首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myeloid cell leukemia-1 (MCL-1L) is a pro-survival member of the BCL-2 family that promotes cell survival. In this study, we identify a new splicing variant of human MCL-1 that encodes MCL-1ES (extra short). Sequence analysis indicates that this variant results from splicing within the first coding exon of MCL-1 at a non-canonical GC-AG donor-acceptor pair. The deduced sequence of MCL-1ES encodes a protein of 197 amino acids, and the PEST (proline, glutamic acid, serine, and threonine) motifs present in MCL-1L are absent. MCL-1ES interacts with MCL-1L and induces mitochondrial cell death, suggesting that alternative splicing of MCL-1 may control the fate of cells.

Structured summary

MINT-7255705, MINT-7255718, MINT-7255731, MINT-7255743:MCL1-ES (uniprotkb:Q07820-2) physically interacts (MI:0914) with MCL1-1L (uniprotkb:Q07820-1) by anti tag coimmunoprecipitation (MI:0007)MINT-7255771:MCL1-ES (uniprotkb:Q07820-2) physically interacts (MI:0914) with Beta actin (uniprotkb:P60709) by anti tag coimmunoprecipitation (MI:0007)MINT-7255781:MCL1-ES (uniprotkb:Q07820-2) physically interacts (MI:0914) with GAPDH (uniprotkb:P04406) by anti tag coimmunoprecipitation (MI:0007)MINT-7255756:MCL1-ES (uniprotkb:Q07820-2) physically interacts (MI:0914) with COX IV (uniprotkb:P13073) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

2.
The Bcl-2 associated athanogene 1M (Bag-1M) is known to repress the transactivation of the glucocorticoid receptor (GR). We report here that Bag-1M inhibits the action of GR via recruitment of corepressors, including nuclear receptor corepressor (NcoR) and silencing mediator for retinoic acid and thyroid hormone receptor (SMRT), and histone deacetylase (HDAC)3 to the genomic response element of a glucocorticoid-regulated human metallothionein IIa (hMTIIa) gene. A mutant GR lacking the interaction with BAG-1M fails to recruit the corepressors NcoR and SMRT. RNAi-mediated knock down of corepressors and the use of HDAC inhibitor relieved Bag-1M-induced repression on the transactivation of the GR. In addition, Bag-1M is not involved in the degradation of the receptor. These findings indicate a novel mechanism by which Bag-1M acts as a corepressor and downregulates the activity of the GR.

Structured summary

MINT-7216164: HDAC3 (uniprotkb:O15379) physically interacts (MI:0914) with Bag1 (uniprotkb:Q99933) by anti bait coimmunoprecipitation (MI:0006)MINT-7216183: NCOR (uniprotkb:O75376) physically interacts (MI:0914) with Bag1 (uniprotkb:Q99933) by anti bait coimmunoprecipitation (MI:0006)MINT-7216175: SMRT (uniprotkb:Q9Y618) physically interacts (MI:0914) with Bag1 (uniprotkb:Q99933) by anti bait coimmunoprecipitation (MI:0006)  相似文献   

3.
The KRAB-type zinc-finger protein Apak (ATM and p53 associated KZNF protein) specifically suppresses p53-mediated apoptosis. Upon DNA damage, Apak is phosphorylated and inhibited by ATM kinase, resulting in p53 activation. However, how Apak is regulated in response to oncogenic stress remains unknown. Here we show that upon oncogene activation, Apak is inhibited in the tumor suppressor ARF-dependent but ATM-independent manner. Oncogene-induced ARF protein directly interacts with Apak and competes with p53 to bind to Apak, resulting in Apak dissociation from p53. Thus, Apak is differentially regulated in the ARF and ATM-dependent manner in response to oncogenic stress and DNA damage, respectively.

Structured summary

MINT-7989670: p53 (uniprotkb:P04637) binds (MI:0407) to APAK (uniprotkb:Q8TAQ5) by pull down (MI:0096)MINT-7989812: HDM2 (uniprotkb:Q00987) physically interacts (MI:0915) with ARF (uniprotkb:Q8N726-1) by anti bait coimmunoprecipitation (MI:0006)MINT-7989603, MINT-7989626: APAK (uniprotkb:Q8TAQ5) physically interacts (MI:0915) with ARF (uniprotkb:Q8N726-1) by anti bait coimmunoprecipitation (MI:0006)MINT-7989653: ARF (uniprotkb:Q8N726-1) binds (MI:0407) to APAK (uniprotkb:Q8TAQ5) by pull down (MI:0096)MINT-7989686, MINT-7989705, MINT-7989747:APAK (uniprotkb:Q8TAQ5) physically interacts (MI:0915) with ARF (uniprotkb:Q8N726-1) by anti tag coimmunoprecipitation (MI:0007)MINT-7989724: APAK (uniprotkb:Q8TAQ5) physically interacts (MI:0914) with ARF (uniprotkb:Q8N726-1) and p53 (uniprotkb:P04637) by anti tag coimmunoprecipitation (MI:0007)MINT-7989635: ARF (uniprotkb:Q8N726-1) and APAK (uniprotkb:Q8TAQ5) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7989584, MINT-7989773: APAK (uniprotkb:Q8TAQ5) physically interacts (MI:0915) with p53 (uniprotkb:P04637) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

