首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arterial pressures, portal pressures, and hepatic blood volumes were recorded after hepatic denervation in cats anesthetized with pentobarbital. Bromocryptine (50 micrograms/kg) lowered arterial pressure but did not significantly change portal pressure or hepatic blood volume. However, both portal pressure and hepatic blood volume responses to hepatic nerve stimulation were significantly depressed after bromocryptine especially at low frequencies of stimulation. Responses to intraportal infusions of norepinephrine were significantly impaired only at the highest dose. The inhibitory effect of bromocryptine on the neural responses may, therefore, involve a presynaptic inhibition of norepinephrine release, but the mechanism requires further study. These data provide further support for the hypothesis that drugs which impair hepatic venous responses to sympathetic stimuli cause significant impairment of postural reflexes and orthostatic hypotension during clinical use.  相似文献   

2.
Although recovery of microcirculation is an important determinant for ischemia-reperfusion injury, little information is available about hepatic blood flow after ischemia. To examine regulatory mechanisms of postischemic hepatic microcirculation, we studied the sinusoidal blood flow after portal triad clamping of rat livers for 5, 15, or 30 min. Hepatic tissue blood flow and erythrocyte blood flow in sinusoids were measured using a laser-Doppler flowmeter and an intravital microspectroscope, respectively. There was a time of no blood flow (lag time) in sinusoids after declamping, dependent on the ischemic time. Cholinergic blockade agents eliminated the lag time, whereas nerve stimulation at the hiatus esophagus or on the hepatoduodenal ligament during reperfusion prolonged it. Chemical denervation with 10% phenol or surgical denervation on the hepatoduodenal ligament eliminated the lag time. The prolongation of lag time by nerve stimulation was completely abrogated by truncal vagotomy. These results suggest that the cholinergic vagus nerve is involved in causing the lag time of sinusoidal blood flow in hepatic ischemia-reperfusion.  相似文献   

3.
Using a newly described method for obtaining pure, mixed hepatic venous blood samples, it was demonstrated that glucose mobilization from the liver of the anesthetized cat in response to hepatic nerve stimulation is via alpha-adrenergic receptors. Neither the elevation of portal pressure nor the amount of glucose generated by the liver was affected by intraportal administration of 1 mg propranolol/kg (beta blockade). In the presence of alpha-receptor blockade (3 mg phentolamine/kg) the portal venous pressure change was minor and the glucose output actually decreased slightly upon nerve stimulation, a response consistent with our previously demonstrated reduction of glucose output by parasympathetic nerve stimulation. The present responses to nerve stimulation were not due to activation of pancreatic nerves since these nerves were routinely ligated.  相似文献   

4.
The aim of the study was to evaluate whether a selective increase in portal vein blood glucose concentration can affect pancreatic islet blood flow. Anesthetized rats were infused (0.1 ml/min for 3 min) directly into the portal vein with saline, glucose, or 3-O-methylglucose. The infused dose of glucose (1 mg. kg body wt(-1). min(-1)) was chosen so that the systemic blood glucose concentration was unaffected. Intraportal infusion of D-glucose increased insulin release and islet blood flow; the osmotic control substance 3-O-methylglucose had no such effect. A bilateral vagotomy performed 20 min before the infusions potentiated the islet blood flow response and also induced an increase in whole pancreatic blood flow, whereas the insulin response was abolished. Administration of atropine to vagotomized animals did not change the blood flow responses to intraportal glucose infusions. When the vagotomy was combined with a denervation of the hepatic artery, there was no stimulation of islet blood flow or insulin release after intraportal glucose infusion. We conclude that a selective increase in portal vein blood glucose concentration may participate in the islet blood flow increase in response to hyperglycemia. This effect is probably mediated via periarterial nerves and not through the vagus nerve. Furthermore, this blood flow increase can be dissociated from changes in insulin release.  相似文献   

