首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The three-dimensional structure of a Salmonella enterica hypothetical protein YihS is significantly similar to that of N-acyl-d-glucosamine 2-epimerase (AGE) with respect to a common scaffold, an α66-barrel, although the function of YihS remains to be clarified. To identify the function of YihS, Escherichia coli and S. enterica YihS proteins were overexpressed in E. coli, purified, and characterized. Both proteins were found to show no AGE activity but showed cofactor-independent aldose-ketose isomerase activity involved in the interconversion of monosaccharides, mannose, fructose, and glucose, or lyxose and xylulose. In order to clarify the structure/function relationship of YihS, we determined the crystal structure of S. enterica YihS mutant (H248A) in complex with a substrate (d-mannose) at 1.6 Å resolution. This enzyme-substrate complex structure is the first demonstration in the AGE structural family, and it enables us to identify active-site residues and postulate a reaction mechanism for YihS. The substrate, β-d-mannose, fits well in the active site and is specifically recognized by the enzyme. The substrate-binding site of YihS for the mannose C1 and O5 atoms is architecturally similar to those of mutarotases, suggesting that YihS adopts the pyranose ring-opening process by His383 and acidifies the C2 position, forming an aldehyde at the C1 position. In the isomerization step, His248 functions as a base catalyst responsible for transferring the proton from the C2 to C1 positions through a cis-enediol intermediate. On the other hand, in AGE, His248 is thought to abstract and re-adduct the proton at the C2 position of the substrate. These findings provide not only molecular insights into the YihS reaction mechanism but also useful information for the molecular design of novel carbohydrate-active enzymes with the common scaffold, α66-barrel.  相似文献   

2.
Pseudomonas cichoriiid-tagatose 3-epimerase (P. cichoriid-TE) can efficiently catalyze the epimerization of not only d-tagatose to d-sorbose, but also d-fructose to d-psicose, and is used for the production of d-psicose from d-fructose. The crystal structures of P. cichoriid-TE alone and in complexes with d-tagatose and d-fructose were determined at resolutions of 1.79, 2.28, and 2.06 Å, respectively. A subunit of P. cichoriid-TE adopts a (β/α)8 barrel structure, and a metal ion (Mn2+) found in the active site is coordinated by Glu152, Asp185, His211, and Glu246 at the end of the β-barrel. P. cichoriid-TE forms a stable dimer to give a favorable accessible surface for substrate binding on the front side of the dimer. The simulated omit map indicates that O2 and O3 of d-tagatose and/or d-fructose coordinate Mn2+, and that C3-O3 is located between carboxyl groups of Glu152 and Glu246, supporting the previously proposed mechanism of deprotonation/protonation at C3 by two Glu residues. Although the electron density is poor at the 4-, 5-, and 6-positions of the substrates, substrate-enzyme interactions can be deduced from the significant electron density at O6. The O6 possibly interacts with Cys66 via hydrogen bonding, whereas O4 and O5 in d-tagatose and O4 in d-fructose do not undergo hydrogen bonding to the enzyme and are in a hydrophobic environment created by Phe7, Trp15, Trp113, and Phe248. Due to the lack of specific interactions between the enzyme and its substrates at the 4- and 5-positions, P. cichoriid-TE loosely recognizes substrates in this region, allowing it to efficiently catalyze the epimerization of d-tagatose and d-fructose (C4 epimer of d-tagatose) as well. Furthermore, a C3-O3 proton-exchange mechanism for P. cichoriid-TE is suggested by X-ray structural analysis, providing a clear explanation for the regulation of the ionization state of Glu152 and Glu246.  相似文献   

