首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Purified spinach nitrite reductase, a protein that contains siroheme, is characterized by absorption maxima in the visible region at 385 and 573 nm. On addition of the substrate nitrite, the bands shift to 360 and 570 nm. Dithionite also causes shifts in the maxima of the visible absorption region. Electron paramagnetic resonance studies show that the untreated enzyme contains a high-spin Fe3+ heme and that the addition of cyanide, an inhibitor that is competitive with nitrite, results in a spin-state change of the heme. Electron paramagnetic resonance analysis of the enzyme in the presence of dithionite or dithionite plus cyanide indicates the presence of a reduced iron-sulfur center with rhombic symmetry (g-values of 2.03, 1.94, and 1.91). In contrast, when the enzyme is treated with dithionite plus nitrite, the EPR spectrum of an NO-heme complex (g-values of 2.07 and 2.00) is observed. The presence of an iron-sulfur center has also been confirmed by chemical analyses of the nonheme iron and acid-labile sulfide in nitrite reductase. These results are discussed in terms of a mechanism for nitrite reduction that involves electron transfer between the iron-sulfur center and siroheme.  相似文献   

2.
R J Krueger  L M Siegel 《Biochemistry》1982,21(12):2905-2909
Spinach ferredoxin-sulfite reductase (SiR) contains one siroheme and one Fe4S4 center per polypeptide subunit. The heme is entirely in the high-spin Fe3+ state in the oxidized enzyme. When SiR is photochemically reduced with ethylenediaminetetraacetate (EDTA)-deazaflavin, the free enzyme and its CN- and CO complexes show changes in absorption spectra associated with the heme even after the heme has been reduced from the Fe3+ to the Fe2+ state. With CO- or CN--SiR, these spectral changes are associated with the appearance of a classical "g = 1.94" type of EPR spectrum characteristic of reduced Fe4S4 centers. The line shapes and exact g values of the g = 1.94 EPR spectra vary with the nature of the ligand bound to the heme Fe. Photoreduction of free SiR results in production of a novel type of EPR signal, with g = 2.48, 2.34, and 2.08 in the fully reduced enzyme; this signal accounts for 0.6 spin per heme. (A small g = 1.94 type EPR signal, representing 0.2 spin per heme, is also found.) These data suggest the presence of a strong magnetic interaction between the siroheme and Fe4S4 centers in spinach SiR, this interaction giving rise to different EPR signals depending on the spin state of the heme Fe in the reduced enzyme.  相似文献   

3.
The redox properties of purified bisulfite reductases from Desulfovibrio gigas, D. desulfuricans (Norway) and Desulfotomaculum ruminis, containing non-heme iron and siroheme have been studied by EPR spectroscopy. Each enzyme shows ferric siroheme EPR signals which are not completely reduced by dithionite after 20 min, but are readily reduced within 1 min by dithionite plus methyl viologen. With the latter reducing system, each reductase also reveals a variable Beinert “g=1.94” type iron-sulfur signal. Reaction of each reductase with reduced methyl viologen results in reduction of only the siroheme. These results suggest different redox potentials for the iron-sulfur and siroheme moieties, and indicate that their functional properties are similar for each reductase.  相似文献   

4.
Escherichia coli NADPH-sulfite reductase is a complex hemoflavoprotein with an alpha 8 beta 4 subunit structure. The beta-subunits each contain one siroheme and a tetranuclear iron-sulfur center (Fe4S4). Isolated beta-monomers can catalyze the 6-electron reduction of sulfite to sulfide. We have studied the beta-monomers with M?ssbauer and EPR spectroscopy. The data show conclusively that the siroheme and the Fe4S4 cluster are strongly exchange-coupled. This is proven by the observations that (a) the two chromophores share a single electronic spin and (b) the addition of 1 electron to oxidized sulfite reductase changes the environments of 5 iron atoms. Spin-sharing is demonstrated in oxidized and 2-electron-reduced sulfite reductase and strongly implicated in 1-electron-reduced material. Thus, sulfite reductase provides the first example of an active site where a heme and an iron-sulfur cluster are closely linked as a functional unit, probably via a common bridging ligand.  相似文献   

