首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclic analogues of neurotensin (NT) C-terminal fragments NT(8-13) and NT(9-13) were produced via intramolecular nucleophilic substitution of the Tyr(11) phenoxide anion on a 6-bromohexanoyl side chain substituted at position 8 or 9 and tested for NT receptor binding affinity.  相似文献   

2.
We have purified contulakin-G, a 16-amino acid O-linked glycopeptide (pGlu-Ser-Glu-Glu-Gly-Gly-Ser-Asn-Ala-Thr-Lys-Lys-Pro-Tyr-Ile-Leu-OH, pGlu is pyroglutamate) from Conus geographus venom. The major glycosylated form of contulakin-G was found to incorporate the disaccharide beta-D-Galp-(1-->3)-alpha-D-GalpNAc-(1-->) attached to Thr10. The C-terminal sequence of contulakin-G shows a high degree of similarity to the neurotensin family of peptides. Synthetic peptide replicates of Gal(beta-->3) GalNAc(alpha-->)Thr10 contulakin-G and its nonglycosylated analog were prepared using an Fmoc (9-fluorenylmethoxycarbonyl) protected solid phase synthesis strategy. The synthetic glycosylated con- tulakin-G, when administered intracerebroventricular into mice, was found to result in motor control-associated dysfunction observed for the native peptide. Contulakín-G was found to be active at 10-fold lower doses than the nonglycosylated Thr10 contulakin-G analog. The binding affinities of contulakin-G and the nonglycosylated Thr10 contulakin-G for a number of neurotensin receptor types including the human neurotensin type 1 receptor (hNTR1), the rat neurotensin type 1 and type 2 receptors, and the mouse neurotensin type 3 receptor were determined. The binding affinity of the nonglycosylated Thr10 contulakin-G was approximately an order of magnitude lower than that of neurotensin1-13 for all the receptor types tested. In contrast, the glycosylated form of contulakin-G exhibited significantly weaker binding affinity for all of the receptors tested. However, both contulakin-G and nonglycosylated Thr10 contulakin-G were found to be potent agonists of rat neurotensin receptor type 1. Based on these results, we conclude that O-linked glycosylation appears to be a highly unusual strategy for increasing the efficacy of toxins directed against neurotransmitter receptors.  相似文献   

3.
Phthalocyanine-based photosensitizers, coupled via a 17alpha-ethynyl group to estradiol using Pd(II) as a catalyst, were synthesized and evaluated for their estrogen receptor binding affinity and in vitro photocytotoxicity. The highest receptor binding affinities (RBA=8-13) were observed with lipophilic conjugates coupled via a relative long spacer group while the sulfonated analogues showed little binding affinities (RBA <2). The highest photocytotoxicity was observed with the sulfonated conjugates, the nature of the spacer group did not have a pronounced effect.  相似文献   

4.
A series of novel and selective N-[3-(6-benzyloxy-3-methoxyphenyl)propyl] amides has recently been shown to possess sub-nanomolar range binding affinity to the type 2 melatonin receptor (MT2). Pharmacokinetics studies suggested that these compounds were subject to vigorous CYP450-mediated metabolism, resulting in a series of metabolites with significantly decreased or diminished binding affinities toward MT2 receptor. The ether bonds were found to be the major positions susceptible to metabolism. In this study, the benzyl ether bond was either removed or replaced with a carbon–carbon bond in an attempt to improve metabolic stability and enhance their resistance towards phase I oxidation. The synthesis, receptor binding affinity, intrinsic potency and metabolic stability of modified structures are reported in this article. By removal or replacement of metabolic labile ether linkerage with carbon linkers, a novel compound was identified with good potency and MT2 selectivity, and with increased metabolic stability.  相似文献   