3.
4-Keto-d-arabonate synthase (4KAS), which converts 2,5-diketo-d-gluconate (DKGA) to 4-keto-d-arabonate (4KA) in d-glucose oxidative fermentation by some acetic acid bacteria, was solubilized from the Gluconobacter oxydans NBRC 3292 cytoplasmic membrane, and purified in an electrophoretically homogenous state. A single membrane-bound enzyme was found to catalyze the conversion from DKGA to 4KA. The 92-kDa 4KAS was a homodimeric protein not requiring O2 or a cofactor for the conversion, but was stimulated by Mn2+. N-terminal amino acid sequencing of 4KAS, followed by gene homology search indicated a 1,197-bp open reading frame (ORF), corresponding to the GLS_c04240 locus, GenBank accession No. CP004373, encoding a 398-amino acid protein with a calculated molecular weight of 42,818 Da. An Escherichia coli transformant with the 4kas plasmid exhibited 4KAS activity. Furthermore, overexpressed recombinant 4KAS was purified in an electrophoretically homogenous state and had the same molecular size as the natural enzyme.  相似文献   

4.
d-Alanylation of lipoteichoic acids modulates the surface charge and ligand binding of the Gram-positive cell wall. Disruption of the bacterial dlt operon involved in teichoic acid alanylation, as well as inhibition of the DltA (d-alanyl carrier protein ligase) protein, has been shown to render the bacterium more susceptible to conventional antibiotics and host defense responses. The DltA catalyzes the adenylation and thiolation reactions of d-alanine. This enzyme belongs to a superfamily of AMP-forming domains such as the ubiquitous acetyl-coenzyme A synthetase. We have determined the 1.9-Å-resolution crystal structure of a DltA protein from Bacillus cereus in complex with ATP. This structure sheds light on the geometry of the bound ATP. The invariant catalytic residue Lys492 appears to be mobile, suggesting a molecular mechanism of catalysis for this superfamily of enzymes. Specific roles are also revealed for two other invariant residues: the divalent cation-stabilizing Glu298 and the β-phosphate-interacting Arg397. Mutant proteins with a glutamine substitution at position 298 or 397 are inactive.  相似文献   

5.
The crystal structures of three vancomycin complexes with two vancomycin-sensitive cell-wall precursor analogs (diacetyl-Lys-D-Ala-D-Ala and acetyl-D-Ala-D-Ala) and a vancomycin-resistant cell-wall precursor analog (diacetyl-Lys-D-Ala-D-lactate) were determined at atomic resolutions of 1.80 A, 1.07 A, and 0.93 A, respectively. These structures not only reconfirm the "back-to-back" dimerization of vancomycin monomers and the ligand-binding scheme proposed by previous experiments but also show important structural features of strategies for the generation of new glycopeptide antibiotics. These structural features involve a water-mediated antibiotic-ligand interaction and supramolecular structures such as "side-by-side" arranged dimer-to-dimer structures, in addition to ligand-mediated and "face-to-face" arranged dimer-to-dimer structures. In the diacetyl-Lys-D-Ala-D-lactate complex, the interatomic O...O distance between the carbonyl oxygen of the fourth residue of the antibiotic backbone and the ester oxygen of the D-lactate moiety of the ligand is clearly longer than the corresponding N-H...O hydrogen-bonding distance observed in the two other complexes due to electrostatic repulsion. In addition, two neighboring hydrogen bonds are concomitantly lengthened. These observations provide, at least in part, a molecular basis for the reduced antibacterial activity of vancomycin toward vancomycin-resistant bacteria with cell-wall precursors terminating in -D-Ala-D-lactate.  相似文献   

6.
N-Acetyl-l-glutamate kinase (NAGK), the paradigm enzyme of the amino acid kinase family, catalyzes the second step of arginine biosynthesis. Although substrate binding and catalysis were clarified by the determination of four crystal structures of the homodimeric Escherichia coli enzyme (EcNAGK), we now determine 2 Å resolution crystal structures of EcNAGK free from substrates or complexed with the product N-acetyl-l-glutamyl-5-phosphate (NAGP) and with sulfate, which reveal a novel, very open NAGK conformation to which substrates would associate and from which products would dissociate. In this conformation, the C-domain, which hosts most of the nucleotide site, rotates ∼ 24°-28° away from the N-domain, which hosts the acetylglutamate site, whereas the empty ATP site also exhibits some changes. One sulfate is found binding in the region where the β-phosphate of ATP normally binds, suggesting that ATP is first anchored to the β-phosphate site, before perfect binding by induced fit, triggering the shift to the closed conformation. In contrast, the acetylglutamate site is always well formed, although its β-hairpin lid is found here to be mobile, being closed only in the subunit of the EcNAGK-NAGP complex that binds NAGP most strongly. Lid closure appears to increase the affinity for acetylglutamate/NAGP and to stabilize the closed enzyme conformation via lid-C-domain contacts. Our finding of NAGP bound to the open conformation confirms that this product dissociates from the open enzyme form and allows reconstruction of the active center in the ternary complex with both products, delineating the final steps of the reaction, which is shown here by site-directed mutagenesis to involve centrally the invariant residue Gly11.  相似文献   