5.
Chemical analysis of the ferredoxin-dependent native form (Mr = 85,000) of spinach nitrite reductase has demonstrated a siroheme content that approaches 2 mol of siroheme/mol of enzyme. A widely studied modified (Mr = 61,000) form of nitrite reductase, that has lost much of the native enzyme's ability to use ferredoxin as an electron donor, contains approximately 1 mol of siroheme/mol of enzyme. Quantitation of the high spin ferri-siroheme EPR signals and of nitrite-binding sites of the two preparations confirmed that the native enzyme's siroheme content is approximately twice that of the modified enzyme. Plots of nitrite and cyanide binding to the native enzyme versus ligand concentration are sigmoidal, with Hill coefficients of 1.6-1.8 and 2.3-2.8, respectively. Plots of enzyme activity versus nitrite concentration for the native enzyme are sigmoidal with a Hill coefficient of 2.4. Cyanide inhibition of enzymatic activity was shown to be not competitive. Addition of cyanide to the native enzyme resulted in a diminution of the high spin ferri-siroheme EPR signal and produced EPR signals with g values of 2.71, 2.33, and 1.49 due to low spin ferri-siroheme.  相似文献   

6.
Janick & Siegel [Janick, P. A., & Siegel, L. M. (1982) Biochemistry 21, 3538-3547] showed that the EPR spectrum of the reduced Fe4S4 center (S = 1/2) in fully reduced native ("unligated") Escherichia coli NADPH-sulfite reductase hemoprotein subunit (SiR-HP) is perturbed by interaction with paramagnetic ferrous siroheme (S = 1 or 2) to yield several novel sets of EPR signals: one set with all g values between 2.0 and 2.8, termed "S = 1/2" type, and two sets with the lowest field g value between 4.7 and 5.4, termed "S = 3/2" type. The present study has shown that EPR spectra of fully reduced SiR-HP are nearly quantitatively converted to the classical "g = 1.94" type typical of S = 1/2 Fe4S4 clusters when the heme has been ligated by strong field ligands such as CO, CN-, S2-, and AsO2-, converting the ferroheme to S = 0. However, the exact line shapes and g values of the g = 1.94 differ markedly when different ligands are bound to the heme. Also, optical difference spectra taken between enzyme species in which the heme is kept in the same (Fe2+) oxidation state while the Fe4S4 center is reduced or oxidized show that the optical spectrum of the ligated siroheme is sensitive to the oxidation state of the Fe4S4 cluster. These results indicate that the heme-Fe4S4 interaction of native SiR-HP persists even when the heme Fe is bound to exogenous ligands. We have also found that the g values of the exchange-coupled S = 1/2 and S V 3/2 type signals of native reduced SiR-HP can be significantly shifted by addition of potential weak field heme ligands--halides and formate--or low concentrations of certain chaotropic agents--guanidinium salts and dimethyl sulfoxide--to the fully reduced enzyme. Such agents can also promote interconversion of the S = 1/2 and S = 3/2 type signals. These effects are reversed on removal of the agent. Treatment of reduced SiR-HP with relatively large concentrations of chaotropes, e.g., 60% dimethyl sulfoxide or 2 or 3 M urea, leads to abolition of the S = 1/2 and S = 3/2 EPR signals and their replacement by signals of the g = 1.94 type.  相似文献   