4.
Phototropin receptor kinases play an important role in optimising plant growth in response to blue light. Much is known regarding their photochemical reactivity, yet little progress has been made to identify downstream signalling components. Here, we isolated several interacting proteins for Arabidopsis phototropin 1 (phot1) by yeast two-hybrid screening. These include members of the NPH3/RPT2 (NRL) protein family, proteins associated with vesicle trafficking, and the 14-3-3 lambda (λ) isoform from Arabidopsis. 14-3-3λ and phot1 were found to colocalise and interact in vivo. Moreover, 14-3-3 binding to phot1 was limited to non-epsilon 14-3-3 isoforms and was dependent on key sites of receptor autophosphorylation. No 14-3-3 binding was detected for Arabidopsis phot2, suggesting that 14-3-3 proteins are specific to phot1 signalling.

Structured summary

MINT-7146953: PHOT1 (uniprotkb:O48963) physically interacts (MI:0915) with ARF7 (uniprotkb:Q9LFJ7) by two hybrid (MI:0018)MINT-7147335: PHOT1 (uniprotkb:O48963) physically interacts (MI:0914) with 14-3-3 phi (uniprotkb:P46077) by far Western blotting (MI:0047)MINT-7146854: PHOT1 (uniprotkb:O48963) physically interacts (MI:0915) with RPT2 (uniprotkb:Q682S0) by two hybrid (MI:0018)MINT-7147215: PHOT1 (uniprotkb:O48963) physically interacts (MI:0914) with 14-3-3 lambda (uniprotkb:P48349) by anti tag coimmunoprecipitation (MI:0007)MINT-7147044, MINT-7147185, MINT-7147200, MINT-7147413: PHOT1 (uniprotkb:O48963) physically interacts (MI:0914) with 14-3-3 lambda (uniprotkb:P48349) by far Western blotting (MI:0047)MINT-7146983: PHOT1 (uniprotkb:O48963) physically interacts (MI:0915) with 14-3-3 lambda (uniprotkb:P48349) by two hybrid (MI:0018)MINT-7146871: PHOT1 (uniprotkb:O48963) physically interacts (MI:0915) with NPH3-like (uniprotkb:Q9S9Q9) by two hybrid (MI:0018)MINT-7146905: PHOT1 (uniprotkb:O48963) physically interacts (MI:0915) with ARF2 (uniprotkb:Q9M1P5) by two hybrid (MI:0018)MINT-7147364: PHOT1 (uniprotkb:O48963) physically interacts (MI:0914) with 14-3-3 upsilon (uniprotkb:P42645) by far Western blotting (MI:0047)MINT-7147234: PHOT1 (uniprotkb:O48963) physically interacts (MI:0914) with 14-3-3 kappa (uniprotkb:P48348) by far Western blotting (MI:0047)  相似文献   

5.
Ephrins and Eph receptors have key roles in regulation of cell migration during development. We found that the RacGAP β2-chimaerin (chimerin) bound to EphA2 and EphA4 and inactivated Rac1 in response to ephrinA1 stimulation. EphA4 bound to β2-chimaerin through its kinase domain and promoted binding of Rac1 to β2-chimaerin. In addition, knockdown of endogenous β2-chimaerin blocked ephrinA1-induced suppression of cell migration. These results suggest that β2-chimaerin is activated by EphA receptors and mediates the EphA receptor-dependent regulation of cell migration.

Structured summary

MINT-7013428: EphA1 (uniprotkb:Q60750) physically interacts (MI:0218) with Chimaerin beta 2 (uniprotkb:Q80XD1-2) and EphA4 (uniprotkb:O08542) by anti tag coimmunoprecipitation (MI:0007)MINT-7013515: Chimaerin beta 2 (uniprotkb:Q80XD1-2) physically interacts (MI:0218) with Rac1 (uniprotkb:P63001) by anti tag coimmunoprecipitation (MI:0007)MINT-7013410: EphA1 (uniprotkb:Q60750) physically interacts (MI:0218) with Chimaerin beta 1 (uniprotkb:Q80XD1-1) and EphA4 (uniprotkb:O08542) by anti tag coimmunoprecipitation (MI:0007)MINT-7013503: Chimaerin beta 1 (uniprotkb:Q80XD1-1) physically interacts (MI:0218) with EphA4 (uniprotkb:O08542) by anti tag coimmunoprecipitation (MI:0007)MINT-7013472: Chimaerin beta 2 (uniprotkb:Q80XD1-2) physically interacts (MI:0218) with EphA2 (uniprotkb:O43921) by anti tag coimmunoprecipitation (MI:0007)MINT-7013450: EphA1 (uniprotkb:Q60750) physically interacts (MI:0218) with EphA2 (uniprotkb:O43921) and Chimaerin beta 2 (uniprotkb:P52757-1) by anti tag coimmunoprecipitation (MI:0007)MINT-7013491: Chimaerin beta 2 (uniprotkb:Q80XD1-2) physically interacts (MI:0218) with EphA4 (uniprotkb:O08542) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