7.
A novel cytochrome ba complex was isolated from aerobically grown cells of the thermoacidophilic archaeon Acidianus ambivalens. The complex was purified with two subunits, which are encoded by the cbsA and soxN genes. These genes are part of the pentacistronic cbsAB-soxLN-odsN locus. The spectroscopic characterization revealed the presence of three low-spin hemes, two of the b and one of the as-type with reduction potentials of + 200, + 400 and + 160 mV, respectively. The SoxN protein is proposed to harbor the heme b of lower reduction potential and the heme as, and CbsA the other heme b. The soxL gene encodes a Rieske protein, which was expressed in E. coli; its reduction potential was determined to be + 320 mV. Topology predictions showed that SoxN, CbsB and CbsA should contain 12, 9 and one transmembrane α-helices, respectively, with SoxN having a predicted fold very similar to those of the cytochromes b in bc1 complexes. The presence of two quinol binding motifs was also predicted in SoxN. Based on these findings, we propose that the A. ambivalens cytochrome ba complex is analogous to the bc1 complexes of bacteria and mitochondria, however with distinct subunits and heme types.  相似文献   

8.
1,5-Anhydro-d-fructose (1,5AnFru) is a monoketosaccharide that can be prepared enzymatically from starch by α-1,4-glucan lyase or chemically from d-glucose or d-fructose in a few steps with high yields. The formed 1,5AnFru can be derivatized both enzymatically and chemically to interesting new carbohydrate derivatives, some with biological activities. For example dehydratases, isomerases and reductases can convert 1,5AnFru to enolones (as Ascopyrone P) and sugar alcohols with antimicrobial and antioxidant properties, while chemical modifications can give similar compounds as well as natural products like 1-deoxymannonojirimycin and Clavulazine. 1,5AnFru disaccharides (glycosyl 1→4 1,5AnFru) have been prepared as well as glycosyl 1→4 1,5-anhydro-d-tagatose.  相似文献   

9.
Prokaryotes can use a variety of sugars as carbon sources in order to provide a selective survival advantage. The gene z5688 found in the pathogenic Escherichia coli O157:H7 encodes a “hypothetical” protein of unknown function. Sequence analysis identified the gene product as a putative member of the cupin superfamily of proteins, but no other functional information was known. We have determined the crystal structure of the Z5688 protein at 1.6 Å resolution and identified the protein as a novel E. coli sugar isomerase (EcSI) through overall fold analysis and secondary-structure matching. Extensive substrate screening revealed that EcSI is capable of acting on d-lyxose and d-mannose. The complex structure of EcSI with fructose allowed the identification of key active-site residues, and mutagenesis confirmed their importance. The structure of EcSI also suggested a novel mechanism for substrate binding and product release in a cupin sugar isomerase. Supplementation of a nonpathogenic E. coli strain with EcSI enabled cell growth on the rare pentose d-lyxose.  相似文献   

10.
Peracetylated 2-deoxy-d-erythro-pentose (2-deoxy-d-ribose) was synthesized through the acetylation of 2-deoxy-d-ribose with acetic anhydride in pyridine, and the products (including all four ring forms) exist in form of either a white solid or a syrup. A single crystal of 1,3,4-tri-O-acetyl-2-deoxy-β-d-erythro-pentopyranose was obtained from the syrup and its structure was determined by X-ray diffraction. The crystal adopts the 1C4 conformation, presenting an orthorhombic system, space group P212121 with Z = 4, unit cell dimensions a = 7.2274 (3) Å, b = 8.0938 (5) Å, and c = 22.0517 (11) Å.  相似文献   