7.
Neurospora crassa nitrite reductase (Mr = 290,000) catalyzes the NAD(P)H-dependent 6-electron reduction of nitrite to ammonia via flavin and siroheme prosthetic groups. Homogeneous N. crassa nitrite reductase has been prepared employing conventional purification methods followed by affinity chromatography on blue dextran-Sepharose 4B. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of homogeneous nitrite reductase reveals a single subunit band of Mr = 140,000. Isoelectric focusing of dissociated enzyme followed by sodium dodecyl sulfate-gel electrophoresis in the second dimension yields a single subunit spot with an isoelectric point at pH 6.8-6.9. Two-dimensional thin layer chromatography of acid-hydrolyzed nitrite reductase treated with 5-dimethylaminoaphthalene-1-sulfonyl chloride yields a single reactive NH2-terminal corresponding to glycine. An investigation of the prosthetic groups of nitrite reductase reveals little or no flavin associated with the purified protein, although exogenously added FAD is required for activity in vitro. An iron content of 9-10 Fe eq/mol suggests the presence of nonheme iron in addition to the siroheme moieties. Amino acid analysis yields 43 cysteinyl residues and sulfhydryl reagents react with 50 thiol eq/mol of nitrite reductase. The non-cysteinyl sulfur content, determined as 8.1 acid-labile sulfide eq/mol, is presumably associated with nonheme iron to form iron-sulfur centers. We conclude that N. crassa nitrite reductase is a homodimer of large molecular weight subunits housing an electron transfer complex of FAD, iron-sulfur centers, and siroheme to mediate the reduced pyridine nucleotide-dependent reduction of nitrite to ammonia.  相似文献   

8.
Ferredoxin-dependent nitrite reductase of spinach has been further characterized and the relationship between this enzyme and methyl viologen-dependent nitrite reductase studied.

Purified ferredoxin nitrite reductase, having a molecular weight of 86,000, showed 2.5 times higher ferredoxin-dependent activity than methyl viologen-linked activity. Besides 4 mol of labile sulfide the enzyme contained about 2 mol of siroheme per mol. When dithionite, methyl viologen and nitrite were added, ESR signals of a heme nitrosyl complex at g = 2.14, 2.07 and 2.02 were observed. Moreover, hyperfine splitting of the signal due to 14N nuclear spin was also observed at 2.033, 2.023 and 2.013. The sole addition of hydroxylamine to the ferric enzyme also caused the same but much less intense signals with the hyperfine splitting.

On treatment of the ferredoxin nitrite reductase (native enzyme) with DEAE-Sephadex A-50 chromatography, a modified nitrite reductase having a molecular weight of 61,000 and a protein fraction having an apparent molecular weight of 24,000 were separated. The modified enzyme contained about one mol of siroheme and 4 mol of labile sulfide per mol and showed essentially the same heme ESR signals as the native enzyme. Contrary to the native enzyme, this modified enzyme accepted electrons more efficiently from methyl viologen than ferredoxin and the reduction of nitrite to ammonia catalyzed by the modified enzyme was not stoichiometric. The observed nitrite to ammonia ratio was 1 to less than 0.6. Cyanide at concentrations between 0.02 to 0.2 mm inhibited the activity of the native enzyme almost completely but the modified enzyme was inhibited only partially.

From the results obtained, it is suggested that the native ferredoxin-linked nitrite reductase consists of two components (or subunits) and removal of the light component results in formation of a modified enzyme with increased relative affinity to methyl viologen.  相似文献   

9.
M?ssbauer and EPR spectroscopy were used to characterize the heme prosthetic groups of the nitrite reductase isolated from Desulfovibrio desulfuricans (ATCC 27774), which is a membrane-bound multiheme cytochrome capable of catalyzing the 6-electron reduction of nitrite to ammonia. At pH 7.6, the as-isolated enzyme exhibited a complex EPR spectrum consisting of a low-spin ferric heme signal at g = 2.96, 2.28, and 1.50 plus several broad resonances indicative of spin-spin interactions among the heme groups. EPR redox titration studies revealed yet another low-spin ferric heme signal at g = 3.2 and 2.14 (the third g value was undetected) and the presence of a high-spin ferric heme. M?ssbauer measurements demonstrated further that this enzyme contained six distinct heme groups: one high-spin (S = 5/2) and five low-spin (S = 1/2) ferric hemes. Characteristic hyperfine parameters for all six hemes were obtained through a detailed analysis of the M?ssbauer spectra. D. desulfuricans nitrite reductase can be reduced by chemical reductants, such as dithionite or reduced methyl viologen, or by hydrogenase under hydrogen atmosphere. Addition of nitrite to the fully reduced enzyme reoxidized all five low-spin hemes to their ferric states. The high-spin heme, however, was found to complex NO, suggesting that the high-spin heme could be the substrate binding site and that NO could be an intermediate present in an enzyme-bound form.  相似文献   

