首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gangliosides from beef brain have been spin-labeled using two different attaching groups and employed to investigate the physical nature of ganglioside behaviour in membranes. Results obtained using EPR spectroscopy indicate that, in phosphatidylcholine bilayers at physiological pH, ganglioside oligosaccharide chains are quite mobile and show a measurable tendency towards cooperative interaction amongst themselves. We suggest that the source of this interaction is the formation of H-bonds between sugar residues in adjacent ganglioside molecules. We present evidence that physiological (extracellular fluid) levels of Ca2+ and Mg2+ lead to cross-linking and condensing of ganglioside headgroups by complexing sialic acid carboxyl residues. Ganglioside headgroup interactions are not very sensitive to changes in the buffer ionic strength, suggesting that ionic interactions are of minor importance. We have found no measurable tendency for headgroup carbohydrate to penetrate hydrophobic regions of lipid bilayers. EPR spectroscopy was also used to follow the interaction of spin-labeled gangliosides with the glycoprotein, glycophorin, and with intact BHK cells.We suggest that these carbohydrate-based interactions should contribute significantly to the properties of the eucaryotic cell glycocalyx. We predict that laterally mobile carbohydrate-bearing components of cell surfaces will show a tendency to cluster about complex glycoprotein arrays, especially if the species involved bear accessible carboxylic acid functions.  相似文献   

2.
As part of a program to investigate the behavior and interactions of glycolipids in biological membranes we have synthesized spin-labeled derivatives of 2 families of carbohydrate-bearing ceramides (glycosphingolipids): simple neutral glycolipids and gangliosides. Galactosyl ceramide has been synthesized with the spin label at 3 different positions on the fatty acid chain. It has been studied in bilayers of various different lipids and lipid mixtures and compared to the corresponding phospholipid spin labels. Considerable similarity has been found between the behavior of galactosyl ceramide and phosphatidylcholine. These similarities include a negligible flip-flop rate, a flexibility gradient in the acyl chains, and exclusion from phosphatidylserine domains in the face of a Ca2+-induced lateral phase separation. Evidence for dramatic clustering of simple neutral glycolipids has not been found. Glycosphingolipids do seem to have the capacity to increase rigidity in fluid lipid bilayers. A general procedure has been developed for covalent attachment of a nitroxide spin label to the headgroup region of complex glycolipids such as gangliosides. Studies of beef brain gangliosides labeled in this manner and incorporated into bilayers of phosphatidylcholine indicate that the headgroup oligosaccharides are in rapid, random motion as opposed to being in any way immobilized. This headgroup mobility depends very little on the fluidity or rigidity of the bilayer. However, headgroup mobility decreases, perhaps as a result of cooperative headgroup interactions, with increasing bilayer concentration of unlabeled ganglioside.  相似文献   

3.
Matsuzaki K  Horikiri C 《Biochemistry》1999,38(13):4137-4142
Interactions between amyloid beta-peptides (Abeta) and neuronal membranes have been postulated to play an important role in the neuropathology of Alzheimer's disease. To gain insight into the molecular details of this association, we investigated the interactions of Abeta (1-40) with ganglioside-containing membranes by circular dichroism (CD) and Fourier transform infrared-polarized attenuated total reflection (FTIR-PATR) spectroscopy. The CD study revealed that at physiological ionic strength Abeta (1-40) specifically binds to ganglioside-containing membranes inducing a two-state, unordered --> beta-sheet transition above a threshold intramembrane ganglioside concentration, which depends on the host lipid bilayers used. Furthermore, differences in the number and position of sialic acid residues of the carbohydrate backbone significantly affected the conformational transition of the peptide. FTIR-PATR spectroscopy experiments demonstrated that Abeta (1-40) forms an antiparallel beta-sheet, the plane of which lies parallel to the membrane surface, inducing dehydration of lipid interfacial groups and perturbation of acyl chain orientation. These results suggest that Abeta (1-40) imposes negative curvature strain on ganglioside-containing lipid bilayers, disturbing the structure and function of the membranes.  相似文献   