6.
Recent studies show LDL receptor-related protein 1B, LRP1B as a transducer of extracellular signals. Here, we identify six interacting partners of the LRP1B cytoplasmic region by yeast two-hybrid screen and confirmed their in vivo binding by immunoprecipitation. One of the partners, PICK1 recognizes the C-terminus of LRP1B and LRP1. The cytoplasmic domains of LRP1B are phosphorylated by PKCα about 100 times more efficiently than LRP1. Binding of PICK1 inhibits phosphorylation of LRP1B, but does not affect LRP1 phosphorylation.This study presents the possibility that LRP1B participates in signal transduction which PICK1 may regulate by inhibiting PKCα phosphorylation of LRP1B.

Structured summary

MINT-6801075: Lrp1b (uniprotkb:Q9JI18) physically interacts (MI:0218) with SNTG2 (uniprotkb:Q925E0) by two hybrid (MI:0018)MINT-6801030, MINT-6801468: Lrp1b (uniprotkb:Q9JI18) physically interacts (MI:0218) with Pick1 (uniprotkb:Q80VC8) by two hybrid (MI:0018)MINT-6801284: LRP1B4 (uniprotkb:Q9JI18) physically interacts (MI:0218) with RanBPM (uniprotkb:P69566) by anti tag coimmunoprecipitation (MI:0007)MINT-6801108: Lrp1b (uniprotkb:Q9JI18) physically interacts (MI:0218) with Grb7 (uniprotkb:Q03160) by two hybrid (MI:0018)MINT-6801090: Lrp1b (uniprotkb:Q9JI18) physically interacts (MI:0218) with RanBPM (uniprotkb:P69566) by two hybrid (MI:0018)MINT-6801008: Lrp1b (uniprotkb:Q9JI18) physically interacts (MI:0218) with Jip-1b (uniprotkb:Q9WVI9-1) by two hybrid (MI:0018)MINT-6801052: Lrp1b (uniprotkb:Q9JI18) physically interacts (MI:0218) with Jip-2 (uniprotkb:Q9ERE9) by two hybrid (MI:0018)MINT-6801258, MINT-6801271: LRP1B4 (uniprotkb:Q9JI18) physically interacts (MI:0218) with Pick1 (uniprotkb:Q80VC8) by anti tag coimmunoprecipitation (MI:0007)MINT-6801244: RanBPM (uniprotkb:P69566) physically interacts (MI:0218) with mLRP4 (uniprotkb:Q8VI56) by anti tag coimmunoprecipitation (MI:0007)MINT-6801131, MINT-6801158: LRP1B4 (uniprotkb:Q9JI18) physically interacts (MI:0218) with Jip-1b (uniprotkb:Q9WVI9-1) by anti tag coimmunoprecipitation (MI:0007)MINT-6801231: PICK1 (uniprotkb:Q80VC8) physically interacts (MI:0218) with mLRP4 (uniprotkb:Q8VI56) by anti tag coimmunoprecipitation (MI:0007)MINT-6801173: Jip-1b (uniprotkb:Q9WVI9-1) physically interacts (MI:0218) with mLRP4 (uniprotkb:Q8VI56) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

7.
8.
9.
Epstein-Barr virus latent membrane protein 1 (LMP1) activates NF-κB signaling pathways through two C-terminal regions, CTAR1 and CTAR2. Previous studies have demonstrated that BS69, a multidomain cellular protein, regulates LMP1/CTAR2-mediated NF-κB activation by interfering with the complex formation between TRADD and LMP1/CTAR2. Here, we found that BS69 directly interacted with the LMP1/CTAR1 domain and regulated LMP1/CTAR1-mediated NF-κB activation and subsequent IL-6 production. Regarding the mechanisms involved, we found that BS69 directly interacted with TRAF3, a negative regulator of NF-κB activation. Furthermore, small-interfering RNA-mediated knockdown experiments revealed that TRAF3 was involved in the BS69-mediated suppression of LMP1/CTAR1-induced NF-κB activation.