5.
BackgroundThe global epidemic of Type-2-Diabetes (T2D) highlights the need for novel therapeutic targets and agents. Roux-en-Y-Gastric-Bypass (RYGB) is the most effective treatment. Studies investigating the mechanisms of RYGB suggest a role for post-operative changes in portal glucose levels. We investigate the impact of stimulating portal glucose sensors on systemic glucose levels in health and T2D, and evaluated the role of sodium-glucose-cotransporter-3 (SGLT3) as the possible sensor.MethodsSystemic glucose and hormone responses to portal stimulation were measured. In Sprague-Dawley (SD) rats, post-prandial state was simulated by infusing glucose into the portal vein. The SGLT3 agonist, alpha-methyl-glucopyranoside (αMG), was then added to further stimulate the portal sensor. To elucidate the neural pathway, vagotomy or portal denervation was followed by αMG+glucose co-infusion. The therapeutic potential of portal glucose sensor stimulation was investigated by αMG-only infusion (vs. saline) in SD and Zucker-Diabetic-Fatty (ZDF) rats. Hepatic mRNA expression was also measured.ResultsαMG+glucose co-infusion reduced peak systemic glucose (vs. glucose alone), and lowered hepatic G6Pase expression. Portal denervation, but not vagotomy, abolished this effect. αMG-only infusion lowered systemic glucose levels. This glucose-lowering effect was more pronounced in ZDF rats, where portal αMG infusion increased insulin, C-peptide and GIP levels compared to saline infusions.ConclusionsThe portal vein is capable of sensing its glucose levels, and responds by altering hepatic glucose handling. The enhanced effect in T2D, mediated through increased GIP and insulin, highlights a therapeutic target that could be amenable to pharmacological modulation or minimally-invasive surgery.  相似文献   

6.
In cats anesthetized with pentobarbital, isoproterenol infused into a peripheral vein causes a reduction in hepatic blood volume measured by plethysmography. As this response is accompanied by increases in portal and hepatic lobar venous pressures, the decrease in hepatic volume cannot be a passive emptying secondary to reduced intrahepatic pressure. We conclude that intravenous isoproterenol causes an active hepatic venoconstriction. Nifedipine produced similar responses. From this and our previous data, we conclude that in anesthetized cats, arteriolar vasodilators which increase cardiac output cause hepatic venoconstriction (hydralazine, adrenaline, dopamine, isoproterenol, and nifedipine), while those which do not increase cardiac output have no effect on the hepatic venous bed (nitroprusside and diazoxide) or cause venodilatation (nitroglycerine). The mechanism of the hepatic venoconstrictor effect of isoproterenol was investigated further. Because previous work has shown that this response does not occur when isoproterenol is infused locally into the hepatic artery or portal vein, the venoconstrictor effect of peripheral intravenous infusions must be indirectly mediated. The response was still present after hepatic denervation, adrenalectomy, nephrectomy, and after indomethacin administration indicating it is not mediated by the hepatic nerves, adrenal catecholamines, the renal renin-angiotensin system, or prostaglandins. The mechanism remains unknown.  相似文献   

7.
Portal glucose delivery enhances net hepatic glucose uptake (NHGU) relative to peripheral glucose delivery. We hypothesize that the sympathetic nervous system normally restrains NHGU, and portal glucose delivery relieves the inhibition. Two groups of 42-h-fasted conscious dogs were studied using arteriovenous difference techniques. Denervated dogs (DEN; n=10) underwent selective sympathetic denervation by cutting the nerves at the celiac nerve bundle near the common hepatic artery; control dogs (CON; n=10) underwent a sham procedure. After a 140-min basal period, somatostatin was given along with basal intraportal infusions of insulin and glucagon. Glucose was infused peripherally to double the hepatic glucose load (HGL) for 90 min (P1). In P2, glucose was infused intraportally (3-4 mg.kg(-1).min(-1)), and the peripheral glucose infusion was reduced to maintain the HGL for 90 min. This was followed by 90 min (P3) in which portal glucose infusion was terminated and peripheral glucose infusion was increased to maintain the HGL. P1 and P3 were averaged as the peripheral glucose infusion period (PE). The average HGLs (mg.kg(-1).min(-1)) in CON and DEN were 55+/-3 and 54+/-4 in the peripheral periods and 55+/-3 and 55+/-4 in P2, respectively. The arterial insulin and glucagon levels remained basal in both groups. NHGU (mg.kg(-1).min(-1)) in CON averaged 1.7+/-0.3 during PE and increased to 2.9+/-0.3 during P2. NHGU (mg.kg(-1).min(-1)) was greater in DEN than CON (P<0.05) during PE (2.9+/-0.4) and failed to increase significantly (3.2+/-0.2) during P2 (not significant vs. CON). Selective sympathetic denervation increased NHGU during hyperglycemia but significantly blunted the response to portal glucose delivery.  相似文献   

