首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sulfadoxine-pyrimethamine (SP) is currently the drug of choice for intermittent preventive treatment of Plasmodiumfalciparum both in pregnancy and infancy. A prolonged parasite clearance time conferred by dhfr and dhps mutations is believed to be responsible for increased gametocyte prevalence in SP treated individuals. However, using a direct feeding assay in Mali, we showed that gametocytes present in peripheral venous blood post-SP treatment had reduced infectivity for Anophelesgambiae sensu stricto (ss) mosquitoes. We investigated the potential mechanisms involved in the dhfr and dhps quintuple mutant NF-135 and the single dhps 437 mutant NF-54. Concentrations of sulfadoxine (S) and pyrimethamine (P) equivalent to the serum levels of the respective drugs on day 3 (S = 61 μg/ml, P = 154.7 ng/ml) day 7 (S = 33.8 μg/ml, P = 66.6 ng/ml) and day 14 (S = 14.2 μg/ml, P = 15.7 ng/ml) post-SP treatment were used to study the effect on gametocytogenesis, gametocyte maturation and infectivity to Anophelesstephensi mosquitoes fed through an artificial membrane. The drugs readily induced gametocytogenesis in the mutant NF-135 strain but effectively killed the wild-type NF-54. However, both drugs impaired gametocyte maturation yielding odd-shaped non-exflagellating mature gametocytes. The concomitant ingestion of both S and P together with gametocytemic blood-meal significantly reduced the prevalence of oocyst positivity as well as oocyst density when compared to controls (< 0.001). In addition, day 3 concentrations of SP decreased mosquito survival by up to 65% (< 0.001). This study demonstrates that SP is deleterious in vitro for gametocyte infectivity as well as mosquito survival.  相似文献   

2.
A deterministic model for assessing the dynamics of mixed species malaria infections in a human population is presented to investigate the effects of dual infection with Plasmodium malariae and Plasmodium falciparum. Qualitative analysis of the model including positivity and boundedness is performed. In addition to the disease free equilibrium, we show that there exists a boundary equilibrium corresponding to each species. The isolation reproductive number of each species is computed as well as the reproductive number of the full model. Conditions for global stability of the disease free equilibrium as well as local stability of the boundary equilibria are derived. The model has an interior equilibrium which exists if at least one of the isolation reproductive numbers is greater than unity. Among the interesting dynamical behaviours of the model, the phenomenon of backward bifurcation where a stable boundary equilibrium coexists with a stable interior equilibrium, for a certain range of the associated invasion reproductive number less than unity is observed. Results from analysis of the model show that, when cross-immunity between the two species is weak, there is a high probability of coexistence of the two species and when cross-immunity is strong, competitive exclusion is high. Further, an increase in the reproductive number of species i increases the stability of its boundary equilibrium and its ability to invade an equilibrium of species j. Numerical simulations support our analytical conclusions and illustrate possible behaviour scenarios of the model.  相似文献   

3.
4.
Generation of phosphocholine by choline kinase is important for phosphatidylcholine biosynthesis via Kennedy pathway and phosphatidylcholine biosynthesis is essential for intraerythrocytic growth of malaria parasite. A putative gene (Gene ID PF14_0020) in chromosome 14, having highest sequence homology with choline kinase, has been identified by BLAST searches from P. falciparum genome sequence database. This gene has been PCR amplified, cloned, over-expressed and characterized. Choline kinase activity of the recombinant protein (PfCK) was validated as it catalyzed the formation of phosphocholine from choline in presence of ATP. The Km values for choline and ATP are found to be 145 ± 20 μM and 2.5 ± 0.3 mM, respectively. PfCK can phosphorylate choline efficiently but not ethanolamine. Southern blotting indicates that PfCK is a single copy gene and it is a cytosolic protein as evidenced by Western immunoblotting and confocal microscopy. A model structure of PfCK was constructed based on the crystal structure of choline kinase of C. elegans to search the structural homology. Consistent with the homology modeling predictions, CD analysis indicates that the α and β content of PfCK are 33% and 14%, respectively. Since choline kinase plays a vital role for growth and multiplication of P. falciparum during intraerythrocytic stages, we can suggest that this well characterized PfCK may be exploited in the screening of new choline kinase inhibitors to evaluate their antimalarial activity.  相似文献   

