首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
It was generally believed that Toxoplasma gondii had a clonal population structure with three predominant lineages, namely types I, II and III. This was largely based on genotyping of more than 100 T. gondii isolates originating from a variety of human and animal sources in North America and Europe. Recent genotyping studies on T. gondii strains from wild animals or human patients from different geographical regions revealed the high frequency of non-archetypal genotypes, suggesting the overall diversity of the T. gondii population might be much higher than we thought. However, as most genotyping studies had relied on a few biallelic markers, the resolution and discriminative power of identifying parasite isolates were quite low. To date, there is no commonly used set of markers to genotype T. gondii strains and it is not feasible to compare results from different laboratories. Here, we developed nine PCR-restriction fragment length polymorphism markers with each of them capable of distinguishing the three archetypal T. gondii alleles in one restriction-enzyme reaction by agarose gel electrophoresis. Genotyping 46 T. gondii isolates from different sources using these markers showed that they could readily distinguish the archetypal from atypical types and reveal the genetic diversity of the parasites. In addition, mixed strains in samples could be easily detected by these markers. Use of these markers will facilitate the identification of T. gondii isolates in epidemiological and population genetic studies.  相似文献   

2.
Toxoplasma gondii: the model apicomplexan   总被引:6,自引:0,他引:6  
Toxoplasma gondii is an obligate intracellular protozoan parasite which is a significant human and veterinary pathogen. Other members of the phylum Apicomplexa are also important pathogens including Plasmodium species (i.e. malaria), Eimeria species, Neospora, Babesia, Theileria and Cryptosporidium. Unlike most of these organisms, T. gondii is readily amenable to genetic manipulation in the laboratory. Cell biology studies are more readily performed in T. gondii due to the high efficiency of transient and stable transfection, the availability of many cell markers, and the relative ease with which the parasite can be studied using advanced microscopic techniques. Thus, for many experimental questions, T. gondii remains the best model system to study the biology of the Apicomplexa. Our understanding of the mechanisms of drug resistance, the biology of the apicoplast, and the process of host cell invasion has been advanced by studies in T. gondii. Heterologous expression of apicomplexan proteins in T. gondii has frequently facilitated further characterisation of proteins that could not be easily studied. Recent studies of Apicomplexa have been complemented by genome sequencing projects that have facilitated discovery of surprising differences in cell biology and metabolism between Apicomplexa. While results in T. gondii will not always be applicable to other Apicomplexa, T. gondii remains an important model system for understanding the biology of apicomplexan parasites.  相似文献   

3.
Using murine chronic toxoplasmosis as an experimental model, we examined the utility of immunoenzymatic methods in recognizing reinfection in chronically infected individuals. Primary infection with avirulent Toxoplasma gondii DX strain (genotype II) induced strong immunity protecting the mice from mortality after inoculation with LD(100) of virulent BK strain (genotype I) and triggered highly expressed antibody production, within one new isotype detected by comparative immunoblots. The parasites multiplying at the site of reinfection were of BK origin as found by RAPD-PCR. The results revealed that the immunoblot assay seems to be a useful and reliable method for the monitoring of specific antibody profile in chronically infected individuals. In our opinion ELISA combined with immunoblot could enable the recognition of reinfection cases in humans, but earlier our experimental data should be verified in clinical laboratory.  相似文献   

4.
Toxoplasmosis is an opportunistic infection caused by the protozoan parasite Toxoplasma gondii. T. gondii is widespread globally and causes severe diseases in individuals with impaired immune defences as well as congenitally infected infants. The high prevalence rate in some parts of the world such as South America and Africa, coupled with the current drug treatments that trigger hypersensitivity reactions, makes the development of immunotherapeutics intervention a highly important research priority. Immunotherapeutics strategies could either be a vaccine which would confer a pre-emptive immunity to infection, or passive immunization in cases of disease recrudescence or recurrent clinical diseases. As the severity of clinical manifestations is often greater in developing nations, the development of well-tolerated and safe immunotherapeutics becomes not only a scientific pursuit, but a humanitarian enterprise. In the last few years, much progress has been made in vaccine research with new antigens, novel adjuvants, and innovative vaccine delivery such as nanoparticles and antigen encapsulations. A literature search over the past 5 years showed that most experimental studies were focused on DNA vaccination at 52%, followed by protein vaccination which formed 36% of the studies, live attenuated vaccinations at 9%, and heterologous vaccination at 3%; while there were few on passive immunization. Recent progress in studies on vaccination, passive immunization, as well as insights gained from these immunotherapeutics is highlighted in this review.  相似文献   