Structured summary

MINT-7556591: lmp1 (uniprotkb:P03230) physically interacts (MI:0915) with BS69 (uniprotkb:Q15326) by anti tag coimmunoprecipitation (MI:0007)MINT-7556646: TRAF6 (uniprotkb:Q9Y4K3) physically interacts (MI:0915) with BS69 (uniprotkb:Q15326) by anti tag coimmunoprecipitation (MI:0007)MINT-7556658, MINT-7556670: TRAF3 (uniprotkb:Q13114) physically interacts (MI:0915) with BS69 (uniprotkb:Q15326) by anti tag coimmunoprecipitation (MI:0007)MINT-7556607: TRAF1 (uniprotkb:Q13077) physically interacts (MI:0915) with BS69 (uniprotkb:Q15326) by anti tag coimmunoprecipitation (MI:0007)MINT-7556634: TRAF5 (uniprotkb:O00463) physically interacts (MI:0915) with BS69 (uniprotkb:Q15326) by anti tag coimmunoprecipitation (MI:0007)MINT-7556622: TRAF2 (uniprotkb:Q12933) physically interacts (MI:0915) with BS69 (uniprotkb:Q15326) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

10.
N-methyl-d-aspartate receptors (NMDARs) mediate excitatory synaptic transmission in the brain. Here we demonstrate interactions between the NR2A and NR2B subunits of NMDARs with flotillin-1 (flot-1), a lipid raft-associated protein. When mapped, analogous regions in the far distal C-termini of NR2A and NR2B mediate binding to flot-1, and the prohibitin homology domain of flot-1 contains binding sites for NR2A and NR2B. Although NR2B can also directly bind to flot-2 via a separate region of its distal C-terminus, NMDARs were significantly more colocalized with flot-1 than flot-2 in cultured hippocampal neurons. Overall, this study defines a novel interaction between NMDARs and flotillins.

Structured summary

MINT-7013094: NR2A (uniprotkb:Q00959), NR2B (uniprotkb:Q00960) and Flot2 (uniprotkb:Q9Z2S9) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7013147: Flot1 (uniprotkb:Q9Z1E1) physically interacts (MI:0218) with NR2A (uniprotkb:Q00959) by anti bait coimmunoprecipitation (MI:0006)MINT-7013189: Flot1 (uniprotkb:Q9Z1E1) physically interacts (MI:0218) with Flot2 (uniprotkb:Q9Z2S9) by anti bait coimmunoprecipitation (MI:0006)MINT-7013033: NR2A (uniprotkb:Q00959) physically interacts (MI:0218) with Flot1 (uniprotkb:Q9Z1E1) by two hybrid (MI:0018)MINT-7013178: NR1 (uniprotkb:P35439) physically interacts (MI:0218) with Flot2 (uniprotkb:Q9Z2S9) by anti bait coimmunoprecipitation (MI:0006)MINT-7013197, MINT-7013210: NR2B (uniprotkb:Q00960) and NR2A (uniprotkb:Q00959) physically interact (MI:0218) with Flot2 (uniprotkb:Q9Z2S9) by anti bait coimmunoprecipitation (MI:0006)MINT-7013002: NR2B (uniprotkb:Q00960) physically interacts (MI:0218) with Flot1 (uniprotkb:O08917) by two hybrid (MI:0018)MINT-7013117: Flot1 (uniprotkb:Q9Z1E1), NR2B (uniprotkb:Q00960) and NR2A (uniprotkb:Q00959) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7013171: NR1 (uniprotkb:P35439) physically interacts (MI:0218) with Flot1 (uniprotkb:Q9Z1E1) by anti bait coimmunoprecipitation (MI:0006)MINT-7013017: NR2A (uniprotkb:Q00959) physically interacts (MI:0218) with Flot1 (uniprotkb:O08917) by two hybrid (MI:0018)MINT-7013054: NR2B (uniprotkb:Q00960) physically interacts (MI:0218) with Flot1 (uniprotkb:Q9Z1E1) by two hybrid (MI:0018)MINT-7013129: Flot1 (uniprotkb:Q9Z1E1) physically interacts (MI:0218) with NR2B (uniprotkb:Q00960) by anti bait coimmunoprecipitation (MI:0006)MINT-7013155: NR1 (uniprotkb:P35439) physically interacts (MI:0218) with NR2B (uniprotkb:Q00960) by anti bait coimmunoprecipitation (MI:0006)MINT-7013074: NR2B (uniprotkb:Q00960) physically interacts (MI:0218) with Flot2 (uniprotkb:Q9Z2S9) by two hybrid (MI:0018)MINT-7013162: NR1 (uniprotkb:P35439) physically interacts (MI:0218) with NR2A (uniprotkb:Q00959) by anti bait coimmunoprecipitation (MI:0006)  相似文献   

11.
S100 proteins are a subfamily of the EF-hand type calcium sensing proteins, the exact biological functions of which have not been clarified yet. In this work, we have identified Cyclophilin 40 (CyP40) and FKBP52 (called immunophilins) as novel targets of S100 proteins. These immunophilins contain a tetratricopeptide repeat (TPR) domain for Hsp90 binding. Using glutathione-S transferase pull-down assays and immunoprecipitation, we have demonstrated that S100A1 and S100A2 specifically interact with the TPR domains of FKBP52 and CyP40 in a Ca2+-dependent manner, and lead to inhibition of the CyP40-Hsp90 and FKBP52-Hsp90 interactions. These findings have suggested that the Ca2+/S100 proteins are TPR-targeting regulators of the immunophilins-Hsp90 complex formations.