5.
A series of neurotensin (NT)(8-13) analogs featuring substitution of the Arg8 and/or Arg9 residues with non-natural cationic amino acids was synthesized and evaluated for binding to the human NT receptor-1 (hNTR-1). The modifications were designed to probe specific steric and electrostatic requirements in the N-terminal cationic region of NT(8-13) for receptor binding as a general evaluation of the feasibility of incorporating minor structural changes into a peptide at a crucial polar receptor binding site. Many of the non-natural amino acids are more or less isosteric to Arg but more lipophilic as a result of addition of alkyl groups or through removal or replacement of NH character with methylene or methyl substituents, whereas others vary the distance between the cation and the alpha-amino acid carbon. Substitution of Arg8 with N(G)-alkylated Arg derivatives or homolysine (Hlys) maintained the subnanomolar affinity of NT(8-13) to the hNTR-1. Position 8 incorporation of Hlys produced the most favorable primary amine side-chain substitution to date. Moderate losses in affinity observed with position 9 substitutions were attributed to adverse steric effects. Doubly substituted [Hlys8, DAB9]NT(8-13), in which DAB is 2,4-diaminobutyric acid, was also prepared and tested as the shorter side-chain of DAB is known to be favored in position 9 of NT(8-13). This analog maintained 60% of NT(8-13) binding affinity making it the most favored des-guanidinium-containing analog known. These results demonstrate that adequate receptor binding affinity can be maintained over a structural range of Arg analogs, thus providing a range of peptides expected to exhibit altered pharmacokinetic properties. From the standpoint of the hNTR-1 cationic binding sites, these results help to map out the structural stringency inherent in the formation of a tight binding complex with NT(8-13) and related analogs.  相似文献   

6.
Several chiral, analogues of the endogenous cannabinoid receptor ligand, arachidonylethanolamide (anandamide), methylated at the 2,1' and 2' positions using asymmetric synthesis were evaluated in order to study (a) stereoselectivity of binding to CB1 and CB2 cannabinoid receptors; and (b) metabolic stability with regard to anandamide amidase. Enantiomerically pure 2-methyl arachidonic acids were synthesized through diastereoselective methylation of the respective chiral 2-oxazolidinone enolate derivatives and CB1 and CB2 receptor affinities of the resulting chiral anandamides were evaluated using a standard receptor binding assay. Introduction of a single 2-methyl group increased affinity for CB1, led to limited enantioselectivity and only modestly improved metabolic stability. However, a high degree of enantio- and diastereoselectivity was observed for the 2,1'-dimethyl analogues. (R)-N-(1-methyl-2-hydroxyethyl)-2-(R)-methyl-arachidonamide (4) exhibited the highest CB1 receptor affinity in this series with a K(i) of 7.42 nM, an at least 10-fold improvement on anandamide (K(i)=78.2 nM). The introduction of two methyl groups at the 2-position of anandamide led to no change in affinity for CB1 but somewhat enhanced metabolic stability. Conversely, chiral headgroup methylation in the 2-gem-dimethyl series led to chiral analogues possessing a wide range of CB1 affinities. Of these the (S)-2,2,2'-trimethyl analogue (12) had the highest affinity for CB1 almost equal to that of anandamide. In agreement with our previous anandamide structure-activity relationship work, the analogues in this study showed high selectivity for the CB1 receptor over CB2. The results are evaluated in terms of stereochemical factors affecting the ligand's affinity for CB1 using receptor-essential volume mapping as an aid. Based on the results, a partial CB1 receptor site model is proposed, that bears two hydrophobic pockets capable of accommodating 1'- and 2-methyl groups  相似文献   

7.
Nociceptin (NOC) and dynorphin A (DYN) analogues containing 2',6'-dimethylphenylalanine (Dmp) in place of Phe or Tyr in position 1 and/or 4 were synthesized and their metabolic stability and receptor-binding properties were investigated. [Dmp1]NOC(1-13)-NH2 (1) possessed high ORL1 receptor affinity comparable to that of the parent peptide with substantially improved affinities for kappa-, mu-, and delta-opioid receptors. However, Dmp4 substitution of NOC peptide (2) reduced ORL1 receptor affinity. [Dmp1]DYN(1-13)-NH2 (4) and its Dmp4 analogue (5) possessed a 3-fold greater kappa-opioid receptor affinity and improved kappa-receptor selectivity compared to the parent peptide. Analogue 4 however exhibited an unexpectedly low in vitro bioactivity (GPI assay), suggesting, the phenolic hydroxyl group at the N-terminal residue in DYN peptide is extremely important for activation of the kappa-opioid receptor. Analogue 5 possessed an improved kappa-opioid receptor selectivity with an IC50 ratio of 1(kappa)/509(mu)/211598(delta); thus, this peptide may serve as a highly selective kappa-receptor agonist for pharmacological study. Dmp1 substitution in both the NOC and DYN peptides improved metabolic stability toward these peptides, while Dmp4 substitution provided no additional metabolic stability.  相似文献   