4.
Lipid-protein interactions in reconstituted band 3 preparations were investigated by using spin-labeled lipids in conjunction with electron paramagnetic resonance (EPR) spectroscopy. Purified erythrocyte band 3 was reconstituted into egg phosphatidylcholine liposomes at high protein density with preservation predominantly of the dimeric state. Lipid-protein associations were revealed by the presence of a component in the EPR spectra that, when compared to spectra obtained from protein-free bilayers, indicated that lipid chain motions are restricted by interactions with the protein. From the fraction of the motionally restricted component obtained from the phosphatidylcholine spin-label, a value of 64 +/- 14 annular lipids per band 3 dimer was obtained. This agrees with a value of 62 for the number of lipids that may be accommodated around the electron density map of a band 3 dimer. Selectivity of various spin-labeled lipids for the protein revealed that androstanol had a lower affinity for the band 3 interface, whereas a distinct preference was observed for the negatively charged lipids phosphatidylglycerol and stearic acid over phosphatidylcholine. This preference for negatively charged lipids could not be screened by 1-M salt, indicating that electrostatic lipid-protein interactions are not dominant. Estimates of annular lipid exchange rates from measured acyl chain segmental motions suggested that the rate of exchange between bilayer and boundary lipids was approximately 10(6) s(-1), at least an order of magnitude slower than the rate of lipid lateral diffusion in protein-free bilayers.  相似文献   

5.
Headgroup oligosaccharide dynamics of a transmembrane glycoprotein   总被引:1,自引:0,他引:1  
Glycophorin, a major integral membrane glycoprotein of the human erythrocyte, has been spin labelled on oligosaccharide chains. Electron paramagnetic resonance studies of this glycoprotein in systems of controlled complexity have provided a degree of insight into its headgroup behaviour. (i) When glycophorin is free in solution its oligosaccharide chains exhibit uniformly high freedom of motion. This motional freedom is not attributable to the presence of N-acetyl-neuraminic acid residues. (ii) No evidence has been found of a finite tendency for headgroup sugars to associate with hydrophobic regions of phospholipid or glycoprotein. (iii) Headgroup oligosaccharide dynamics are essentially independent of the state of and interactions of the polypeptide hydrophobic portion (that portion which traverses the membrane). (iv) Nonspecific interaction with proteins and polysaccharides can readily reduce oligosaccharide chain mobility by some 25%, but does not alter their basic behaviour. (v) Binding of wheat germ agglutinin, dramatically immobilizes (terminal) N-acetylneuraminic acid residues. (vi) The above observations hold over the temperature range 0-40 degrees C. (vii) Headgroup carbohydrate mobility is at a minimum in the region of headgroup neutrality (pH 2.6-3.5) and is pH invariant over several pH units in the physiological range.  相似文献   

6.
The interaction of the major acidic bovine seminal plasma protein, PDC-109, with dimyristoylphosphatidylcholine (DMPC) membranes has been investigated by spin-label electron spin resonance spectroscopy. Studies employing phosphatidylcholine spin labels, bearing the spin labels at different positions along the sn-2 acyl chain indicate that the protein penetrates into the hydrophobic interior of the membrane and interacts with the lipid acyl chains up to the 14th C atom. Binding of PDC-109 at high protein/lipid ratios (PDC-109:DMPC = 1:2, w/w) results in a considerable decrease in the chain segmental mobility of the lipid as seen by spin-label electron spin resonance spectroscopy. A further interesting new observation is that, at high concentrations, PDC-109 is capable of (partially) solubilizing DMPC bilayers. The selectivity of PDC-109 in its interaction with membrane lipids was investigated by using different spin-labeled phospholipid and steroid probes in the DMPC host membrane. These studies indicate that the protein exhibits highest selectivity for the choline phospholipids phosphatidylcholine and sphingomyelin under physiological conditions of pH and ionic strength. The selectivity for different lipids is in the following order: phosphatidylcholine approximately sphingomyelin > or = phosphatidic acid (pH 6.0) > phosphatidylglycerol approximately phosphatidylserine approximately and rostanol > phosphatidylethanolamine > or = N-acyl phosphatidylethanolamine > cholestane. Thus, the lipids bearing the phosphocholine moiety in the headgroup are clearly the lipids most strongly recognized by PDC-109. However, these studies demonstrate that this protein also recognizes other lipids such as phosphatidylglycerol and the sterol androstanol, albeit with somewhat reduced affinity.  相似文献   