11.
Isoprenoid precursor biosynthesis occurs through the mevalonate or the methylerythritol phosphate (MEP) pathway, used i.e., by humans and by many human pathogens, respectively. In the MEP pathway, 2-C-methyl-d-erythritol-2,4-cyclo-diphosphate (MEcPP) is converted to (E)-1-hydroxy-2-methyl-but-2-enyl-4-diphosphate (HMBPP) by the iron-sulfur cluster enzyme HMBPP synthase (GcpE). The presented X-ray structure of the GcpE-MEcPP complex from Thermus thermophilus at 1.55 Å resolution provides valuable information about the catalytic mechanism and for rational inhibitor design. MEcPP binding inside the TIM-barrel funnel induces a 60° rotation of the [4Fe-4S] cluster containing domain onto the TIM-barrel entrance. The apical iron of the [4Fe-4S] cluster ligates with the C3 oxygen atom of MEcPP.  相似文献   

12.
Pseudomonas stutzeril-rhamnose isomerase (P. stutzeri L-RhI) can efficiently catalyze the isomerization between various aldoses and ketoses, showing a broad substrate specificity compared to L-RhI from Escherichia coli (E. coli L-RhI). To understand the relationship between structure and substrate specificity, the crystal structures of P. stutzeri L-RhI alone and in complexes with l-rhamnose and d-allose which has different configurations of C4 and C5 from l-rhamnose, were determined at a resolution of 2.0 Å, 1.97 Å, and 1.97 Å, respectively. P. stutzeri L-RhI has a large domain with a (β/α)8 barrel fold and an additional small domain composed of seven α-helices, forming a homo tetramer, as found in E. coli L-RhI and d-xylose isomerases (D-XIs) from various microorganisms. The β1-α1 loop (Gly60-Arg76) of P. stutzeri L-RhI is involved in the substrate binding of a neighbouring molecule, as found in D-XIs, while in E. coli L-RhI, the corresponding β1-α1 loop is extended (Asp52-Arg78) and covers the substrate-binding site of the same molecule. The complex structures of P. stutzeri L-RhI with l-rhamnose and d-allose show that both substrates are nicely fitted to the substrate -binding site. The part of the substrate-binding site interacting with the substrate at the 1, 2, and 3 positions is equivalent to E. coli L-RhI, and the other part interacting with the 4, 5, and 6 positions is similar to D-XI. In E. coli L-RhI, the β1-α1 loop creates an unique hydrophobic pocket at the the 4, 5, and 6 positions, leading to the strictly recognition of l-rhamnose as the most suitable substrate, while in P. stutzeri L-RhI, there is no corresponding hydrophobic pocket where Phe66 from a neighbouring molecule merely forms hydrophobic interactions with the substrate, leading to the loose substrate recognition at the 4, 5, and 6 positions.  相似文献   

13.
Glucosamine 6-phosphate deaminase (NagB) catalyzes the conversion of d-glucosamine 6-phosphate (GlcN6P) to d-fructose 6-phosphate and ammonia. This reaction is the final step of N-acetylglucosamine utilization and decides its metabolic fate. The enzyme from Streptococcus mutans belongs to the monomeric subfamily of NagB. The crystal structure of the native SmuNagB (NagB from S. mutans) presented here, compared with the structures of its homologs BsuNagB (NagB from Bacillus subtilis) and EcoNagB (NagB from E. coli), implies a conformational change of the ‘lid’ motif in the activation of the monomeric NagB enzyme. We have also captured the enzyme-substrate intermediate complex of the NagB family at low pH, where a remarkable loss of the catalytic activity of SmuNagB was detected. The enzyme-substrate intermediate presents the initial step of the GlcN6P deaminase reaction. The structural evidence (1) supports the α-anomer of GlcN6P as the specific natural substrate of NagB; (2) displays the substrate-binding pocket at the active site; and (3) together with the site-directed mutagenesis studies, demonstrates the ring-opening mechanism of an Asn-His-Glu triad that performs the proton transfer from O1 to O5 to open the sugar ring.  相似文献   