5.
Toxoplasma gondii can differentiate into tachyzoites or bradyzoites. To accelerate the investigation of bradyzoite differentiation mechanisms, we constructed a reporter parasite, PLK/DLUC_1C9, for a high-throughput assay. PLK/DLUC_1C9 expressed firefly luciferase under the bradyzoite-specific BAG1 promoter. Firefly luciferase activity was detected with a minimum of 102 parasites induced by pH 8.1. To normalize bradyzoite differentiation, PLK/DLUC_1C9 expressed Renilla luciferase under the parasite’s α-tubulin promoter. Renilla luciferase activity was detected with at least 102 parasites. By using PLK/DLUC_1C9 with this 96-well format screening system, we found that the protein kinase inhibitor analogs, bumped kinase inhibitors 1NM-PP1, 3MB-PP1, and 3BrB-PP1, had bradyzoite-inducing effects.  相似文献   

6.
7.
Glycolipids are important components of cellular membranes involved in various biological functions. In this report, we describe the identification of the de novo synthesis of glycosphingolipids by Toxoplasma gondii tachyzoites. Parasite-specific glycolipids were identified by metabolic labelling of parasites with tritiated serine and galactose. These glycolipids were characterised as sphingolipids based on the labelling protocol and their insensitivity towards alkaline treatment. Synthesis of parasite glycosphingolipids were inhibited by threo-phenyl-2-palmitoylamino-3-morpholino-1-propanol and L-cycloserine, two well-established inhibitors of de novo sphingolipid biosynthesis. The identified glycolipids were insensitive towards treatment with endoglycoceramidase II indicating that they might belong to globo-type glycosphingolipids. Taken together, we provide evidence for the first time that T. gondii is capable of synthesising glycosphingolipids de novo.  相似文献   

8.
Toxoplasma gondii and mucosal immunity   总被引:34,自引:0,他引:34  
Toxoplasma gondii, an intracellular parasite infects the host through the oral route. Infection induces a cascade of immunological events that involve both the components of the innate and adaptative immune responses. Alteration of the homeostatic balance of infected intestine results in an acute inflammatory ileitis in certain strains of inbred mice. Both the infected enterocytes as well as the CD4 T cells from the lamina propria produce chemokines and cytokines that are necessary to clear the parasite whereas CD8 intraepithelial lymphocytes secrete transforming growth factor beta that reduces the inflammation. In this review, we describe the salient features of this complex network of interactions among the different components of the gut-associated lymphoid tissue cell population that are induced after oral infection with T. gondii.  相似文献   

9.
Toxoplasmosis is a serious disease caused by Toxoplasma gondii, one of the most widespread parasites in the world. Lipid metabolism is important in the intracellular stage of T. gondii. Stearoyl-CoA desaturase (SCD), a key enzyme for the synthesis of unsaturated fatty acid is predicted to exist in T. gondii. Sterculic acid has been shown to specifically inhibit SCD activity. Here, we examined whether sterculic acid and its methyl ester analogues exhibit anti-T. gondii effects in vitro. T. gondii-infected Vero cells were disintegrated at 36 hr because of the propagation and egress of intracellular tachyzoites. All test compounds inhibited tachyzoite propagation and egress, reducing the number of ruptured Vero cells by the parasites. Sterculic acid and the methyl esters also inhibited replication of intracellular tachyzoites in HFF cells. Among the test compounds, sterculic acid showed the most potent activity against T. gondii, with an EC50 value of 36.2 μM, compared with EC50 values of 248-428 μM for the methyl esters. Our study demonstrated that sterculic acid and its analogues are effective in inhibition of T. gondii growth in vitro, suggesting that these compounds or analogues targeting SCD could be effective agents for the treatment of toxoplasmosis.  相似文献   