7.
Fourier transform infrared (FTIR) attenuated total reflection (ATR) spectroscopy was used to elucidate the hydration behavior and molecular order of phospholipid/ganglioside bilayers. We examined dry and hydrated films of the gangliosides GM1, deacetyl-GM1, lyso-GM1, deacetyllyso-GM1, and GM3 and oriented mixed films of these gangliosides with 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC) using polarized light. Analysis of the amide I frequencies reveals that the amide groups are involved in intermolecular interactions via hydrogen bonds of varying strengths. The tilt angle of the acyl chains of the lipids in mixed films was determined as a function of ganglioside structure. Deacetylation of the sialic acid in the headgroup has a stronger influence on the tilt angle than the removal of the ganglioside fatty acid. The phase behavior was examined by FTIR ATR spectroscopy and by differential scanning calorimetry (DSC) measurements on lipid suspensions. At the same molar concentration, lyso-gangliosides have less effect on changes of transition temperature compared to the double-chain analogs. Distinct differences in the amide band shapes were observed between mixtures with lyso-gangliosides and normal double-chain gangliosides. Determined from the dicroic ratio RATR, the orientation of the COO- group in all DMPC/ganglioside mixtures was found to be relatively fixed with respect to the membrane normal. In 4:1 mixtures of DMPC with GM1 and deacetyl-GM1, the binding of Ca2+ leads to a slight decrease in chain tilt in the gel phase, probably caused by a dehydration of the membrane-water interface. In mixtures of DMPC with GM3 and deacetyl-lyso-GM1, a slight increase in chain tilt is observed. The chain tilt in DMPC/lyso-GM1 mixtures is unchanged. Analysis of the COO- band reveals that Ca2+ does not bind to the carboxylate group of the sialic acid of GM1 and deacetyl-GM1, the mixtures in which a decrease in chain tilt was observed. Binding to the sialic acid was only observed for mixtures of DMPC with GM3, lyso-GM1, and deacetyl-lyso-GM1. Ca2+ obviously accumulates at the bilayer-water interface and leads to partial dehydration of the headgroup region in the gel as well as in the liquid-crystalline phase. This can be concluded from the changes in the amide I band shapes. With the exception of DMPC/deacetyl-GM1, the effects on the ester C==O bands are small. The addition of Ca2+ has minor effects on the phase behavior, with the exception of the DMPC/GM1 mixture.  相似文献   

8.
We have used fluorescence-quenching measurements to characterize the partitioning of a variety of indolyl-labeled phospho- and sphingolipids between gel or liquid-ordered and liquid-disordered lipid domains in several types of lipid bilayers where such domains coexist. In both cholesterol-free and cholesterol-containing lipid mixtures, sphingolipids with diverse polar headgroups (ranging from sphingomyelin and monoglycosylceramides to ganglioside GM1) show a net preference for partitioning into ordered domains, which varies modestly in magnitude with varying headgroup structure. The affinities of different sphingolipids for ordered lipid domains do not vary in a consistent manner with the size or other simple structural properties of the polar headgroup, such that for example ganglioside GM1 partitions between ordered and disordered lipid domains in a manner very similar to sphingomyelin. Ceramide exhibits a dramatically higher affinity for ordered lipid domains in both cholesterol-free and cholesterol-containing bilayers than do other sphingolipids. Our findings suggest that sphingolipids with a variety of headgroup structures will be enriched by substantial factors in liquid-ordered versus liquid-disordered regions of membranes, in a manner that is only modestly dependent on the nature of the polar headgroup. Ceramide is predicted to show a very strong enrichment in such domains, supporting previous suggestions that ceramide-mediated signaling may be compartmentalized to liquid-ordered (raft and raft-related) domains in the plasma membrane.  相似文献   

