o-deethylase activity, a cytochrome P-450-dependent enzyme. However, the anti-NADPH cytochrome P-450 reductase IgG was much less effective in inhibiting rabbit cortical aryl hydrocarbon hydroxylase. Thus, the degree of inhibition of monooxygenases by anti-NADPH cytochrome P-450 reductase IgG is variable. However, with respect to arachidonic acid, NADPH cytochrome P-450 reductase appears to be an integral component for the electron transfer to cytochrome P-450 in the oxidation of arachidonic acid.  相似文献   

18.
Previous studies have shown that the interaction of P450 reductase with bound NADP(H) is essential to ensure fast electron transfer through the two flavin cofactors. In this study we investigated in detail the interaction of the house fly flavoprotein with NADP(H) and a number of nucleotide analogues. 1,4,5,6-Tetrahydro-NADP, an analogue of NADPH, was used to characterize the interaction of P450 reductase with the reduced nucleotide. This analogue is inactive as electron donor, but its binding affinity and rate constant of release are very close to those for NADPH. The 2'-phosphate contributes about 5 kcal/mol of the binding energy of NADP(H). Oxidized nicotinamide does not interact with the oxidized flavoprotein, while reduced nicotinamide contributes 1.3 kcal/mol of the binding energy. Oxidized P450 reductase binds NADPH with a K(d) of 0.3 microM, while the affinity of the reduced enzyme is considerably lower, K(d) = 1.9 microM. P450 reductase catalyzes a transhydrogenase reaction between NADPH and oxidized nucleotides, such as thionicotinamide-NADP(+), acetylpyridine-NADP(+), or [(3)H]NADP(+). The reverse reaction, reduction of [(3)H]NADP(+) by the reduced analogues, is also catalyzed by P450 reductase. We define the mechanism of the transhydrogenase reaction as follows: NADPH binding, hydride ion transfer, and release of the NADP(+) formed. An NADP(+) or its analogue binds to the two-electron-reduced flavoprotein, and the electron-transfer steps reverse to transfer hydride ion to the oxidized nucleotide, which is released. Measurements of the flavin semiquinone content, rate constant for NADPH release, and transhydrogenase turnover rates allowed us to estimate the steady-state distribution of P450 reductase species during catalysis, and to calculate equilibrium constants for the interconversion of catalytic intermediates. Our results demonstrate that equilibrium redox potentials of the flavin cofactors are not the sole factor governing rapid electron transfer during catalysis, but conformational changes must be considered to understand P450 reductase catalysis.  相似文献   

19.
The absence of correlation between the effect of aniline and aminoantipyrine derivatives on cytochrome P-450 reduction rate and its oxidation rate draw to the conclusion that the reductase reaction is not a limiting step of hydroxylation for all substrates. Km is found to be directly proportional to Vmax of hydroxylated substrates. Hence, in these reactions the Km value is determined not by the value Ks but by the kappa+2/kappa+1 ratio. Km is not a characteristic of the affinity of cytochrome P-450 to substrates. The calculations were made to show that cytochrome P-450 formed two types of the enzyme-substrate complexes containing one or two substrate molecules. The complex in which one molecule of cytochrome P-450 binds one substrate molecule is considered to be active.  相似文献   

20.
Highly purified cytochrome P-450 11 beta-/18-hydroxylase and the electron carriers adrenodoxin and adrenodoxin reductase were prepared from porcine adrenal. When the enzyme was incubated with the electron carriers, 11-deoxycorticosterone (DOC) and NADPH, the following products were isolated and measured by HPLC: corticosterone, 18-hydroxy-11-deoxycorticosterone (18-hydroxyDOC), 18-hydroxycorticosterone and aldosterone. All of the DOC consumed by the enzyme can be accounted for by the formation of these four steroids. Aldosterone was identified by mass spectroscopy and by preparing [3H]aldosterone from [3H]corticosterone followed by recrystallization at constant specific activity after addition of authentic aldosterone. Corticosterone and 18-hydroxycorticosterone were also converted to aldosterone. Conversion of corticosterone and 18-hydroxycorticosterone to aldosterone required P-450, both electron carriers, NADPH and substrate. The reaction is inhibited by CO and metyrapone. Moreover, all three activities of the purified enzyme decline at the same rate when the enzyme is kept at room temperature for various periods of time and when the enzyme is treated with increasing concentrations of anti-11 beta-hydroxylase (IgG) before assay. It is concluded that cytochrome P-450 11 beta-/18-hydroxylase can convert DOC to aldosterone via corticosterone and 18-hydroxycorticosterone. The stoichiometry of this conversion was found to be 3 moles of NADPH, 3 moles of H+ and 3 moles of oxygen per mole of aldosterone produced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号