10.
Two new low molecular weight proteins with sulfite reductase activity, isolated from Methanosarcina barkeri (DSM 800) and Desulfuromonas acetoxidans (strain 5071), were studied by EPR and optical spectroscopic techniques. Both proteins have visible spectra similar to that of the low-spin sulfite reductase of Desulfovibrio vulgaris strain Hildenborough and no band at 715 nm, characteristic of high-spin Fe3+ complexes in isobacteriochlorins is observed. EPR shows that as isolated the siroheme is in a low-spin ferric state (S = 1/2) with g-values at 2.40, 2.30 and 1.88 for the Methanosarcina barkeri enzyme and g-values at 2.44, 2.33 and 1.81 for the Desulfuromonas acetoxidans enzyme. Chemical analysis shows that both proteins contain one siroheme and one [Fe4S4] center per polypeptidic chain. These results suggest that the low molecular weight, low-spin non-heme iron siroheme proteins represent a new homologous class of sulfite reductases common to anaerobic microorganisms.  相似文献   

11.
Escherichia coli NADPH-sulfite reductase can be dissociated into an oligomeric flavoprotein and a monomeric hemoprotein (HP) subunit in 4 M urea. HP catalyzes stoichiometric 6-electron reductions of SO32- (to S2-) and of NO2-, as well as 2-electron reduction of NH2OH, with reduced methyl viologen (MV+) as reductant. While Vmax values are highest with the nitrogenous substrates, Km for SO32- is 2 to 3 orders of magnitude less than the Km for NO2- or NH2OH. EPR spectroscopic and chemical analyses show that HP contains one siroheme and one Fe4S4 center per polypeptide. The heme is in the high spin Fe3+ state in HP as isolated. Near-quantitative reduction of the Fe4S4 center to a state yielding a g = 1.94 type of EPR spectrum by S2O42- and/or MV+ could be achieved if HP was converted to either the CN- or CO complex or treated with 80% dimethyl sulfoxide. HP binds one SO32- or CN- per peptide. Binding of these ligands, as well as CO, appears to be mutually exclusive and to involve the heme. The heme Fe3+/Fe2+ potential is shifted from -340 mV in the free HP to -155 mV in the HP-CN- complex. The potential of the Fe4S4 center is approximately 70 mV more negative in the CN- as opposed to the CO-ligated HP (-420 mV), a result which indicates the presence of heme-Fe4S4-ligand interaction in the HP complexes.  相似文献   

12.
A dissimilatory bisulfite reductase has been purified from a thermophilic sulfate-reducing bacterium Desulfovibrio thermophilus (DSM 1276) and studied by EPR and optical spectroscopic techniques. The visible spectrum of the purified bisulfite reductase exhibits absorption maxima at 578.5, 392.5 and 281 nm with a weak band around 700 nm. Photoreduction of the native enzyme causes a decrease in absorption at 578.5 nm and a concomitant increase in absorption at 607 nm. When reduced, the enzyme reacts with cyanide, sulfite, sulfide and carbon monoxide to give stable complexes. The EPR spectrum of the native D. thermophilus bisulfite reductase shows the presence of a high-spin ferric signal with g values at 7.26, 4.78 and 1.92. Upon photoreduction the high-spin ferric heme signal disappeared and a typical 'g = 1.94' signal of [4Fe-4S] type cluster appeared. Chemical analyses show that the enzyme contains four sirohemes and eight [4Fe-4S] centers per mol of protein. The molecular mass determined by gel filtration was found to be 175 kDa. On SDS-gel electrophoresis the enzyme presents a main band of 44 to 48 kDa. These results suggest that the bisulfite reductase contains probably one siroheme and two [4Fe-4S] centers per monomer. The dissimilatory bisulfite reductase from D. thermophilus presents some homologous properties with desulfofuscidin, the bisulfite reductase isolated from Thermodesulfobacterium commune (Hatchikian, E.C. and Zeikus, J.G. (1983) J. Bacteriol. 153, 1211-1220).  相似文献   