9.
The potential of membrane-bound macromolecules for shielding glycolipids from involvement in specific binding events was considered in model membranes. Serum albumin and several Dextrans were covalently derivatized with oleic acid so that they adsorbed irreversibly to lipid bilayers. This provided a means of generating bilayer membranes with a considerable layer of attached material. Gangliosides dispersed in such membranes were subjected to attack by the enzyme, neuraminidase, in order to assess their ‘accessibility’. We were surprised to find that we could not demonstrate any significant reduction in ganglioside hydrolysis in phosphatidylcholine bilayers bearing extensive surface coats of protein or polysaccharide. We conclude that non-specific, physical shielding by macromolecules is an unlikely source of the often-observed ‘crypticity’ of glycolipids at the cell surface. Consistent with this interpretation was a relative lack of headgroup motional restriction seen for spin-labelled ganglioside headgroups in the same bilayers and in cell membranes.  相似文献   

10.
The potential of membrane-bound macromolecules for shielding glycolipids from involvement in specific binding events was considered in model membranes. Serum albumin and several Dextrans were covalently derivatized with oleic acid so that they adsorbed irreversibly to lipid bilayers. This provided a means of generating bilayer membranes with a considerable layer of attached material. Gangliosides dispersed in such membranes were subjected to attack by the enzyme, neuraminidase, in order to assess their "accessibility'. We were surprised to find that we could not demonstrate any significant reduction in ganglioside hydrolysis in phosphatidylcholine bilayers bearing extensive surface coats of protein or polysaccharide. We conclude that non-specific, physical shielding by macromolecules is an unlikely source of the often-observed "crypticity' of glycolipids at the cell surface. Consistent with this interpretation was a relative lack of headgroup motional restriction seen for spin-labelled ganglioside headgroups in the same bilayers and in cell membranes.  相似文献   

11.
The interactions of lysine oligopeptides with dimyristoyl phosphatidylglycerol (DMPG) bilayer membranes were studied using spin-labeled lipids and electron spin resonance spectroscopy. Tetralysine and pentalysine were chosen as models for the basic amino acid clusters found in a variety of cytoplasmic membrane-associating proteins, and polylysine was chosen as representative of highly basic peripherally bound proteins. A greater motional restriction of the lipid chains was found with increasing length of the peptide, while the saturation ratio of lipids per peptide was lower for the shorter peptides. In DMPG and dimyristoylphosphatidylserine host membranes, the perturbation of the lipid chain mobility by polylysine was greater for negatively charged spin-labeled lipids than for zwitterionic lipids, but for the shorter lysine peptides these differences were smaller. In mixed bilayers composed of DMPG and dimyristoylphosphatidylcholine, little difference was found in selectivity between spin-labeled phospholipid species on binding pentalysine. Surface binding of the basic lysine peptides strongly reduced the interfacial pK of spin-labeled fatty acid incorporated into the DMPG bilayers, to a greater extent for polylysine than for tetralysine or pentalysine at saturation. The results are consistent with a predominantly electrostatic interaction with the shorter lysine peptides, but with a closer surface association with the longer polylysine peptide.  相似文献   