Structured summary

MINT-7710442: FKBP52 (uniprotkb:Q02790) physically interacts (MI:0915) with S100A6 (uniprotkb:P06703) by competition binding (MI:0405)MINT-7710192: Cyp40 (uniprotkb:P26882) binds (MI:0407) to S100A1 (uniprotkb:P35467) by pull down (MI:0096)MINT-7710412: Cyp40 (uniprotkb:P26882) physically interacts (MI:0915) with S100A2 (uniprotkb:P29034) by competition binding (MI:0405)MINT-7710374: FKBP52 (uniprotkb:Q02790) binds (MI:0407) to S100A2 (uniprotkb:P29034) by pull down (MI:0096)MINT-7710452: Cyp40 (uniprotkb:P26882) physically interacts (MI:0914) with S100A2 (uniprotkb:P29034) and Hsp90 (uniprotkb:P07900) by anti tag coimmunoprecipitation (MI:0007)MINT-7710387: FKBP52 (uniprotkb:Q02790) binds (MI:0407) to S100A6 (uniprotkb:P06703) by pull down (MI:0096)MINT-7710279: FKBP52 (uniprotkb:Q02790) physically interacts (MI:0915) with S100A1 (uniprotkb:P35467) by competition binding (MI:0405)MINT-7710224: FKBP52 (uniprotkb:Q02790) binds (MI:0407) to Hsp90 (uniprotkb:P07900) by pull down (MI:0096)MINT-7710464: Cyp40 (uniprotkb:P26882) physically interacts (MI:0914) with S100A6 (uniprotkb:P06703) and Hsp90 (uniprotkb:P07900) by anti tag coimmunoprecipitation (MI:0007)MINT-7710249: Cyp40 (uniprotkb:P26882) binds (MI:0407) to Hsp90 (uniprotkb:P07900) by pull down (MI:0096)MINT-7710422: Cyp40 (uniprotkb:P26882) physically interacts (MI:0915) with S100A6 (uniprotkb:P06703) by competition binding (MI:0405)MINT-7710348: Cyp40 (uniprotkb:P26882) binds (MI:0407) to S100A2 (uniprotkb:P29034) by pull down (MI:0096)MINT-7710208: FKBP52 (uniprotkb:Q02790) binds (MI:0407) to S100A1 (uniprotkb:P35467) by pull down (MI:0096)MINT-7710265: Cyp40 (uniprotkb:P26882) physically interacts (MI:0915) with S100A1 (uniprotkb:P35467) by competition binding (MI:0405)MINT-7710361: Cyp40 (uniprotkb:P26882) binds (MI:0407) to S100A6 (uniprotkb:P06703) by pull down (MI:0096)MINT-7710476: FKBP52 (uniprotkb:Q02790) physically interacts (MI:0914) with S100A2 (uniprotkb:P29034) and Hsp90 (uniprotkb:P07900) by anti tag coimmunoprecipitation (MI:0007)MINT-7710316: FKBP52 (uniprotkb:Q02790) physically interacts (MI:0914) with S100A1 (uniprotkb:P35467) and Hsp90 (uniprotkb:P07900) by anti tag coimmunoprecipitation (MI:0007)MINT-7710432: FKBP52 (uniprotkb:Q02790) physically interacts (MI:0915) with S100A2 (uniprotkb:P29034) by competition binding (MI:0405)MINT-7710488: FKBP52 (uniprotkb:Q02790) physically interacts (MI:0914) with S100A6 (uniprotkb:P06703) and Hsp90 (uniprotkb:P07900) by anti tag coimmunoprecipitation (MI:0007)MINT-7710329: S100A6 (uniprotkb:P14069) physically interacts (MI:0914) with FKBP52 (uniprotkb:P30416) and Cyp40 (uniprotkb:Q08752) by anti bait coimmunoprecipitation (MI:0006)MINT-7710295: Cyp40 (uniprotkb:P26882) physically interacts (MI:0914) with Hsp90 (uniprotkb:P07900) and S100A1 (uniprotkb:P35467) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

12.
13.
To further characterize the molecular events supporting the tumor suppressor activity of Scrib in mammals, we aim to identify new binding partners. We isolated MCC, a recently identified binding partner for β-catenin, as a new interacting protein for Scrib. MCC interacts with both Scrib and the NHERF1/NHERF2/Ezrin complex in a PDZ-dependent manner. In T47D cells, MCC and Scrib proteins colocalize at the cell membrane and reduced expression of MCC results in impaired cell migration. By contrast to Scrib, MCC inhibits cell directed migration independently of Rac1, Cdc42 and PAK activation. Altogether, these results identify MCC as a potential scaffold protein regulating cell movement and able to bind Scrib, β-catenin and NHERF1/2.