14.
The crystal structure of the l-rhamnose-binding lectin CSL3 was determined to 1.8 Å resolution. This protein is a component of the germline-encoded pattern recognition proteins in innate immunity. CSL3 is a homodimer of two 20 kDa subunits with a dumbbell-like shape overall, in which the N- and C-terminal domains of different subunits form lobe structures connected with flexible linker peptides. The complex structures of the protein with specific carbohydrates demonstrated the importance of the most variable loop region among homologues for the specificity toward oligosaccharides. CSL3 and Shiga-like toxin both use Gb3 as a cellular receptor to evoke apoptosis. They have very different overall architecture but share the separation distance between carbohydrate-binding sites. An inspection of the structure database suggested that the pseudo-tetrameric structure of CSL3 was unique among the known lectins. This architecture implies this protein might provide a unique tool for further investigations into the relationships between architecture and function of pattern recognition proteins.  相似文献   

15.
d-fructose (10 mM) augments, in rat pancreatic islets, insulin release evoked by 10 mM d-glucose. Even in the absence of d-glucose, d-fructose (100 mM) displays a positive insulinotropic action. It was now examined whether the insulinotropic action of d-fructose could be attributed to an increase in the ATP content of islet cells. After 30-60 min incubation in the presence of d-glucose and/or d-fructose, the ATP and ADP content was measured by bioluminescence in either rat isolated pancreatic islets (total ATP and ADP) or the supernatant of dispersed rat pancreatic islet cells exposed for 30 s to digitonine (cytosolic ATP and ADP). d-fructose (10 and 100 mM) was found to cause a concentration-related decrease in the total ATP and ADP content and ATP/ADP ratio below the basal values found in islets deprived of exogenous nutrient. Moreover, in the presence of 10 mM d-glucose, which augmented both the total ATP content and ATP/ADP ratio above basal value, d-fructose (10 mM) also lowered these two parameters. The cytosolic ATP/ADP ratio, however, was increased in the presence of d-glucose and/or d-fructose. Under the present experimental conditions, a sigmoidal relationship was found between such a cytosolic ATP/ADP ratio and either 86Rb net uptake by dispersed islet cells or insulin release from isolated islets. These data provide, to our knowledge, the first example of a dramatic dissociation between changes in total ATP content or ATP/ADP ratio and insulin release in pancreatic islets exposed to a nutrient secretagogue. Nevertheless, the cationic and insulinotropic actions of d-glucose and/or d-fructose were tightly related to the cytosolic ATP/ADP ratio.  相似文献   

16.
We have studied the regulatory function of Dictyostelium discoideum Ax2 phenylalanine hydroxylase (dicPAH) via characterization of domain structures. Including the full-length protein, partial proteins truncated in regulatory, tetramerization, or both, were prepared from Escherichia coli as his-tag proteins and examined for oligomeric status and catalytic parameters for phenylalanine. The proteins were also expressed extrachromosomally in the dicPAH knockout strain to examine their in vivo compatibility. The results suggest that phenylalanine activates dicPAH, which is functional in vivo as a tetramer, although cooperativity was not observed. In addition, the results of kinetic study suggest that the regulatory domain of dicPAH may play a role different from that of the domain in mammalian PAH.