8.
Superior mesenteric arterial (SMA) blood flow was measured in pentobarbital-anesthetized cats using a noncannulating electromagnetic flowprobe. The selective adenosine antagonist 8-phenyltheophylline (8-PT) antagonized the dilator effect of infused adenosine but not isoproterenol. The vasodilation in response to reduced arterial perfusion pressure (autoregulation) was blocked by the adenosine receptor blockade, which also reduced the degree of postocclusive (1 min) hyperemia by one-half to two-thirds. The remainder of the hyperemia may have been due partially to adenosine, since exogenous adenosine still produced a small vasodilation (26%), so effects of endogenous adenosine could also still be expected to exert a small effect. Myogenic effects appear unlikely to be the mechanism of the small remaining hyperemia, since venous pressure increments within physiologically relevant ranges did not cause altered SMA conductance, and arterial dilation in response to large decreases in arterial pressure could be blocked by adenosine antagonism. Portal pressure was increased using hepatic nerve stimulation (8 Hz) to raise pressure from 7.0 to 12.4 mmHg (1 mmHg = 133.3 Pa). The small vasoconstriction seen in the SMA was due to the rise in systemic blood pressure, since prevention of a rise in SMA pressure prevented the response and 8-PT blocked the response (previously shown to block arterial pressure-flow autoregulation). An equal rise in PVP imposed by partial occlusion of the portal vein did not lead to changes in SMA vascular conductance. Thus, we conclude that within physiologically relevant ranges of arterial and portal venous pressure, the SMA does not show myogenic responses of the resistance vessels.  相似文献   

9.
Since hexamethonium and surgical section have been used to prevent reflex splanchnic capacitance responses, we examined the effectiveness of these procedures in blocking responses to direct stimulation of preganglionic fibres in the splanchnic nerves. Liver blood volume was measured by plethysmography and splenic blood volume by weighing in cats anesthetized by pentobarbital. The cats were adrenalectomized to prevent adrenal catecholamine secretion in response to splanchnic nerve stimulation. Hexamethonium (10 and 20 mg/kg) alone or atropine (1 mg/kg) alone caused only a small variable block of the responses to preganglionic nerve stimulation. A combination of the two drugs essentially produced a complete block of the liver capacitance response, but a significant response still persisted in the spleen. Surgical section of the postganglionic nerve bundles around the hepatic and splenic arteries completely abolished the responses to preganglionic stimulation. It is concluded that a relatively complete block of reflex splanchnic capacitance responses requires either a combination of hexamethonium and atropine or surgical section of the postganglionic nerves.  相似文献   

10.
Previous studies suggest that adrenal catecholamines mediate, in part, the glucose and pancreatic hormonal responses to exercise in sheep. This was examined in sheep whose adrenals were denervated to prevent stress-induced changes in catecholamine secretion. The innervation to the right adrenal gland was severed and the left adrenal was removed. Adrenal denervation was associated with a reduction in exercise-induced hyperglycemia and impairment, as measured by [2-3H]glucose, of the increase in glucose appearance during the first 10 min of exercise and increased metabolic clearance rate of glucose after 20 min of exercise. Insulin concentrations were significantly higher during exercise after adrenal denervation than in the controls. Adrenal denervation did not alter the rise in glucagon due to exercise. These effects are consistent with adrenomedullary hormonal stimulation of hepatic and muscular glycogenolysis, either directly or indirectly through the regulation of insulin secretion during exercise in sheep.  相似文献   