12.
S I Chang  G G Hammes 《Biochemistry》1986,25(16):4661-4668
The spatial relationships between the four reduced nicotinamide adenine dinucleotide phosphate (NADPH) binding sites on chicken liver fatty acid synthase were explored with electron paramagnetic resonance (EPR) and spin-labeled analogues of NADP+. The analogues were prepared by reaction of NADP+ with 2,2,5,5-tetramethyl-1-oxy-3-pyrroline-3-carboxylic acid, with 1,1'-carbonyldiimidazole as the coupling reagent. Several esterification products were characterized, and the interaction of the N3' ester of NADP+ with the enzyme was examined in detail. Both 1H13, 14N and 2H13, 15N spin-labels were used: the EPR spectrum was simpler, and the sensitivity greater, for the latter. The spin-labeled NADP+ is a competitive inhibitor of NADPH in fatty acid synthesis, and an EPR titration of the enzyme with the modified NADP+ indicates four identical binding sites per enzyme molecule with a dissociation constant of 124 microM in 0.1 M potassium phosphate and 1 mM ethylenediaminetetraacetic acid (pH 7.0) at 25 degrees C. The EPR spectra indicate the bound spin-label is immobilized relative to the unbound probe. No evidence for electron-electron interactions between bound spin-labels was found with the native enzyme, the enzyme dissociated into monomers, or the enzyme with the enoyl reductase sites blocked by labeling the enzyme with pyridoxal 5'-phosphate. Furthermore, the EPR spectrum of bound ligand was the same in all cases. This indicates that the bound spin-labels are at least 15 A apart, that the environment of the spin-label at all sites is similar, and that the environment is not altered by major structural changes in the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Soluble oligomeric aggregates of α-synuclein have been implicated to play a central role in the pathogenesis of Parkinson's disease. Disruption and permeabilization of lipid bilayers by α-synuclein oligomers is postulated as a toxic mechanism, but the molecular details controlling the oligomer–membrane interaction are still unknown. Here we show that membrane disruption strongly depends on the accessibility of the hydrophobic membrane core and that charge interactions play an important but complex role. We systematically studied the influence of the physical membrane properties and solution conditions on lipid bilayer disruption by oligomers using a dye release assay. Varying the lipid headgroup composition revealed that membrane disruption only occurs for negatively charged bilayers. Furthermore, the electrostatic repulsion between the negatively charged α-synuclein and the negative surface charge of the bilayer inhibits vesicle disruption at low ionic strength. The disruption of negatively charged vesicles further depends on lipid packing parameters. Bilayer composition changes that result in an increased lipid headgroup spacing make vesicles more prone to disruption, suggesting that the accessibility of the bilayer hydrocarbon core modulates oligomer–membrane interaction. These data shed important new insights into the driving forces governing the highly debated process of oligomer–membrane interactions.  相似文献   

14.
Incubation of the complex metalloflavoprotein, assimilatory nitrate reductase with N-ethylmaleimide, or a spin-labeled analog, 4-maleimido-2,2,6,6-tetramethylpiperidinooxyl, resulted in a time-dependent inactivation of NADH:nitrate reductase and NADH: cytochrome-c reductase activity with no effect on reduced methyl viologen:nitrate reductase activity. Inactivation of the enzyme, which could be prevented by incubation in the presence of NADH, was achieved following modification of a single sulfhydryl group determined from [3H]N-ethylmaleimide incorporation and quantitation of the EPR spectrum of the spin-labeled enzyme. Sulfhydryl group modification precluded reduction of the enzyme by NADH and NAD+ binding. The EPR spectrum of the spin-labeled enzyme revealed the presence of a single species with the nitroxide retaining substantial motional freedom. Cleavage of the spin-labeled enzyme using corn-inactivating protease and separation into its flavin and molybdenum/heme domains followed by EPR spectroscopy revealed the modified sulfhydryl group to be associated with the latter fragment suggesting a close interaction of these domains in the region of the nucleotide-binding site.  相似文献   