8.
The binding of [3H]neurotensin(8-13) to membranes from human frontal cortex at 0 degree C was time dependent, specific, saturable, and reversible. Saturation isotherms provided an equilibrium dissociation constant (KD) of 0.52 nM, and the maximal number of binding sites (Bmax) was 3.5 pmol/g original wet weight of tissue. Scatchard analysis yielded a straight line, and the Hill coefficient was equal to 1, a result indicating that [3H]neurotensin(8-13) bound to single, noncoopertive sites. The KD values of several analogs of neurotensin determined in competition with [3H]neurotensin(8-13) were similar to those previously determined in competition with [3H]neurotensin. The regional distribution of binding sites for [3H]neurotensin(8-13) was also similar to that for [3H]neurotensin. These results suggest that [3H]neurotensin(8-13) binds to the same sites as [3H]neurotensin and that [3H]neurotensin(8-13) has a higher affinity than [3H]neurotensin for these sites in human brain.  相似文献   

9.
A peptide hydropathically complementary to Big Endothelin [Big ET] residues 16-29 has been synthesized in a multimeric form starting from an octadentate polylysine core, essentially in a way similar to the procedure used for the production of multiple antigenic peptides [MAP's]. Interaction between the multimeric complementary peptide [8 delta ET] and the Big ET fragment 16-32 containing the target complementary region, also synthesized in a multimeric form [8ET], was evaluated by analytical high performance affinity chromatography and solid phase binding assays. While the binding interaction between the monomerics peptide pair was in the micromolar range, the recognition between the corresponding multimeric form was characterized by enhanced binding affinity of at least two orders of magnitude. In solution, complex formation between multimeric complementary peptide and target Big ET sequence in the monomeric and multimeric form was accompanied by precipitation at concentrations higher than 0.5 mg/mL and 0.1 mg/mL, respectively. Polyclonal antibodies raised against the multimeric target sequence recognized multimeric and monomeric ET target sequences with binding affinities similar to binding affinities exhibited by the multimeric complementary peptide. Multimerization of hydropathically complementary peptides could provide an improved opportunity to measure and thus probe quantitative binding properties of complementary peptides.  相似文献   

10.
Piperazinyl derivatives of 1-(arylsulfonyl)-2,3-dihydro-1H-quinolin-4-ones have been identified with high binding affinities for 5-HT6 receptor. In particular, 2-methyl-5-(N-methyl-piperazin-1-yl)-1-(naphthalene-2-sulfonyl)-2,3-dihydro-1H-quinolin-4-one (8g) exhibits high binding affinity toward 5-HT6 (IC50 = 8 nM) receptor with good selectivity over other serotonin and dopamine receptors.  相似文献   

11.
The neurotensin receptor was purified from newborn mouse brain by affinity chromatography. Active neurotensin binding sites were solubilized from brain homogenates using the nondenaturing detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid (CHAPS) in the presence of cholesteryl hemisuccinate. Chromatography of the soluble extract on SP-Sephadex C-25 and hydroxylapatite eliminated 50% of proteins without loss of neurotensin binding activity. This prepurified material was loaded into an affinity column prepared by coupling neurotensin (2-13) to glutaraldehyde-activated Ultrogel AcA22. Nonspecifically adsorbed proteins were eliminated by extensive washing, and the receptor was eluted with a buffer containing 1 M NaCl, 0.1% CHAPS, and 0.02% cholesteryl hemisuccinate. After desalting, the purified receptor bound 125I-labeled neurotensin with a dissociation constant of 0.26 nM and retained its specificity towards a series of neurotensin analogues. The desalted NaCl eluate appeared on sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a major band of molecular weight 100,000 which was identified as the receptor by affinity labeling with 125I-labeled neurotensin in the presence of disuccinimidyl suberate. The purity of the mouse brain receptor eluted from the affinity column was estimated to be 78%. Electroelution of the 100-kDa protein band gave an homogenous preparation of receptor. Very similar results were obtained with CHAPS-solubilized neurotensin receptors from rat and rabbit brain.  相似文献   