11.
In rat liver perfused in situ stimulation of the nerve plexus around the hepatic artery and the portal vein caused an increase in glucose output and a shift from lactate uptake to output. The effects of nerve stimulation on some key enzymes, metabolites and effectors of carbohydrate metabolism were determined and compared to the actions of glucagon, which led to an increase not only of glucose output but also of lactate uptake. 1. Nerve stimulation caused an enhancement of the activity of glycogen phosphorylase a to 300% and a decrease of the activity of glycogen synthase I to 40%, while it left the activity of pyruvate kinase unaltered. Glucagon, similarly to nerve action, led to a strong increase of glycogen phosphorylase and to a decrease of glycogen synthase; yet in contrast to the nerve effect it lowered pyruvate kinase activity clearly. 2. Nerve stimulation increased the levels of glucose 6-phosphate and of fructose 6-phosphate to 200% and 170%, respectively; glucagon enhanced the levels to about 400% and 230%, respectively. The levels of ATP and ADP were not altered, those of AMP were increased slightly by nerve stimulation. 3. Nerve stimulation enhanced the levels of the effectors fructose 2,6-bisphosphate and cyclic AMP only slightly to 140% and 125%, respectively; glucagon lowered the level of fructose 2,6-bisphosphate to 15% and increased the level of cyclic AMP to 300%. 4. In calcium-free perfusions the metabolic responses to nerve stimulation showed normal kinetics, if calcium was re-added 3 min before, but delayed kinetics, if it was re-added 2 min after the onset of the stimulus. The delay may be due to the time required to refill intracellular calcium stores. The hemodynamic alterations dependent on extracellular calcium were normal in both cases. The activation of glycogen phosphorylase, the inhibition of glycogen synthase and the increase of glucose 6-phosphate can well explain the enhancement of glucose output following nerve stimulation. The unaltered activity of pyruvate kinase and the marginal increase of fructose 2,6-bisphosphate cannot be the cause of the nerve-stimulation-dependent shift from lactate uptake to output. The very slight increase of the level of cyclic AMP after nerve stimulation cannot elicit the observed activation of glycogen phosphorylase.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
We have previously shown that intrasplenic fluid extravasation is important in controlling blood volume. We proposed that, because the splenic vein flows in the portal vein, portal hypertension would increase splenic venous pressure and thus increase intrasplenic microvascular pressure and fluid extravasation. Given that the rat spleen has no capacity to store/release blood, intrasplenic fluid extravasation can be estimated by measuring the difference between splenic arterial inflow and venous outflow. In anesthetized rats, partial ligation of the portal vein rostral to the junction with the splenic vein caused portal venous pressure to rise from 4.5 +/- 0.5 to 12.0 +/- 0.9 mmHg (n = 6); there was no change in portal venous pressure downstream of the ligation, although blood flow in the liver fell. Splenic arterial flow did not change, but the arteriovenous flow differential increased from 0.8 +/- 0.3 to 1.2 +/- 0.1 ml/min (n = 6), and splenic venous hematocrit rose. Mean arterial pressure fell (101 +/- 5.5 to 95 +/- 4 mmHg). Splenic afferent nerve activity increased (5.6 +/- 0.9 to 16.2 +/- 0.7 spikes/s, n = 5). Contrary to our hypothesis, partial ligation of the portal vein caudal to the junction with the splenic vein (same increase in portal venous pressure but no increase in splenic venous pressure) also caused the splenic arteriovenous flow differential to increase (0.6 +/- 0.1 to 1.0 +/- 0.2 ml/min; n = 8). The increase in intrasplenic fluid efflux and the fall in mean arterial pressure after rostral portal vein ligation were abolished by splenic denervation. We propose there to be an intestinal/hepatic/splenic reflex pathway, through which is mediated the changes in intrasplenic extravasation and systemic blood pressure observed during portal hypertension.  相似文献   

13.
Intrahepatic pressure (9.4 +/- 0.3 mmHg; 1 mmHg = 133.32 Pa), measured proximal to a hepatic venous resistance site, was insignificantly different from portal venous pressure (9.6 +/- 0.4 mmHg). This lobar venous pressure is not wedged hepatic venous pressure as it is measured from side holes in a catheter with a sealed tip. Validation of the lobar venous pressure measurement was done in a variety of ways and using different sizes and configurations of catheters. The site of hepatic venous resistance in the dog is localized to a narrow sphincterlike region about 0.5 cm in length and within 1-2 cm (usually within 1 cm) of the junction of the vena cava and hepatic veins. Sinusoidal and portal venous resistance appears insignificant in the basal state and large increases in liver blood volume (histamine infusion or passive vena caval occlusion) or large decreases in liver blood volume (passive vascular occlusion) do not alter the insignificant pressure gradient between portal and lobar venous pressures. Norepinephrine infusion (1.25 microgram X kg-1 X min-1 intraportal) and hepatic sympathetic nerve stimulation (10 Hz) led to a significantly greater rise in portal venous pressure than in lobar venous pressure, indicating some presinusoidal (and (or) sinusoidal) constriction and this indicates that lobar venous pressure cannot be assumed under all conditions to accurately reflect portal pressure. However, most of the rise in portal venous pressure induced by intraportal infusion of norepinephrine or nerve stimulation and virtually all of the pressure rise induced by histamine could be attributed to the postsinusoidal resistance site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Hepatic blood volume responses were studied in cats using in vivo plethysmography. The maximal response (Rmax) to sympathetic nerve stimulation and to infusions of norepinephrine into the hepatic artery or portal vein was similar (12-14 mL expelled per liver in 2.9-kg cats; average liver weight, 76.8 +/- 6.8 g). The ED50 for norepinephrine intraportal (0.44 +/- 0.13) and intrahepatic arterial infusions (0.33 +/- 0.08 micrograms.kg-1.min-1) were similar indicating equal access of both blood supplies to the capacitance vessels. Adenosine (2.0 mg.kg-1.min-1) did not cause significant volume changes but produced a mild (27%) suppression of Rmax due to nerve stimulation with no change in the frequency (3.4 Hz) needed to produce 50% of Rmax. Rmax tended (not statistically significant) to decrease during glucagon (1.0 micrograms.kg-1.min-1) infusion but the nerve frequency needed to produce 50% of Rmax rose to 5.6 Hz. Thus both adenosine and glucagon produced modulation of sympathetic nerve-induced capacitance responses without having significant effects on basal blood volume. Adenosine, by virtue of its marked effects on arterial resistance vessels (at substantially lower doses than those used here) and the relative lack of effect on venous capacitance vessels, may be useful for producing clinical afterload reduction without venous pooling.  相似文献   