Structured summary of protein interactions

dicPAH and dicPAHbind by molecular sieving (View Interaction: 1, 2, 3, 4)  相似文献   

17.
ATP binding cassette transport systems account for most import of necessary nutrients in bacteria. The periplasmic binding component (or an equivalent membrane-anchored protein) is critical to recognizing cognate ligand and directing it to the appropriate membrane permease. Here we report the X-ray structures of d-xylose binding protein from Escherichia coli in ligand-free open form, ligand-bound open form, and ligand-bound closed form at 2.15 Å, 2.2 Å, and 2.2 Å resolutions, respectively. The ligand-bound open form is the first such structure to be reported at high resolution; the combination of the three different forms from the same protein furthermore gives unprecedented details concerning the conformational changes involved in binding protein function. As is typical of the structural family, the protein has two similar globular domains, which are connected by a three-stranded hinge region. The open liganded structure shows that xylose binds first to the C-terminal domain, with only very small conformational changes resulting. After a 34° closing motion, additional interactions are formed with the N-terminal domain; changes in this domain are larger and serve to make the structure more ordered near the ligand. An analysis of the interactions suggests why xylose is the preferred ligand. Furthermore, a comparison with the most closely related proteins in the structural family shows that the conformational changes are distinct in each type of binding protein, which may have implications for how the individual proteins act in concert with their respective membrane permeases.  相似文献   

18.
Most commonly used expression systems in bacteria are based on the Escherichia coli lac promoter. Furthermore, lac operon elements are used today in systems and synthetic biology. In the majority of the cases the gratuitous inducers IPTG or TMG are used. Here we report a systematic comparison of lac promoter induction by TMG and IPTG which focuses on the aspects inducer uptake, population heterogeneity and a potential influence of the transacetylase, LacA. We provide induction curves in E. coli LJ110 and in isogenic lacY and lacA mutant strains and we show that both inducers are substrates of the lactose permease at low inducer concentrations but can also enter cells independently of lactose permease if present at higher concentrations. Using a gfp reporter strain we compared TMG and IPTG induction at single cell level and showed that bimodal induction with IPTG occurred at approximately ten-fold lower concentrations than with TMG. Furthermore, we observed that lac operon induction is influenced by the transacetylase, LacA. By comparing two Plac-gfp reporter strains with and without a lacA deletion we could show that in the lacA+ strain the fluorescence level decreased after few hours while the fluorescence further increased in the lacA strain. The results indicate that through the activity of LacA the IPTG concentration can be reduced below an inducing threshold concentration—an influence that should be considered if low inducer amounts are used.  相似文献   

19.
The rate at which X-ray structures of membrane proteins are solved is on a par with that of soluble proteins in the late 1970s. There are still many obstacles facing the membrane protein structural community. Recently, there have been several technical achievements in the field that have started to dramatically accelerate structural studies. Here, we summarize these so-called ‘tricks-of-the-trade’ and include case studies of several mammalian transporters.  相似文献   

20.
The reaction conditions of galactose oxidase-catalyzed, targeted C-6 oxidation of galactose derivatives were optimized for aldehyde production and to minimize the formation of secondary products. Galactose oxidase, produced in transgenic Pichia pastoris carrying the galactose oxidase gene from Fusarium spp., was used as catalyst, methyl α-d-galactopyranoside as substrate, and reaction medium, temperature, concentration, and combinations of galactose oxidase, catalase, and horseradish peroxidase were used as variables. The reactions were followed by 1H NMR spectroscopy and the main products isolated, characterized, and identified. An optimal combination of all the three enzymes gave aldehyde (methyl α-d-galacto-hexodialdo-1,5-pyranoside) in approximately 90% yield with a substrate concentration of 70 mM in water at 4 °C using air as oxygen source. Oxygen flushing of the reaction mixture was not necessary. The aldehyde existed as a hydrate in water. The main secondary products, a uronic acid (methyl α-d-galactopyranosiduronic acid) and an α,β-unsaturated aldehyde (methyl 4-deoxy-α-d-threo-hex-4-enodialdo-1,5-pyranoside), were observed for the first time to form in parallel. Formation of uronic acid seemed to be the result of impurities in the galactose oxidase preparation. 1H and 13C NMR data of the products are reported for the α,β-unsaturated aldehyde for the first time, and chemical shifts in DMSO-d6 for all the products for the first time. Oxidation of d-raffinose (α-d-galactopyranosyl-(1-6)-α-d-glucopyranosyl-(1-2)-β-d-fructofuranoside) in the same optimum conditions also proceeded well, resulting in approximately 90% yield of the corresponding aldehyde.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号