12.
The reaction of human beta-endorphin and biotinyl N-hydroxysuccinimide with or without spacer arm, afforded a series of products that were separated by high performance liquid chromatography (HPLC). Liquid secondary ion mass spectrometry of the biotinylated products and their tryptic digests produced abundant protonated molecular ions (MH+), which specified the number and location of biotinylation. Between 1 and 4 biotinyl residues were incorporated per human beta-endorphin molecule, at Lys-9, -19, -24, -28, and -29, but not at the amino-terminal Tyr-1. Three HPLC fractions were isolated for receptor binding studies with monobiotinylation of Lys-9 (B1 beta and B1X beta; X = C6 spacer arm), Lys-19 (B1 gamma), and a mixture of Lys-24, Lys-28, and Lys-29 derivatives (B1 alpha, BX1 alpha). All derivatives displayed tight binding to avidin, and no dissociation from avidin was detectable over several hours at 0 degrees C for the derivatives (BX1 alpha) tested. IC50 values for binding to mu and delta opioid receptor sites were 3-8 times higher for monobiotinylated derivatives than for the parent human beta-endorphin (IC50,mu = 1.5 nM, IC50,delta = 1.3 nM). Association with avidin decreased opioid receptor affinities for the C6 spacer derivative biotinylated at position Lys-9, which is close to the (1-5) enkephalin receptor region. In contrast, avidin did not affect or even increased apparent affinities to mu and delta sites for derivatives biotinylated at the alpha-helical part of the molecule (Lys-19, -24, -28, and -29). Thus, when bound to avidin, the biotinylated human beta-endorphin derivatives with spacer arm (BX1 alpha), substituted near the carboxyl terminal (Lys-24, -28, and -29), displayed mu binding affinities equal to and delta binding affinities only four times lower than underivatized human beta-endorphin. Biotinylated human beta-endorphins also bound to low affinity nonopioid binding sites on NG-108-15 cells; however, affinities to these sites were considerably reduced when derivatives were bound to avidin. The ability of biotinylated human beta-endorphin to cross-link the mu and delta opioid receptors to avidin allows application of the biotin-avidin system as a molecular probe of the opioid receptor.  相似文献   

13.
Synthesis of pyrimidine derivatives with a side-chain attached to the C-6 of pyrimidine ring (6-14) is reported. Target compounds 8 and 12 were subjected to in vitro phosphorylation tests, determination of their binding affinities to herpes simplex virus (HSV-1) thymidine kinase (TK) and catalytic turnover constants. Fluorinated pyrimidine derivative 12 (40 microM) exhibited better binding affinity for HSV-1 TK than acyclovir (ACV, 170 microM) and ganciclovir (GCV, 48 microM). Catalytic turnover constant (k(cat)) of 12 (0.08 s(-1)) was close to the k(cat) values of ACV (0.10 s(-1)) and GCV (0.10 s(-1)). Furthermore, compounds 8 and 12 showed no cytotoxic effects in HSV-1 TK-transduced and non-transduced cell lines. Besides, compounds 8 and 12 did not exhibit antiviral or cytostatic activities against several viruses and malignant tumor cell lines that were evaluated. The new fluorinated pyrimidine derivative 16 that is phosphorylated by HSV-1 TK could be developed as non-toxic PET-tracer molecule. Thus, 18F labelling of the precursor 14 was performed by nucleophilic substitution using [18F] tetrabutylammonium fluoride as the fluorinating reagent.  相似文献   

14.
Novel neurotensin (NT) (8–13) (Arg8-Arg9-Pro10-Tyr11-Ile12-Leu13) mimetics 3, 4 were designed by adopting all intrinsic functional groups of the native neurotensin(8–13) and using a substituted indole as a template to mimic the pharmacophore of NT(8–13). Biological studies at subtype 1 of the NT receptor showed that 3 has a 55 and 580 nM binding affinity at rat and human neurotensin receptors, respectively. As a comparison, compounds 5 and 6 were also synthesized. The binding difference between 3, 4 and 5, 6 argues the importance of the carboxylic group in achieving higher potency NT(8–13) mimetics.  相似文献   