Structured summary

MINT-7211022: SCRIB (uniprotkb:Q14160) and MCC (uniprotkb:P23508) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7210609: SCRIB (uniprotkb:Q14160) physically interacts (MI:0915) with MCC (uniprotkb:P23508) by two hybrid (MI:0018)MINT-7210759, MINT-7210792: SCRIB (uniprotkb:Q14160) physically interacts (MI:0914) with PIX beta (uniprotkb:Q14155) by pull down (MI:0096)MINT-7210883, MINT-7210820: SCRIB (uniprotkb:Q14160) physically interacts (MI:0914) with MCC (uniprotkb:P23508) by anti bait coimmunoprecipitation (MI:0006)MINT-7210634, MINT-7210690, MINT-7210731: SCRIB (uniprotkb:Q14160) physically interacts (MI:0914) with MCC (uniprotkb:P23508) by pull down (MI:0096)MINT-7211267: E6 (uniprotkb:P06463) physically interacts (MI:0915) with SCRIB (uniprotkb:Q14160), SNX27 (uniprotkb:Q96L92), UTRN (uniprotkb:P46939), CASK (uniprotkb:O14936), DMD (uniprotkb:P11532) and Dlg (uniprotkb:Q12959) by pull down (MI:0096)MINT-7211237: MCC (uniprotkb:P23508) physically interacts (MI:0915) with SCRIB (uniprotkb:Q14160), EZR (uniprotkb:P15311), SNX27 (uniprotkb:Q96L92), NHERF1 (uniprotkb:O14745) and NHERF2 (uniprotkb:Q15599) by pull down (MI:0096)  相似文献   

14.
Chromodomain, helicase, DNA-binding protein 8 (CHD8) is an ATP-dependent chromatin remodeling enzyme that has been demonstrated to exist within a large protein complex which includes WDR5, Ash2L, and RbBP5, members of the Mixed Lineage Leukemia (MLL) histone modifying complexes. Here we show that CHD8 relocalizes to the promoter of the MLL regulated gene HOXA2 upon gene activation. Depletion of CHD8 enhances HOXA2 expression under activating conditions. Furthermore, depletion of CHD8 results in a loss of the WDR5/Ash2L/RbBP5 subcomplex, and consequently H3K4 trimethylation, at the HOXA2 promoter. These studies suggest that CHD8 alters HOXA2 gene expression and regulates the recruitment of chromatin modifying enzymes.

Structured summary

MINT-7542810: CHD8 (uniprotkb:Q9HCK8) physically interacts (MI:0915) with RbBP5 (uniprotkb:Q15291) by anti tag coimmunoprecipitation (MI:0007)MINT-7542794: CHD8 (uniprotkb:Q9HCK8) physically interacts (MI:0915) with WDR5 (uniprotkb:P61964) by anti tag coimmunoprecipitation (MI:0007)MINT-7542820: CHD8 (uniprotkb:Q9HCK8) physically interacts (MI:0915) with ASH2L (uniprotkb:Q9UBL3) by anti tag coimmunoprecipitation (MI:0007)MINT-7542769: CHD8 (uniprotkb:Q9HCK8) physically interacts (MI:0914) with RbBP5 (uniprotkb:Q15291), ASH2L (uniprotkb:Q9UBL3) and WDR5 (uniprotkb:P61964) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

15.
Recently, it was reported that the product of Birt-Hogg-Dubé syndrome gene (folliculin, FLCN) is directly phosphorylated by 5′-AMP-activated protein kinase (AMPK). In this study, we identified serine 62 (Ser62) as a phosphorylation site in FLCN and generated an anti-phospho-Ser62-FLCN antibody. Our analysis suggests that Ser62 phosphorylation is indirectly up-regulated by AMPK and that another residue is directly phosphorylated by AMPK. By binding with FLCN-interacting proteins (FNIP1 and FNIP2/FNIPL), Ser62 phosphorylation is increased. A phospho-mimic mutation at Ser62 enhanced the formation of the FLCN-AMPK complex. These results suggest that function(s) of FLCN-AMPK-FNIP complex is regulated by Ser62 phosphorylation.