15.
Spin label electron paramagnetic resonance (EPR) spectroscopy was used to characterize the components of the Mycobacterium abscessus massiliense cell envelope and their interactions with amphotericin B (AmB), miltefosine (MIL), and nerolidol (NER). Spin labels analogous to stearic acid and phosphatidylcholine (PC) were distributed on an envelope layer with fluidity comparable to other biological membranes, probably the mycobacterial cell wall, because after treatment with AmB a highly rigid spectral component was evident in the EPR spectra. Methyl stearate analogue spin labels found a much more fluid membrane and did not detect the presence of AmB, except for at very high drug concentrations. Unlike other spin-labeled PCs, the TEMPO-PC spin probe, with the nitroxide moiety attached to the choline of the PC headgroup, also did not detect the presence of AmB. On the other hand, the steroid spin labels were not distributed across the membranes of M. abscessus and, instead, were concentrated in some other location of the cell envelope. Both MIL and NER compounds at 10 μM caused increased fluidity in the cell wall and plasma membrane. Furthermore, NER was shown to have a remarkable ability to extract lipids from the mycobacterial cell wall. The EPR results suggest that the resistance of mycobacteria to the action of AmB must be related to the fact that this drug does not reach the bacterial plasma membrane.  相似文献   

16.
Sphingomyelins (SMs) and ceramides are known to interact favorably in bilayer membranes. Because ceramide lacks a headgroup that could shield its hydrophobic body from unfavorable interactions with water, accommodation of ceramide under the larger phosphocholine headgroup of SM could contribute to their favorable interactions. To elucidate the role of SM headgroup for SM/ceramide interactions, we explored the effects of reducing the size of the phosphocholine headgroup (removing one, two, or three methyls on the choline moiety, or the choline moiety itself). Using differential scanning calorimetry and fluorescence spectroscopy, we found that the size of the SM headgroup had no marked effect on the thermal stability of ordered domains formed by SM analog/palmitoyl ceramide (PCer) interactions. In more complex bilayers composed of a fluid glycerophospholipid, SM analog, and PCer, the thermal stability and molecular order of the laterally segregated gel domains were roughly identical despite variation in SM headgroup size. We suggest that that the association between PCer and SM analogs was stabilized by ceramide’s aversion for disordered phospholipids, by interfacial hydrogen bonding between PCer and the SM analogs, and by attractive van der Waals’ forces between saturated chains of PCer and SM analogs.  相似文献   

17.
The adsorption of membrane-associated protein cytochrome c to anionic lipid bilayers of dioleoyl phosphatidylglycerol was studied in low ionic strength physiological buffer using atomic force microscopy. The bilayers were supported on polylysinated mica. The formation of stable, single lipid bilayers was confirmed by imaging and force spectroscopy. Upon addition of low concentrations of cytochrome c, protein molecules were not topographically visible on the lipid bilayer-buffer interface. However, the forces required to punch through the bilayer by indentation using the atomic force microscopy probe were significantly lower after protein adsorption, which suggest that the protein inserts into the bilayer. Moreover, the apparent thickness of the bilayer remained unchanged after cytochrome c adsorption. Yet, mass spectroscopy and visible light absorption spectroscopy confirmed the presence of cytochrome c in the lipid bilayers. These results suggest that 1), cytochrome c inserts into the bilayer and resides in its hydrophobic core; 2), cytochrome c insertion changes the mechanical properties of the bilayer significantly; and 3), bilayer force spectroscopy may be a useful tool in investigating lipid-protein interactions.  相似文献   