15.
Novel 3,8- and 8,9-disubstituted N(6)-cyclopentyladenine derivatives were synthesised in moderate overall yield from 6-chloropurine. The derivatives were made in an attempt to find a new neutral antagonist with high affinity for adenosine A(1) receptors. N(6)-Cyclopentyl-9-methyladenine (N-0840) was used as a lead compound. Binding affinities of the new analogues were determined for human adenosine A(1) and A(3) receptors. Their intrinsic activity was assessed in [35S]GTPgammaS binding experiments. Elongation of the 9-methyl of N-0840 to a 9-propyl substituent was very well tolerated. A 9-benzyl group, on the other hand, caused a decrease in adenosine A(1) receptor affinity. Next, the 8-position was examined in detail, and affinity was increased with appropriate substitution. Most derivatives were A(1)-selective and 20 of the new compounds (6-9, 15-21, 23-26, 28, 31, 33, 35, and 36) had higher adenosine A(1) receptor affinity than the reference substance, N-0840. Compound 31 (N(6)-cyclopentyl-8-(N-methylisopropylamino)-9-methyladenine, LUF 5608) had the highest adenosine A(1) receptor affinity, 7.7 nM. In the [35S]GTPgammaS binding experiments, derivatives 5, 14, 22, 23, 25, 26, 33 and 34 did not significantly change basal [35S]GTPgammaS binding, thus behaving as neutral antagonists. Moreover, four of these compounds (23, 25, 26, and 33) displayed a 4- to 10-fold increased adenosine A(1) receptor affinity (75-206 nM) compared to N-0840 (852 nM). In summary, we synthesised a range of N-0840 analogues with higher affinity for adenosine A(1) receptors. In addition, four new derivatives, LUF 5666 (23), LUF 5668 (25), LUF 5669 (26) and LUF 5674 (33), behaved as neutral antagonists when tested in [35S]GTPgammaS binding studies. Thus, these compounds have improved characteristics as neutral adenosine A(1) receptor antagonists.  相似文献   

16.
The ability of mammalian and avian neurotensins and some neurotensin fragments to reduce wet-dog shaking (WDS) induced by thyrotrophin-releasing hormone (TRH) and to influence rectal temperature was tested after their injection into the periaqueductal grey region of male rats. Both neurotensins inhibited TRH-induced WDS and reduced rectal temperature by 2 degrees C; this latter effect was prevented by prior TRH administration. Of the four neurotensin fragments tested, both (1-8)- and (8-13)-neurotensin reduced WDS but only (8-13)-neurotensin reduced rectal temperature significantly. (1-6)- and (1-11)-neurotensin were without effect in either test system. From the activity of the various peptides, further examples of the mutual antagonism between TRH and neurotensin have been demonstrated. It is suggested that there is a possible role for neurotensin in controlling body temperature via the periaqueductal grey and that this may be one function of neurotensin in avian species; there may also be more than one receptor system binding neurotensin in the brain.  相似文献   

17.
Overexpression of the high affinity neurotensin receptor 1 (NTSR1), demonstrated in several human cancers, has been proposed as a new marker for human ductal pancreatic carcinoma and as an independent factor for poor prognosis for ductal breast cancer, head and neck squamous cell carcinoma, and non-small cell lung cancer. The aim of the present study was to develop new DOTA-neurotensin analogues for positron emission tomography (PET) imaging with (68)Ga and for targeted radiotherapy with (90)Y or (177)Lu. We synthesized a DOTA-neurotensin analogue series. Two of these peptides bear two sequence modifications for metabolic stability: DOTA-NT-20.3 shares the same peptide sequence as the previously described DTPA-NT-20.3. In the sequence of DOTA-NT-20.4, the Arg(8)-Arg(9) bond was N-methylated instead of the Pro(7)-Arg(8) bond in DOTA-NT-20.3. An additional sequence modification was introduced in DOTA-LB119 to increase stability. A spacer was added between DOTA and the peptide sequence to increase affinity. Binding to HT29 cells, which express NTSR1, in vivo stability, and biodistribution of the various analogues were compared, and the best candidate was used to image tumors of various sizes with the microPET in mice. (111)In-DOTA-NT-20.3, in spite of a relatively high uptake in kidneys, showed specific tumor uptake and elevated tumor to other organ uptake ratios. High contrast images were obtained at early time points after injection that allowed tumor detection at a time interval postinjection appropriate for imaging with the short-lived radionuclide (68)Ga. (111)In-DOTA-NT-20.4 displayed inferior binding to HT29 cells and reduced tumor uptake. (111)In-DOTA-LB119 displayed at early time points a significantly lower renal uptake but also a lower tumor uptake than (111)In-DOTA-NT-20.3, although binding to HT29 cells was similar. (68)Ga-DOTA-NT-20.3 displayed higher tumor uptake than (68)Ga-DOTA-LB119 and allowed the detection of very small tumors by PET. In conclusion, DOTA-NT-20.3 is a promising candidate for (68)Ga-PET imaging of neurotensin receptor-positive tumors. DOTA-NT-20.3 may also be considered for therapy, as the yttrium-labeled peptide has higher affinity than that of the indium-labeled one. A prerequisite for therapeutic application of this neurotensin analogue would be to lower kidney uptake, for example, by infusion of basic amino acids, gelofusin, or albumin fragments, to prevent nephrotoxicity, as with radiolabeled somatostatin analogues.  相似文献   