15.
Noxious stimulation induces local inflammatory responses in a variety of mammals but these reactions are only faint in avian species. The possibility that endogenous galanin inhibits neurogenic vascular responses in avians was tested in the wing skin of anaesthetized pigeons. Intraarterial infusion of nanomolar concentrations of the specific galanin antagonist M35 dose dependently enhanced the small mustard oil induced increase of skin blood flow measured by means of a Laser Doppler Imager. Similarly, the small transient vasodilatation following electrical stimulation of a cutaneous nerve was also enhanced by M35. The effect of M35 was not observed after chronic denervation. Coperfusion of M35 dose dependently augmented the histamine and bradykinin induced plasma extravasation revealed by skin microdialyses, but this effect was abolished in the chronically denervated skin. However, chronic denervation per se enhanced the plasma extravasation induced by histamine but not by bradykinin and this effect was diminished by coperfusion of galanin. The results suggest an inhibitory modulation of cutaneous neurogenic inflammatory reactions by endogenous galanin in the pigeon.  相似文献   

16.
Intrinsic regulation of hepatic arterial blood flow depends upon local concentrations of adenosine. The present data show that i.a. infusions of adenosine cause dilation of the hepatic artery and inhibition of arterial vasoconstriction induced by norepinephrine, vasopressin, angiotensin, and hepatic nerve stimulation. Vasoconstriction induced by submaximal nerve stimulation (2 Hz) and norepinephrine infusions (0.25 and 0.5 micrograms X kg-1 X min-1, i.p.v.) were equally inhibited by adenosine. Supramaximal nerve stimulation (8 Hz) was inhibited to a lesser extent. The data are consistent with the hypotheses that (a) adenosine causes nonselective inhibition of vasoconstrictor influences on the hepatic artery; and (b) adenosine antagonizes neurally induced vasoconstriction by a purely postsynaptic effect and does not decrease norepinephrine release. In contrast with the hepatic artery, the intrahepatic portal resistance vessels are not affected by even large doses of adenosine; neither responses in basal tone nor antagonism of vasoconstrictor effects of nerve stimulation, norepinephrine, or angiotensin could be demonstrated. The data are consistent with the hypothesis that the smooth muscle of the portal resistance vessels does not contain adenosine receptors, whereas adenosine receptors on the smooth muscle of the hepatic arterial resistance vessels are of major regulatory importance. Whether endogenous levels of adenosine can reach sufficient concentration to modulate endogenous constrictors remains to be determined.  相似文献   