13.
We report an EPR study of the iron-sulfur enzyme, anaerobic ribonucleotide reductase activase from Lactococcus lactis. The activase (nrdG gene) together with S-adenosyl-L-methionine (AdoMet) give rise to a glycyl radical in the NrdD component. A semi-reduced [4Fe-4S](+) cluster with an axially symmetric EPR signal was produced upon photochemical reduction of the activase. Air exposure of the reduced enzyme gave a [3Fe-4S](+) cluster. The Fe(3)S(4) cluster was convertible to the EPR-active [4Fe-4S](+) cluster by renewed treatment with reducing agents, demonstrating a reversible [3Fe-4S](+)- to-[4Fe-4S](+) cluster conversion without exogenous addition of iron or sulfide. Anaerobic reduction of the activase by a moderate concentration of dithionite also resulted in a semi-reduced [4Fe-4S](+) cluster. Prolonged reduction gave an EPR-silent fully reduced state, which was enzymatically inactive. Both reduced states gave the [3Fe-4S](+) EPR signal after air exposure. The iron-sulfur cluster interconversion was also studied in the presence of AdoMet. The EPR signal of semi-reduced activase-AdoMet had rhombic symmetry and was independent of which reductant was applied, whereas the EPR signal of the [3Fe-4S](+) cluster after air exposure was unchanged. The results indicate that an AdoMet-mediated [4Fe-4S](+) center is the native active species that induces the formation of a glycyl radical in the NrdD component.  相似文献   

14.
15.
In order to utilize sulfate as the terminal electron acceptor, sulfate-reducing bacteria are equipped with a complex enzymatic system in which adenylylsulfate (AdoPSO4) reductase plays one of the major roles, reducing AdoPSO4 (the activated form of sulfate) to sulfite, with release of AMP. The enzyme has been purified to homogeneity from the anaerobic sulfate reducer Desulfovibrio gigas. The protein is composed of two non-identical subunits (70 kDa and 23 kDa) and is isolated in a multimeric form (approximately 400 kDa). It is an iron-sulfur, flavin-containing protein, with one FAD moiety, eight iron atoms and a minimum molecular mass of 93 kDa. Low-temperature EPR studies were performed to characterize its redox centers. In the native state, the enzyme showed an almost isotropic signal centered at g = 2.02 and only detectable below 20 K. This signal represented a minor species (0.10-0.25 spins/mol) and showed line broadening in the enzyme isolated from 57Fe-grown cells. Addition of sulfite had a minor effect on the EPR spectrum, but caused a major decrease in the visible region of the optical spectrum (around 392 nm). Further addition of AMP induced only a minor change in the visible spectrum whereas major changes were seen in the EPR spectrum; the appearance of a rhombic signal at g values 2.096, 1.940 and 1.890 (reduced Fe-S center I) observable below 30 K and a concomitant decrease in intensity of the g = 2.02 signal were detected. Effects of chemical reductants (ascorbate, H2/hydrogenase-reduced methyl viologen and dithionite) were also studied. A short time reduction with dithionite (15 s) or reduction with methyl viologen gave rise to the full reduction of center I (with slightly modified g values at 2.079, 1.939 and 1.897), and the complete disappearance of the g = 2.02 signal. Further reduction with dithionite produces a very complex EPR spectrum of a spin-spin-coupled nature (observable below 20 K), indicating the presence of at least two iron-sulfur centers, (centers I and II). M?ssbauer studies on 57Fe-enriched D. gigas AdoPSO4 reductase demonstrated unambiguously the presence of two 4Fe clusters. Center II has a redox potential less than or equal to 400 mV and exhibits spectroscopic properties that are characteristic of a ferredoxin-type [4Fe-4S] cluster. Center I exhibits spectra with atypical M?ssbauer parameters in its reduced state and has a midpoint potential around 0 mV, which is distinct from that of a ferredoxin-type [4Fe-4S] cluster, suggesting a different structure and/or a distinct cluster-ligand environment.  相似文献   