18.
Phenylcarbamate derivatives were synthesized and evaluated in radioligand binding assays for different nicotinic acetylcholine receptor (nAChR) subtypes. Carbamate derivatives bearing a pyrrolidine or piperidine moiety 8-20 exhibited much lower affinity for alpha7* nAChR than the analogues in the quinuclidine series 21-25, although the same structural elements are present. Furthermore, in contrast to the quinuclidine analogues 21-25, all (S)-pyrrolidine derivatives 8-12 and the piperidine analogues 15 and 16 exhibited higher affinities for alpha4beta2* nAChR.  相似文献   

19.
Insulin is a peptide responsible for regulating the metabolic homeostasis of the organism; it elicits its effects through binding to the transmembrane insulin receptor (IR). Insulin mimetics with agonistic or antagonistic effects toward the receptor are an exciting field of research and could find applications in treating diabetes or malignant diseases. We prepared five variants of a previously reported 20-amino acid insulin-mimicking peptide. These peptides differ from each other by the structure of the covalent bridge connecting positions 11 and 18. In addition to the peptide with a disulfide bridge, a derivative with a dicarba bridge and three derivatives with a 1,2,3-triazole differing from each other by the presence of sulfur or oxygen in their staples were prepared. The strongest binding to IR was exhibited by the peptide with a disulfide bridge. All other derivatives only weakly bound to IR, and a relationship between increasing bridge length and lower binding affinity can be inferred. Despite their nanomolar affinities, none of the prepared peptide mimetics was able to activate the insulin receptor even at high concentrations, but all mimetics were able to inhibit insulin-induced receptor activation. However, the receptor remained approximately 30% active even at the highest concentration of the agents; thus, the agents behave as partial antagonists. An interesting observation is that these mimetic peptides do not antagonize insulin action in proportion to their binding affinities. The compounds characterized in this study show that it is possible to modulate the functional properties of insulin receptor peptide ligands using disulfide mimetics.  相似文献   

20.
Neurotensin receptors were solubilized from mouse brain using the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid (CHAPS). The binding of 125I-labeled [Tyr3]neurotensin to the soluble fraction was time-dependent, saturable, and reversible. Unlabeled neurotensin and its analogues acetylneurotensin (8-13), neurotensin (9-13), and neurotensin (1-12) competitively antagonized the binding of 125I-labeled [Tyr3]neurotensin to CHAPS-solubilized extracts with relative potencies similar to those observed with membrane-bound receptors. Scatchard analysis of equilibrium binding data indicated that the soluble extract contained a single class of neurotensin binding sites with a Kd of 0.36 nM and a Bm of 63 fmol/mg. As already observed with membrane-bound receptors, the affinity of neurotensin for the soluble binding activity was decreased by Na+ ions. By contrast, soluble receptors were no longer sensitive to GTP and the antihistamine drug levocabastine. A molecular weight of about 100,000 was determined for soluble neurotensin receptors both under native conditions by gel filtration on Ultrogel AcA 34 and under denaturating conditions by sodium dodecyl sulfate-polyacrylamide gel electrophoresis after photoaffinity labeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号