Structured summary

MINT-7298145, MINT-7298166: Flcn (uniprotkb:Q76JQ2) physically interacts (MI:0915) with AMPK alpha 1 (uniprotkb:P54645) by anti tag coimmunoprecipitation (MI:0007)MINT-7298267: AMPK alpha 1 (uniprotkb:Q13131) phosphorylates (MI:0217) tsc2 (uniprotkb:P49816) by protein kinase assay (MI:0424)MINT-7298182: FNIP1 (uniprotkb:Q8TF40) physically interacts (MI:0915) with Flcn (uniprotkb:Q76JQ2) by anti tag coimmunoprecipitation (MI:0007)MINT-7298132: AMPK alpha 1 (uniprotkb:Q13131) phosphorylates (MI:0217) Flcn (uniprotkb:Q76JQ2) by protein kinase assay (MI:0424)MINT-7298229: FNIPL (uniprotkb:Q9P278) physically interacts (MI:0915) with Flcn (uniprotkb:Q76JQ2) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

16.
Chi-Ruei Huang 《FEBS letters》2010,584(15):3323-25107
The full-length pro-survival protein Mcl-1 predominantly resides on the outer membrane of mitochondria. Here, we identified a mitochondrial matrix-localized isoform of Mcl-1 that lacks 33 amino acid residues at the N-terminus which serve both as a mitochondrial targeting and processing signal. Ectopically-expressed Mcl-1 without the N-terminal 33 residues failed to enter the mitochondrial matrix but retained wt-like activities both for interaction with BH3-only proteins and anti-apoptosis. In contrast, the mitochondrial matrix-localized isoform failed to interact with BH3-only proteins and manifested an attenuated anti-apoptotic activity. This study reveals that import of Mcl-1 into the mitochondrial matrix results in the attenuation of Mcl-1’s anti-apoptotic function.

Structured summary

MINT-7965637: NOXA (uniprotkb:Q9JM54) physically interacts (MI:0915) with Mcl-1 (uniprotkb:P97287) by anti tag coimmunoprecipitation (MI:0007)MINT-7965699: Mcl-1 (uniprotkb:P97287) physically interacts (MI:0915) with Bim (uniprotkb:O43521) by anti bait coimmunoprecipitation (MI:0006)MINT-7965655: Mcl-1 (uniprotkb:P97287) physically interacts (MI:0915) with NOXA (uniprotkb:Q9JM54) by anti bait coimmunoprecipitation (MI:0006)MINT-7965711: Bim (uniprotkb:O43521) physically interacts (MI:0915) with Mcl-1 (uniprotkb:P97287) by anti tag coimmunoprecipitation (MI:0007)MINT-7965673: PUMA (uniprotkb:Q9BXH1) physically interacts (MI:0915) with Mcl-1 (uniprotkb:P97287) by anti tag coimmunoprecipitation (MI:0007)MINT-7965685: Mcl-1 (uniprotkb:P97287) physically interacts (MI:0915) with PUMA (uniprotkb:Q9BXH1) by anti bait coimmunoprecipitation (MI:0006)  相似文献   

17.
In naive T cells, Lck exerts a negative control on the ERK/MAPK pathway. We show that c-mip (c-maf inducing protein) interacts with the p85 subunit of PI3 kinase and inactivates Lck, which results in Erk1/2 and p38 MAPK activation. This effect is not enough to activate AP1 given the inability of ERK to migrate into the nucleus and to transactivate its target genes. We demonstrate that c-mip interacts with Dip1 and upregulates DAPK, which blocks the nuclear translocation of ERK1/2. This dual effect of c-mip is unique and might represent a potential mechanism to prevent the development of an immune response.

Structured summary

MINT-7383650: p85 (uniprotkb:P27986) physically interacts (MI:0915) with c-Mip (uniprotkb:Q8IY22) by anti bait coimmunoprecipitation (MI:0006)MINT-7383661: c-Mip (uniprotkb:Q8IY22) physically interacts (MI:0915) with p85 (uniprotkb:P27986) by anti tag coimmunoprecipitation (MI:0007)MINT-7383676: p85 (uniprotkb:P27986) physically interacts (MI:0915) with p110 (uniprotkb:P42336) by anti bait coimmunoprecipitation (MI:0006)MINT-7383689, MINT-7383711: Dip-1 (uniprotkb:Q80SY4) physically interacts (MI:0915) with c-Mip (uniprotkb:Q8IY22) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

18.
Daniela Tosoni 《FEBS letters》2009,583(2):293-300
CAP (c-Cbl associated protein)/ponsin belongs to a family of adaptor proteins implicated in cell adhesion and signaling. Here we show that CAP binds to and co-localizes with the essential endocytic factor dynamin. We demonstrate that CAP promotes the formation of dynamin-decorated tubule like structures, which are also coated with actin filaments. Accordingly, we found that the expression of CAP leads to the inhibition of dynamin-mediated endocytosis and increases EGFR stability. Thus, we suggest that CAP may coordinate the function of dynamin with the regulation of the actin cytoskeleton during endocytosis.