5.
Selected PvDBP-derived synthetic peptides were tested in competition assays with HLA molecules in order to identify and evaluate their binding to a wide range of MHC class II molecules. Binding was evaluated as the peptide’s ability to displace the biotinylated control peptide (HA306-318) and was detected by a conventional ELISA. Thus, one epitope for the HLA-DR1 molecule, two epitopes for the HLA-DR4 molecule, six epitopes for the HLA-DR7 molecule and three epitopes for the HLA-DR11 molecule displaying a high binding percentage (above 50%) were experimentally obtained. The in vitro results were compared with the epitope prediction results. Two peptides behaved as universal epitopes since they bound to a larger number of HLA-DR molecules. Given that these peptides are located in the conserved PvDBP region II, they could be considered good candidates to be included in the design of a synthetic vaccine against Plasmodium vivax malaria.  相似文献   

6.
We have selected piperaquine (PQ) and lumefantrine (LM) resistant Plasmodium berghei ANKA parasite lines in mice by drug pressure. Effective doses that reduce parasitaemia by 90% (ED90) of PQ and LM against the parent line were 3.52 and 3.93 mg/kg, respectively. After drug pressure (more than 27 passages), the selected parasite lines had PQ and LM resistance indexes (I90) [ED90 of resistant line/ED90 of parent line] of 68.86 and 63.55, respectively. After growing them in the absence of drug for 10 passages and cryo-preserving them at −80 °C for at least 2 months, the resistance phenotypes remained stable. Cross-resistance studies showed that the PQ-resistant line was highly resistant to LM, while the LM-resistant line remained sensitive to PQ. Thus, if the mechanism of resistance is similar in P. berghei and Plasmodium falciparum, the use of LM (as part of Coartem®) should not select for PQ resistance.  相似文献   

7.
Mature gametocytes, the sexual stage of Plasmodium falciparum, ensure the continued transmission of malaria from the human host to the mosquito vector. Even if gametocytes are not implicated in the malaria physiopathology it is crucial to the spread of malaria. Gametocytes are to be a key target for drugs used against Plasmodium in public health. The expression levels of 4 sexual-stage specific genes, Pfs 16, Pfs 25, Pfg 27and S 18S rRNA, during gametocytogenesis of various P. falciparum strains were analyzed by a real time PCR assay. The strains showed different capacities to produce mature gametocytes and in parallel different patterns of sexual gene expression. There was a correlation only between Pfs 16 cDNA overexpression in the first 48 h of the culture and the production of mature gametocytes. Pfs 16 is an early marker of the development of mature gametocytes in cultures and is therefore a potential target for new antimalarial drugs.  相似文献   

8.
9.
10.
The ability to manipulate the genome and induce site-specific recombination using either Flippase (FLP) or Cre recombinase has been useful in many systems including Plasmodium berghei for specific deletion events or to obtain conditional gene expression. To test whether these recombinases are active in Plasmodium falciparum we constructed gene knockouts that contain sequences recognised as templates for site-specific recombination. We tested the ability of FLP and Cre recombinases, expressed conditionally in P. falciparum, to mediate deletion of the human dihydrofolate reductase (hdhfr) drug resistance gene. We show that Cre recombinase is capable of efficient removal of hdhfr by site-specific recombination. In contrast, FLP recombinase is very inefficient, even at the optimum temperature of 30 °C for this enzyme. These results demonstrate that Cre recombinase can be utilised in P. falciparum for deletion of specific sequences such as drug resistance genes. This can be exploited for recycling of drug resistance cassettes and for the design of specific recombination events in P. falciparum.  相似文献   

11.
There is growing evidence that Plasmodium falciparum parasites in southeastern Asia have developed resistance to artemisinin combination therapy. The resistance phenotype has recently been shown to be associated with four single nucleotide polymorphisms in the parasite’s genome. We assessed the prevalence of two of these single nucleotide polymorphisms in P. falciparum parasites imported into Scotland between 2009 and 2012, and in additional field samples from six countries in southeastern Asia. We analysed 28 samples from 11 African countries, and 25 samples from nine countries in Asia/southeastern Asia/Oceania. Single nucleotide polymorphisms associated with artemisinin combination therapy resistance were not observed outside Thailand and Cambodia.  相似文献   