17.
In the perfused rat liver stimulation of the hepatic nerves around the portal vein and the hepatic artery was previously shown to increase glucose output, to shift lactate uptake to output, to decrease and re-distribute intrahepatic perfusion flow and to cause an overflow of noradrenaline into the hepatic vein. The metabolic effects could be caused directly via nerve hepatocyte contacts or indirectly by the hemodynamic changes and/or by noradrenaline overflow from the afferent vasculature into the sinusoids. Evidence against the indirect modes of nerve action is presented. Reduction of perfusion flow by lowering the perfusion pressure from 2 to 1 ml X min-1 X g-1--as after nerve stimulation--or to 0.35 ml X min-1 X g-1--far beyond the nerve stimulation-dependent effect--did not change glucose output and lowered lactate uptake only slightly. Only re-increase of flow to 2 ml X min-1 X g-1 enhanced glucose and lactate release transiently due to washout of glucose and lactate accumulated in parenchymal areas not perfused during low perfusion flow. In chemically sympathectomized livers nerve stimulation decreased perfusion flow almost normally but without changing the intrahepatic microcirculation; yet it enhanced glucose and lactate output only insignificantly and caused noradrenaline overflow of less than 10% of normal. Conversely, in the presence of nitroprussiate (III) nerve stimulation reduced overall flow only slightly without intrahepatic redistribution but still increased glucose and lactate output strongly and caused normal noradrenaline overflow.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The mode of action of hepatic nerves on the metabolism of carbohydrates was studied in the rat liver perfused in situ. 1. Electrical stimulation of the nerve bundles around the hepatic artery and the portal vein resulted in an increase of glucose and lactate output, an enhancement of phosphorylase a activity and a decrease of portal flow. 2. Sodium nitroprusside prevented the hemodynamic changes after nerve stimulation without affecting the metabolic alterations. 3. Phentolamine or an extracellular calcium level below 300 mumol x 1(-1) abolished both hemodynamic and metabolic changes after nerve stimulation, while propranolol or atropine were without effect. 4. Norepinephrine infusion mimicked nerve stimulation only at the highly unphysiological concentration of 0.1 microM; it was not effective at a concentration of 0.01 microM, which might be reached in the sinusoidal blood due to an overflow from intrahepatic synapses. The present results suggest that, in rat liver, glycogen breakdown is regulated by alpha-sympathetic nerves directly rather than indirectly via hemodynamic changes or via norepinephrine overflow.  相似文献   

19.
Portal hypertension initiates a splenorenal reflex, whereby increases in splenic afferent nerve activity and renal sympathetic nerve activity cause a decrease in renal blood flow (RBF). We postulated that mesenteric vascular congestion similarly compromises renal function through an intestinal-renal reflex. The portal vein was partially occluded in anesthetized rats, either rostral or caudal to the junction with the splenic vein. Portal venous pressure increased (6.5 +/- 0.1 to 13.2 +/- 0.1 mmHg; n = 78) and mesenteric venous outflow was equally obstructed in both cases. However, only rostral occlusion increased splenic venous pressure. Rostral occlusion caused a fall in RBF (-1.2 +/- 0.2 ml/min; n = 9) that was attenuated by renal denervation (-0.5 +/- 0.1 ml/min; n = 6), splenic denervation (-0.2 +/- 0.1 ml/min; n = 11), celiac ganglionectomy (-0.3 +/- 0.1 ml/min; n = 9), and splenectomy (-0.5 +/- 0.1 ml/min; n = 6). Caudal occlusion induced a significantly smaller fall in RBF (-0.5 +/- 0.1 ml/min; n = 9), which was not influenced by renal denervation (-0.2 +/- 0.2 ml/min; n = 6), splenic denervation (-0.1 +/- 0.1 ml/min; n = 7), celiac ganglionectomy (-0.1 +/- 0.3 ml/min; n = 8), or splenectomy (-0.3 +/- 0.1 ml/min; n = 7). Renal arterial conductance fell only in intact animals subjected to rostral occlusion (-0.007 +/- 0.002 ml.min(-1).mmHg(-1)). This was accompanied by increases in splenic afferent nerve activity (15.0 +/- 3.5 to 32.6 +/- 6.2 spikes/s; n = 7) and renal efferent nerve activity (32.7 +/- 5.2 to 39.3 +/- 6.0 spikes/s; n = 10). In animals subjected to caudal occlusion, there were no such changes in renal arterial conductance or splenic afferent/renal sympathetic nerve activity. We conclude that the portal hypertension-induced fall in RBF is initiated by increased splenic, but not mesenteric, venous pressure, i.e., we did not find evidence for intestinal-renal reflex control of the kidneys.  相似文献   

20.
We studied constrictor responses of saphenous artery after sympathetic denervation in normotensive rats and rats with chronic regional hypotension. Abdominal aorta was partially occluded in Wistar rats distally to the renal arteries, lowering blood pressure in the hindquarters by about 40%, a week later to denervate saphenous artery the femoral nerve was cut. The density of periarterial nerve plexus and neurogenic responses of the vessel restored partially in 2 weeks and completely in 6 weeks after the surgery; the chronic hypotension did not modify the dynamics of reinnervation. Arteries of both groups of rats demonstrated higher sensitivity to noradrenaline during 6 weeks after denervation, whereas vessel sensitivity to serotonin was enhanced only in normotensive rats. Therefore, chronic hypotension may prevent postdenervation hypersensitivity of vascular smooth muscle to vasoconstrictors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号