10.
We have cloned the hexokinase [E.C. 2.7.1.1] gene of Toxoplasma gondii tachyzoite and obtained an active recombinant enzyme with a calculated molecular mass of 51,465Da and an isoelectric point of 5.82. Southern blot analysis indicated that the hexokinase gene existed as a single copy in the tachyzoites of T. gondii. The sequence of T. gondii hexokinase exhibited the highest identity (44%) to that of Plasmodium falciparum hexokinase and lower identity of less than 35% to those of hexokinases from other organisms. The specific activity of the homogeneously purified recombinant enzyme was 4.04 micromol/mg protein/min at 37 degrees C under optimal conditions. The enzyme could use glucose, fructose, and mannose as substrates, though it preferred glucose. Adenosine triphosphate was exclusively the most effective phosphorus donor, and pyrophosphate did not serve as a substrate. K(m) values for glucose and adenosine triphosphate were 8.0+/-0.8 microM and 1.05+/-0.25mM, respectively. No allosteric effect of substrates was observed, and the products, glucose 6-phosphate and adenosine diphosphate, had no inhibitory effect on T. gondii hexokinase activity. Other phosphorylated hexoses, fructose 6-phosphate, trehalose 6-phosphate which is an inhibitor of yeast hexokinase, and pyrophosphate, also did not affect T. gondii hexokinase activity. Native hexokinase activity was recovered in both the cytosol and membrane fractions of the whole lysate of T. gondii tachyzoites. This result suggests that T. gondii hexokinase weakly associates with the membrane or particulate fraction of the tachyzoite cell.  相似文献   

11.
Glycosyltransferases mediate changes in glycosylation patterns which, in turn, may affect the function of glycoproteins and/or glycolipids and, further downstream, processes of development, differentiation, transformation and cell-cell recognition. Such enzymes, therefore, represent valid targets for drug discovery. We have developed a solid-phase glycosyltransferase assay for use in a robotic high-throughput format. Carbohydrate acceptors coupled covalently to polyacrylamide are coated onto 96-well plastic plates. The glycosyltransferase reaction is performed with recombinant enzymes and radiolabeled sugar-nucleotide donor at 37°C, followed by washing, addition of scintillation counting fluid, and measurement of radioactivity using a 96-well -counter. Glycopolymer construction and coating of the plastic plates, enzyme and substrate concentrations, and linearity with time were optimized using recombinant Core 2 1-6-N-acetylglucosaminyltransferase (Core 2 GlcNAc-T). This enzyme catalyzes a rate-limiting reaction for expression of polylactosamine and the selectin ligand sialyl-Lewisx in -glycans. A glycopolymer acceptor for 1-6-N-acetylglucosaminyltransferase V was also designed and shown to be effective in the solid-phase assay. In a high-throughput screen of a microbial extract library, the coefficient of variance for positive controls was 9.4%, and high concordance for hit validation was observed between the Core 2 GlcNAc-T solid-phase assay and a standard solution-phase assay. The solid-phase assay format, which can be adapted for a variety of glycosyltransferase enzymes, allowed a 5–6 fold increase in throughput compared to the corresponding solution-phase assay.  相似文献   

12.
13.
Although the Korean isolate KI-1 of Toxoplasma gondii has been considered to be a virulent type I lineage because of its virulent clinical manifestations, its genotype is unclear. In the present study, genotyping of the KI-1 was performed by multilocus PCR-RFLP and microsatellite sequencing. For 9 genetic markers (c22-8, c29-2, L358, PK1, SAG2, SAG3, GRA6, BTUB, and Apico), the KI-1 and RH strains exhibited typical PCR-RFLP patterns identical to the type I strains. DNA sequencing of tandem repeats in 5 microsatellite markers (B17, B18, TUB2, W35, and TgM-A) of the KI-1 also revealed patterns characteristic of the type I. These results provide strong genetic evidence that KI-1 is a type I lineage of T. gondii.  相似文献   

14.
15.
The objective of this study was to refine the rat model of congenital toxoplasmosis. In Fischer rats we found that visualization of spermatozoa in vaginal exudates and the detection of at least 6 g body weight increase between days 9 and 12 of pregnancy, allowed the diagnosis and timing of pregnancy with 60% specificity and 84% sensitivity. A dose of 104Toxoplasma gondii bradyzoites or 102T. gondii oocysts of the Prugniaud strain resulted in more than 50% of congenital infection of the rat litters. Transmission of T. gondii via lactation was not detected in rats inoculated with either bradyzoites or oocysts. Bioassays of 51 neonates born from mothers inoculated with bradyzoites (in tissue cysts) and 29 neonates from mothers inoculated with oocysts demonstrated that both liver and lungs can be used for the diagnosis of congenital transmission in this model.  相似文献   