Structured summary:

MINT-6804322: CAP (uniprotkb:Q9BX66) physically interacts (MI:0218) with Cbl (uniprotkb:Q8K4S7) and dynamin 2 (uniprotkb:P39052) by pull down (MI:0096)MINT-6804285: CAP (uniprotkb:Q9BX66) physically interacts (MI:0218) with FAK (uniprotkb:O35346), vinculin (uniprotkb:P85972) and dynamin 2 (uniprotkb:P39052) by pull down (MI:0096)MINT-6804245, MINT-6804259, MINT-6804272: CAP (uniprotkb:Q9BX66) physically interacts (MI:0218) with dynamin 2 (uniprotkb:P39052) by pull down (MI:0096)MINT-6804344: CAP (uniprotkb:Q9BX66) physically interacts (MI:0218) with dynamin 2 (uniprotkb:P50570) by anti tag coimmunoprecipitation (MI:0007)MINT-6804371: dynamin 1 (uniprotkb:P21575) physically interacts (MI:0218) with CAP (uniprotkb:O35413) by anti bait coimmunoprecipitation (MI:0006)MINT-6804446, MINT-6804464: F-actin (uniprotkb:P60709), CAP (uniprotkb:Q9BX66) and dynamin 2 (uniprotkb:P50570) colocalize (MI:0403) by fluorescence microscopy (MI:0416)  相似文献   

19.
Hee-Won Seo 《FEBS letters》2009,583(1):55-60
The interplay between hypoxia-inducible factor-1α (HIF-1α) and histone deacetylase (HDACs) have been well studied; however, the mechanism of cross-talk is unclear. Here, we investigated the roles of HDAC4 and HDAC5 in the regulation of HIF-1α function and its associated mechanisms. HDAC4 and HDAC5 enhanced transactivation by HIF-1α without stabilizing HIF-1α. HDAC4 and HDAC5 physically associated with HIF-1α through the inhibitory domain (ID) that is the binding site for factor inhibiting HIF-1 (FIH-1). In the presence of these HDACs, binding of HIF-1α to FIH-1 decreased, whereas binding to p300 increased. These results indicate that HDAC4 and HDAC5 increase the transactivation function of HIF-1α by promoting dissociation of HIF-1α from FIH-1 and association with p300.

Structured summary:

MINT-6802187:HIF1 alpha (uniprotkb:Q16665) physically interacts (MI:0218) with FIH1 (uniprotkb:Q9NWT6) by anti bait coimmunoprecipitation (MI:0006)MINT-6802058:HIF1 alpha (uniprotkb:Q16665) physically interacts (MI:0218) with HDAC4 (uniprotkb:P56524) by pull down (MI:0096)MINT-6802021:HIF1 alpha (uniprotkb:Q61221) physically interacts (MI:0218) with HDAC4 (uniprotkb:P56524) by anti bait coimmunoprecipitation (MI:0006)MINT-6802036:HIF1 alpha (uniprotkb:Q61221) physically interacts (MI:0218) with HDAC5 (uniprotkb:Q9UQL6) by anti bait coimmunoprecipitation (MI:0006)MINT-6802102:HIF1 alpha (uniprotkb:Q16665) physically interacts (MI:0218) with HDAC5 (uniprotkb:Q9UQL6) by pull down (MI:0096)MINT-6802121, MINT-6802156:P300 (uniprotkb:Q09472) physically interacts (MI:0218) with HIF1 alpha (uniprotkb:Q16665) by anti bait coimmunoprecipitation (MI:0006)  相似文献   

20.
Cell cycle regulation of the mammalian CDK activator RINGO/Speedy A   总被引:1,自引:0,他引:1  
Ana Dinarina 《FEBS letters》2009,583(17):2772-2778
Cell cycle progression is regulated by cyclin-dependent kinases (CDKs), whose activation requires the binding of regulatory subunits named cyclins. RINGO/Speedy A is a mammalian protein that has no amino acid sequence homology with cyclins but can activate CDKs. Here we show that RINGO/Speedy A is a highly unstable protein whose expression and phosphorylation are periodically regulated during the cell cycle. RINGO/Speedy A is degraded by the proteasome and the process involves the ubiquitin ligase SCFSkp2. Overexpression of a stabilized RINGO/Speedy A form results in the accumulation of high levels of RINGO/Speedy A at late stages of mitosis, which interfere with cytokinesis and chromosome decondensation. Our data show that tight regulation of RINGO/Speedy A is important for the somatic cell cycle.

Structured summary

MINT-7226413:RINGO A (uniprotkb:Q5MJ70) physically interacts (MI:0914) with Ubiquitin (uniprotkb:P62988) by anti bait coimmunoprecipitation (MI:0006)MINT-7226431, MINT-7226448:RINGO A (uniprotkb:Q5MJ70) physically interacts (MI:0914) with Skp2 (uniprotkb:Q13309) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号