12.
Recent reports demonstrate that failure of artemisinin-based antimalarial therapies is associated with an altered response of early blood stage Plasmodium falciparum. This has led to increased interest in the use of pulse assays that mimic clinical drug exposure for analysing artemisinin sensitivity of highly synchronised ring stage parasites. We report a methodology for the reliable execution of drug pulse assays and detail a synchronisation strategy that produces well-defined tightly synchronised ring stage cultures in a convenient time-frame.  相似文献   

13.
Malaria remains one of the major human parasitic diseases, particularly in subtropical regions. Most of the fatal cases are caused by Plasmodium falciparum. The rodent parasite Plasmodium chabaudi has been the model of choice in research due to its similarities to human malaria, including developmental cycle, preferential invasion of mature erythrocytes, synchrony of asexual development, antigenic variation, gene sinteny as well as similar resistance mechanisms. Protein disulfide isomerase (PDI) is an essential catalyst of the endoplasmic reticulum in different biological systems with folding and chaperone activities. Most of the proteins exported by parasites have to pass through the endoplasmic reticulum before reaching their final destination and their correct folding is critical for parasite survival. PDI constitutes a potential target for the development of alternative therapy strategies based on the inhibition of folding and chaperoning of exported proteins. We here describe the sequencing of the gene coding for the PDI from P. chabaudi and analyse the relationship to its counterpart enzymes, particularly with the PDI from other Plasmodium species. The model constructed, based on the recent model deduced from the crystallographic structure 2B5E, was compared with the previous theoretical model for the whole PDI molecule constructed by threading. A recombinant PDI from P. chabaudi was also produced and used as an antigen for monoclonal antibody production for application in PDI immunolocalization.  相似文献   

14.
Plasmodium knowlesi is a malaria parasite of Old World monkeys and is infectious to humans. In this study Macaca fascicularis was used as a model to understand the host response to P. knowlesi using parasitological and haematological parameters. Three M. fascicularis of either sex were experimentally infected with P. knowlesi erythrocytic parasites from humans. The pre-patent period for P. knowlesi infection in M. fascicularis ranged from seven to 14 days. The parasitemia observed was 13,686-24,202 parasites per μL of blood for asexual stage and 88-264 parasites per μL of blood for sexual stage. Periodicity analysis adopted from microfilaria periodicity technique of asexual stage showed that the parasitemia peak at 17:39 h while the sexual stage peaked at 02:36 h. Mathematical analysis of the data indicates that P. knowlesi gametocytes tend to display periodicity with a peak (24:00-06:00) that coincides with the peak biting activity (19:00-06:00) of the local vector, Anopheles latens. The morphology of P. knowlesi resembled P. falciparum in early trophozoite and P. malariae in late trophozoite. However, it may be distinguishable by observing the appliqué appearance of the cytoplasm and the chromatin lying inside the ring. Haematological analysis on macaques with knowlesi malaria showed clinical manifestations of hypoglycaemia, anaemia and hyperbilirubinemia. Gross examination of spleen and liver showed malaria pigments deposition in both organs.  相似文献   

15.
16.
The important role of pyruvate kinase during malarial infection has prompted the cloning of a cDNA encoding Plasmodium falciparum pyruvate kinase (pfPyrK), using mRNA from intraerythrocytic-stage malaria parasites. The full-length cDNA encodes a protein with a computed molecular weight of 55.6 kDa and an isoelectric point of 7.5. The purified recombinant pfPyrK is enzymatically active and exists as a homotetramer in its active form. The enzyme exhibits hyperbolic kinetics with respect to phosphoenolpyruvate and ADP, with Km of 0.19 and 0.12 mM, respectively. pfPyrK is not affected by fructose-1,6-bisphosphate, a general activating factor of pyruvate kinase for most species. Glucose-6-phosphate, an activator of the Toxoplasma gondii enzyme, does not affect pfPyrK activity. Similar to rabbit pyruvate kinase, pfPyrK is susceptible to inactivation by 1 mM pyridoxal-5′-phosphate, but to a lesser extent. A screen for inhibitors to pfPyrK revealed that it is markedly inhibited by ATP and citrate. Detailed kinetic analysis revealed a transition from hyperbolic to sigmoidal kinetics for PEP in the presence of citrate, as well as competitive inhibitory behavior for ATP with respect to PEP. Citrate exhibits non-competitive inhibition with respect to ADP with a Ki of 0.8 mM. In conclusion, P. falciparum expresses an active pyruvate kinase during the intraerythrocytic-stage of its developmental cycle that may play important metabolic roles during infection.  相似文献   