16.
Zeng J  Wang M  Zhang X  Wang Y  Ai C  Liu J  Qiu G 《Biotechnology letters》2008,30(7):1239-1244
Sulfite reductase (SiR) is a large and soluble enzyme which catalyzes the transfer of six electrons from NADPH to sulfite to produce sulfide. The sulfite reductase flavoprotein (SiR-FP) contains both FAD and FMN, and the sulfite reductase hemoprotein (SiR-HP) contains an iron-sulfur cluster coupled to a siroheme. The enzyme is arranged so that the redox cofactors in the FAD-FMN-Fe(4)S(4)-Heme sequence make an electron pathway between NADPH and sulfite. Here we report the cloning, expression, and characterization of the SiR-HP of the sulfite reductase from Acidithiobacillus ferrooxidans. The purified SiR-HP contained a [Fe(4)S(4)] cluster. Site-directed mutagenesis results revealed that Cys427, Cys433, Cys472 and Cys476 were in ligating with the [Fe(4)S(4)] cluster of the protein.  相似文献   

17.
We have employed electron-nuclear double resonance (ENDOR) spectroscopy to study the 57Fe hyperfine interactions in the bridged-siroheme [4Fe-4S] cluster that forms the catalytically active center of the two-electron-reduced hemoprotein subunit of Escherichia coli NADPH-sulfite reductase (SiR2-). Previous electron paramagnetic resonance (EPR) and M?ssbauer studies have shown that this enzyme oxidation state can exist in three distinct spectroscopic forms: (1) a "g = 2.29" EPR species that predominates in unligated SiR2-, in which the siroheme Fe2+ is believed to be in an S = 1 state; (2) a "g = 4.88" type of EPR species that predominates in SiR2- in the presence of small amounts of guanidinium sulfate, in which the siroheme Fe2+ is in an S = 2 state; and (3) a classical "g = 1.94" type of EPR species that is seen in SiR2- ligated with CO, in which the siroheme Fe2+ is in an S = 0 state. In all three species, the cluster is in the [4Fe-4S]1+ state, and two distinct types of Fe site are seen in M?ssbauer spectroscopy. ENDOR studies confirm the M?ssbauer assignments for the cluster 57Fe in the g = 1.94 state, with A values of 37, 37, and 32 MHz for site I and ca. 19 MHz for site II. The hyperfine interactions are not too different on the g = 2.29 state, with site I Fe showing more anisotropic A values of 32, 24, and 20 MHz (site II was not detected).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Laser flash photolysis has been used to investigate the kinetics of reduction of trimethylamine dehydrogenase by substoichiometric amounts of 5-deazariboflavin semiquinone, and the subsequent intramolecular electron transfer from the FMN cofactor to the Fe4S4 center. The initial reduction event followed second-order kinetics (k = 1.0 x 10(8) M-1 s-1 at pH 7.0 and 6.4 x 10(7) M-1 s-1 at pH 8.5) and resulted in the formation of the neutral FMN semiquinone and the reduced iron-sulfur cluster (in a ratio of approximately 1:3). Following this, a slower, protein concentration independent (and thus intramolecular) electron transfer was observed corresponding to FMN semiquinone oxidation and iron-sulfur cluster reduction (k = 62 s-1 at pH 7.0 and 30 s-1 at pH 8.5). The addition of the inhibitor tetramethylammonium chloride to the reaction mixture had no effect on these kinetic properties, suggesting that this compound exerts its effect on the reduced form of the enzyme. Treatment of the enzyme with phenylhydrazine, which introduces a phenyl group at the 4a-position of the FMN cofactor, decreased both the rate constant for reduction of the protein and the extent of FMN semiquinone production, while increasing the amount of iron-sulfur center reduction, consistent with the results obtained with the native enzyme. Experiments in which the kinetics of reduction of the enzyme were determined during various stages of partial reduction were also consistent with these results, and further indicated that the FMN semiquinone form of the enzyme is more reactive toward the deazariboflavin reductant than is the oxidized FMN.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Nitrite reductase of Alcaligenes xylosoxidans contains three blue type 1 copper centers with a function in electron transfer and three catalytic type 2 copper centers. The mutation H139A, in which the solvent-exposed histidine ligand of the type 1 copper ion was changed to alanine, resulted in the formation of a colorless protein containing 4.4 Cu atoms per trimer. The enzyme was inactive with reduced azurin as the electron donor, and in contrast to the wild-type enzyme, no EPR features assignable to type 1 copper centers were observed. Instead, the EPR spectrum of the H139A enzyme, with parameters of g(1) = 2.347 and A(1) = 10 mT, was typical of type 2 copper centers. On the addition of nitrite, the EPR features developed spectral features with increased rhombicity, with g(1) = 2.29 and A(1) = 11 mT, arising from the type 2 catalytic site. As assessed by visible spectroscopy, ferricyanide (E degree = +430 mV) was unable to oxidize the H139A enzyme, and this required a 30-fold excess of K(2)IrCl(6) (E degree = +867 mV). Oxidation resulted in the EPR spectrum developing additional axial features with g(1) = 2.20 and A(1) = 9.5 mT, typical of type 1 copper centers. The oxidized enzyme after separation from the excess of K(2)IrCl(6) by gel filtration was a blue-green color with absorbance maxima at 618 and 420 nm. The instability of the protein prevented the precise determination of the midpoint potential, but these properties indicate that it is in the range 700-800 mV, an increase of at least approximately 470 mV compared with the native enzyme. This high potential, which is consistent with a trigonal planar geometry of the Cu ion, effectively prevents azurin-mediated electron transfer from the type 1 center to the catalytic type 2 Cu site. However, with dithionite as reductant, 20% of the activity of the wild-type enzyme was observed, indicating that the direct reduction of the catalytic site by dithionite can occur. When CuSO(4) was added to the crude extract before isolation of the enzyme, the Cu content of the purified H139A enzyme increased to 5.7 Cu atoms per trimer. The enzyme remained colorless, and the activity with dithionite as a donor was not significantly increased. The additional copper in such preparations was associated with an axial type 2 Cu EPR signal with g(1) = 2.226 and A(1) = 18 mT, and which were not changed by the addition of nitrite, consistent with the activity data.  相似文献   