16.
A previous infection with the ME-49 strain of Toxoplasma gondii (of low pathogenicity for mice), protected 17 of 20 rats against formation of brain cysts, following challenge with 10(3) oocysts of the high pathogenicity M3 strain, as determined by bioassay of rat brains in mice. The low pathogenic KSU strain did not afford comparable protection. Protection was further tested in rats that were orally or subcutaneously immunized with cysts or oocysts of the ME-49 strain, and later challenged with 2 x 10(2) cysts or 10(2) oocysts of the highly pathogenic strains M3, M-7741 and C. Protection ranged from 43 to 100%, compared to non immunized control rats and was independent of the stage of ME-49 strain and of the routes used to immunize the rats. The results obtained encourage further investigation into prevention of toxoplasmosis in humans and food animals.  相似文献   

17.
The objective was to test immune protection against the formation of Toxoplasma gondii tissue cysts in rats. It has been previously shown that 50 T. gondii tissue cysts of strain Me49 are not pathogenic for CF-1 mice, whereas 1 T. gondii tissue cyst of strain M-7741, can be lethal for mice 11-13 days after subcutaneous or oral administration. In the present study, ten rats were fed T. gondii oocysts of strain Me49 and after a further 30 days they were each orally challenged with T. gondii oocysts of strain M-7741. Thirty days after this, they were euthanased and brain and muscle samples inoculated subcutaneously or orally dosed, respectively, to mice for bioassay. None of the mice died, whereas all the mice that were inoculated with brain homogenates or were fed muscle samples from four non-immunized rats that had been inoculated with T. gondii oocysts of strain M-7741, died. These results encourage further research towards achieving vaccinal protection against the formation of T. gondii tissue cysts in meat animals and people.  相似文献   

18.
19.
Toxoplasma gondii is a protozoan parasite with a broad range of intermediate hosts. Chickens as important food-producing animals can also serve as intermediate hosts. To date, experimental studies on the pathogenicity of T. gondii in broiler chickens were rarely reported. The objective of the present study was to compare the pathogenicity of 5 different T. gondii strains (RH, CN, JS, CAT2, and CAT3) from various host species origin in 10-day-old chickens. Each group of chickens was infected intraperitoneally with 5×108, 1×108, 1×107, and 1×106 tachyzoites of the 5 strains, respectively. The negative control group was mockly inoculated with PBS alone. After infection, clinical symptoms and rectal temperatures of all the chickens were checked daily. Dead chickens during acute phage of the infection were checked for T. gondii tachyzoites by microscope, while living cases were checked for T. gondii infection at day 53 post-inoculation (PI) by PCR method. Histopathological sections were used to observe the pathological changes in the dead chickens and the living animals at day 53 PI. No significant differences were found in survival periods, histopathological findings, and clinical symptoms among the chickens infected with the RH, CN, CAT2, and CAT3 strains. Histopathological findings and clinical symptoms of the JS (chicken origin) group were similar to the others. However, average survival times of infected chickens of the JS group inoculated with 5×108 and 1×108 tachyzoites were 30.0 and 188.4 hr, respectively, significantly shorter than those of the other 4 mammalian isolates. Chickens exposed to 108 of T. gondii tachyzoites and higher showed acute signs of toxoplasmosis, and the lesions were relatively more severe than those exposed to lower doses. The results indicated that the pathogenicity of JS strain was comparatively stronger to the chicken, and the pathogenicity was dose-dependent.  相似文献   

20.
We developed a live-cell high-throughput assay system using the baker's yeast Saccharomyces cerevisiae to screen for chemical compounds that will inhibit fatty acid uptake. The target for the inhibitors is a mammalian fatty acid transport protein (mmFATP2), which is involved in the fatty acid transport and activation pathway. The mmFATP2 was expressed in a S. cerevisiae mutant strain deficient in Fat1p-dependent fatty acid uptake and reduced in long-chain fatty acid activation, fat1Deltafaa1Delta. To detect fatty acid import, a fluorescent fatty acid analog, 4,4-difluoro-5-methyl-4-bora-3a,4a-diaza-s-indacene-3-dodecanoic acid (C1-BODIPY-C12), was incubated with cells expressing FATP2 in a 96-well plate. The mmFATP2-dependent C1-BODIPY-C12 uptake was monitored by measuring intracellular C1-BODIPY-C12 fluorescence on a microtiter plate reader, whereas extracellular fluorescence was quenched by a cell viability dye, trypan blue. Using this high-throughput screening method, we demonstrate that the uptake of the fluorescent fatty acid ligand was effectively competed by the natural fatty acid oleate. Inhibition of uptake was also demonstrated to occur when cells were pretreated with sodium azide or Triacsin C. This yeast live-cell-based assay is rapid to execute, inexpensive to implement, and has adequate sensitivity for high-throughput screening. The assay basis and limitations are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号