17.
We studied the effects on total thiols glutathione (GSH) and cysteine contents in Plasmodium falciparum in vitro when treated with four steroid derivatives and a sapogenin (Diosgenone) extracted from Solanum nudum. We also determined their capacity to inhibit β-hematin formation. We showed that SN-1 (16α-acetoxy-26-hydroxycholest-4-ene-3,22-dione) increased total glutathione and cysteine concentrations while SN-4 (26-O-β-d-glucopyranosyloxy-16α-acetoxycholest-4-ene-3,22-dione) decreased the concentration of both thiols. Acetylation in C16 was crucial for the effect of SN-1 while type furostanol and terminal glucosidation were necessary for the inhibitory properties of SN-4. The combination of steroids and buthionine sulfoximine, a specific inhibitor of a step-limiting enzyme in GSH synthesis, did not modify the glutathione contents. Finally, we found that SN-1 inhibited more than 80% of β-hematin formation at 5.0 mM, while the other steroids did not show any effect.  相似文献   

18.
19.
Human infections with Plasmodium knowlesi have been misdiagnosed by microscopy as Plasmodium malariae due to their morphological similarities. Although microscopy-identified P. malariae cases have been reported in the state of Sarawak (Malaysian Borno) as early as 1952, recent epidemiological studies suggest the absence of indigenous P. malariae infections. The present study aimed to determine the past incidence and distribution of P. knowlesi infections in the state of Sarawak based on archival blood films from patients diagnosed by microscopy as having P. malariae infections. Nested PCR assays were used to identify Plasmodium species in DNA extracted from 47 thick blood films collected in 1996 from patients in seven different divisions throughout the state of Sarawak. Plasmodium knowlesi DNA was detected in 35 (97.2%) of 36 blood films that were positive for Plasmodium DNA, with patients originating from all seven divisions. Only one sample was positive for P. malariae DNA. This study provides further evidence of the widespread distribution of human infections with P. knowlesi in Sarawak and its past occurrence. Taken together with data from previous studies, our findings suggest that P. knowlesi malaria is not a newly emergent disease in humans.  相似文献   

20.
Plasmodium falciparum belongs to a group of eukaryotes expressing an ortholog of the prokaryotic T1-threonine peptidase, heat shock locus V (HslV). Bacterial HslV is a particularly well studied protease, due to its structural and biochemical similarity to the eukaryotic proteasome. Plasmodium falciparum HslV (PfHslV) is expressed in schizonts and merozoites of the asexual blood stage. Strong sequence conservation between plasmodial species, absence of HslV homologs in the human genome, and availability of specific inhibitors led us to explore its function and potential use as a drug target. In a first step, we investigated localization of PfHslV, using a bioinformatics approach and a transgenic P. falciparum line expressing a PfHslV-enhanced yellow fluorescent protein (EYFP) fusion protein from the endogenous pfhslV locus. PfHslV-EYFP was found in the mitochondrial matrix under fluorescence and immunoelectron microscopy. Endogenous, non-modified PfHslV was present in purified mitochondria and interference with mitochondrial membrane potential by drug treatment led to impairment of PfHslV processing. Import of heterologous EYFP into the plasmodial mitochondrion is mediated by the N-terminal 37 amino acids of PfHslV. PfHslV’s targeting sequence is also functional in human cells, demonstrating strong conservation of mitochondrial targeting in eukaryotes. In conclusion, our data shows that PfHslV is located to the plasmodial mitochondrion and presumably has vital function within this organelle which makes it an attractive target for interventions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号