20.
The bidirectional hydrogenase from Clostridium pasteurianum W5 is an iron-sulfur protein containing approximately 12 Fe atoms and 12 labile sulfides. We have studied oxidized samples of the enzyme with M?ssbauer and electron nuclear double resonance (ENDOR) spectroscopy to elucidate the nature of the center that gives rise to the EPR signal with principal g-values at 2.10, 2.04, and 2.01. The g = 2.10 center exhibits two well-resolved 57Fe ENDOR resonances. One is isotropic with A1 = 9.5 MHz; the other is nearly isotropic with A2 = 17 MHz. These magnetic hyperfine coupling constants are substantially (approximately 50%) smaller than those observed for [2Fe-2S], [3Fe-4S], and [4Fe-4S] clusters. The M?ssbauer and ENDOR data, taken together, suggest that the g = 2.10 center contains at least two but not more than four iron atoms. Comparison of our data with recent results reported for Escherichia coli sulfite reductase and the ferricyanide-treated [4Fe-4S] cluster from Azotobacter vinelandii ferredoxin I suggests that the g = 2.10 center may possibly be formed, by oxidation, from a structure with a [4Fe-4S] core. The M?ssbauer spectra give evidence that at least 8 of the 12 Fe atoms of oxidized hydrogenase are organized in two ferredoxin-type [4Fe-4S] clusters, supporting conclusions derived previously from EPR studies of the reduced enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号