18.
A Arora  D Marsh 《Biophysical journal》1998,75(6):2915-2922
The change in vertical location of spin-labeled N-biotinyl phosphatidylethanolamine in fluid-phase dimyristoyl phosphatidylcholine bilayer membranes, on binding avidin to the biotinyl headgroup, has been investigated by progressive saturation electron spin resonance measurements. Spin-labeled phospholipids were present at a concentration of 1 mol%, relative to total membrane lipids. For avidin-bound N-biotinyl phosphatidylethanolamine spin-labeled on the 8 C atom of the sn-2 chain, the relaxation enhancement induced by 30 mM Ni2+ ions confined to the aqueous phase was 2.5 times that induced by saturating molecular oxygen, which is preferentially concentrated in the hydrophobic core of the membrane. For phosphatidylcholine also spin-labeled at the 8 position of the sn-2 chain, this ratio was reversed: the relaxation enhancement by Ni2+ ions was half that induced by molecular oxygen. In the absence of avidin, the enhancement by either relaxant was the same for both spin-labeled phospholipids. For a double-labeled system, in which both N-biotinyl phosphatidylethanolamine and phosphatidylcholine were spin-labeled on the 12 C atom of the sn-2 chain, the relaxation rate in the absence of avidin was greater than that predicted from linear additivity of the corresponding singly labeled systems, because of mutual spin-spin interactions between the two labeled lipid species. On binding of avidin to the N-biotinyl phosphatidylethanolamine, this relaxation enhancement by mutual spin-spin interaction was very much decreased. These results indicate that, on binding of avidin to the lipid headgroup, N-biotinyl phosphatidylethanolamine is lifted vertically within the membrane, relative to the phosphatidylcholine host lipids. The specific binding of avidin to N-biotinyl phosphatidylethanolamine parallels the liftase activity proposed for activator proteins associated with the action of certain gangliosidases.  相似文献   

19.
M Drees  K Beyer 《Biochemistry》1988,27(23):8584-8591
The interaction of spin-labeled phospholipids with the detergent-solubilized ADP/ATP carrier protein from the inner mitochondrial membrane has been investigated by electron spin resonance spectroscopy. The equilibrium binding of cardiolipin and phosphatidic acid was studied by titration of the protein with spin-labeled phospholipid analogues using a spectral subtraction protocol for the evaluation of the mobile and immobilized lipid portions. This analysis revealed the immobilization of two molecules of spin-labeled cardiolipin per protein dimer. Phosphatidic acid has a similar affinity for the protein surface as cardiolipin. The lipid-protein interaction was less pronounced with the neutral phospholipids and with phosphatidylglycerol. The importance of the electrostatic contribution to the phospholipid-protein interaction shows up with a strong dependence of the lipid binding on salt concentration. Cleavage by phospholipase A2 and spin reduction by ascorbate of the spin-labeled acidic phospholipids in contact with the protein surface suggest that these lipids are located on the outer perimeter of the protein. At reduced detergent concentration, the protein aggregated upon addition of small amounts of cardiolipin but remained solubilized when more cardiolipin was added. This result is discussed with respect to the aggregation state of the protein in the mitochondrial membrane. It is also tentatively concluded that binding of spin-labeled cardiolipin does not displace the tightly bound cardiolipin of mitochondrial origin, which was detected previously by 31P nuclear magnetic resonance spectroscopy.  相似文献   

20.
In biological membranes, the anionic characteristics of the polar headgroup of phosphatidic acids are responsible for structural changes induced by Ca2+ in many cellular processes. The very simple headgroup structure of dipalmitoylphosphatidic acid (DPPA) offers particular advantages as a model to study the interactions between Ca2+ and natural phosphatidic acids such as cardiolipin and phosphatidylserine. The effects of calcium ions on DPPA membranes have been studied as a function of temperature by potentiometry and by Raman, ESR and 31P-NMR spectroscopies. The protons in monosodic DPPA liposomes have been considered as a probe to detect pH variations resulting from introduction of Ca2+ inside the membrane. This method has also allowed us to determine the stoichiometry of this reaction: 2 DPPA(H) + Ca2+----Ca(DPPA)2 + 2H+. 31P-NMR spectroscopy has been used to detect reorganization-condensation phenomena in multilamellar vesicles of DPPA under the influence of calcium and temperature. Furthermore, the temperature profiles obtained from Raman spectra for Ca(DPPA)2 membranes provide conclusive evidence that Ca2+ induces major reorganization of the phosphatidic acid component into a highly ordered phase. Quantitative estimates of the degree of motional restriction of spin-labeled soaps embedded inside membranes composed of DPPA with or without Ca2+ have been made using ESR technique. These results are discussed and compared to those found previously for a natural phosphatidic acids such as phosphatidylserine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号