首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cylindrical chaperonin GroEL and its lid-shaped cofactor GroES of Escherichia coli have an essential role in assisting protein folding by transiently encapsulating non-native substrate in an ATP-regulated mechanism. It remains controversial whether the chaperonin system functions solely as an infinite dilution chamber, preventing off-pathway aggregation, or actively enhances folding kinetics by modulating the folding energy landscape. Here we developed single-molecule approaches to distinguish between passive and active chaperonin mechanisms. Using low protein concentrations (100 pM) to exclude aggregation, we measured the spontaneous and GroEL/ES-assisted folding of double-mutant maltose binding protein (DM-MBP) by single-pair fluorescence resonance energy transfer and fluorescence correlation spectroscopy. We find that GroEL/ES accelerates folding of DM-MBP up to 8-fold over the spontaneous folding rate. Accelerated folding is achieved by encapsulation of folding intermediate in the GroEL/ES cage, independent of repetitive cycles of protein binding and release from GroEL. Moreover, photoinduced electron transfer experiments provided direct physical evidence that the confining environment of the chaperonin restricts polypeptide chain dynamics. This effect is mediated by the net-negatively charged wall of the GroEL/ES cavity, as shown using the GroEL mutant EL(KKK2) in which the net-negative charge is removed. EL(KKK2)/ES functions as a passive cage in which folding occurs at the slow spontaneous rate. Taken together our findings suggest that protein encapsulation can accelerate folding by entropically destabilizing folding intermediates, in strong support of an active chaperonin mechanism in the folding of some proteins. Accelerated folding is biologically significant as it adjusts folding rates relative to the speed of protein synthesis.  相似文献   

2.
The GroEL/GroES protein folding chamber is formed and dissociated by ATP binding and hydrolysis. ATP hydrolysis in the GroES-bound (cis) ring gates entry of ATP into the opposite unoccupied trans ring, which allosterically ejects cis ligands. While earlier studies suggested that hydrolysis of cis ATP is the rate-limiting step of the cycle (t½ ∼ 10 s), a recent study suggested that ADP release from the cis ring may be rate-limiting (t½ ∼ 15-20 s). Here we have measured ADP release using a coupled enzyme assay and observed a t½ for release of ?4-5 s, indicating that this is not the rate-limiting step of the reaction cycle.  相似文献   

3.
Development of a tightly packed hydrophobic core drives the folding of water-soluble globular proteins and is a key determinant of protein stability. Despite this, there remains much to be learnt about how and when the hydrophobic core becomes desolvated and tightly packed during protein folding. We have used the bacterial immunity protein Im7 to examine the specificity of hydrophobic core packing during folding. This small, four-helix protein has previously been shown to fold via a compact three-helical intermediate state. Here, overpacking substitutions, in which residue side-chain size is increased, were used to examine the specificity and malleability of core packing in the folding intermediate and rate-limiting transition state. In parallel, polar groups were introduced into the Im7 hydrophobic core via Val→Thr or Phe→Tyr substitutions and used to determine the solvation status of core residues at different stages of folding. Over 30 Im7 variants were created allowing both series of substitutions to cover all regions of the protein structure. Φ-value analysis demonstrated that the major changes in Im7 core solvation occur prior to the population of the folding intermediate, with key regions involved in docking of the short helix III remaining solvent-exposed until after the rate-limiting transition state has been traversed. In contrast, overpacking core residues revealed that some regions of the native Im7 core are remarkably malleable to increases in side-chain volume. Overpacking residues in other regions of the Im7 core result in substantial (> 2.5 kJ mol− 1) destabilisation of the native structure or even prevents efficient folding to the native state. This study provides new insights into Im7 folding; demonstrating that whilst desolvation occurs early during folding, adoption of a specifically packed core is achieved only at the very last step in the folding mechanism.  相似文献   

4.
Elucidation of the high-resolution structures of folding intermediates is a necessary but difficult step toward the ultimate understanding of the mechanism of protein folding. Here, using hydrogen-exchange-directed protein engineering, we populated the folding intermediate of the Thermus thermophilus ribonuclease H, which forms before the rate-limiting transition state, by removing the unfolded regions of the intermediate, including an α-helix and two β-strands (51 folded residues). Using multidimensional NMR, we solved the structure of this intermediate mimic to an atomic resolution (backbone rmsd, 0.51 Å). It has a native-like backbone topology and shows some local deviations from the native structure, revealing that the structure of the folded region of an early folding intermediate can be as well defined as the native structure. The topological parameters calculated from the structures of the intermediate mimic and the native state predict that the intermediate should fold on a millisecond time scale or less and form much faster than the native state. Other factors that may lead to the slow folding of the native state and the accumulation of the intermediate before the rate-limiting transition state are also discussed.  相似文献   

5.
6.
Cytochrome c has served as a paradigm for the study of protein stability, folding, and molecular evolution, but it remains unclear how these aspects of the protein are related. For example, while the bovine and equine cytochromes c are known to have different stabilities, and possibly different folding mechanisms, it is not known how these differences arise from just three amino acid substitutions introduced during divergence. Using site-selectively incorporated carbon-deuterium bonds, we show that like the equine protein, bovine cytochrome c is induced to unfold by guanidine hydrochloride via a stepwise mechanism, but it does not populate an intermediate as is observed with the equine protein. The increased stability also results in more similar free energies of unfolding observed at different sites within the protein, giving the appearance of a more concerted mechanism. Furthermore, we show that the differences in stability and folding appear to result from a single amino acid substitution that stabilizes a helix by allowing for increased solvation of its N-terminus.  相似文献   

7.
Like most extracellular bacterial proteases, Streptomyces griseus protease B (SGPB) and alpha-lytic protease (alphaLP) are synthesized with covalently attached pro regions necessary for their folding. In this article, we characterize the folding free energy landscape of SGPB and compare it to the folding landscapes of alphaLP and trypsin, a mammalian homolog that folds independently of its zymogen peptide. In contrast to the thermodynamically stable native state of trypsin, SGPB and alphaLP fold to native states that are thermodynamically marginally stable or unstable, respectively. Instead, their apparent stability arises kinetically, from unfolding free energy barriers that are both large and highly cooperative. The unique unfolding transitions of SGPB and alphaLP extend their functional lifetimes under highly degradatory conditions beyond that seen for trypsin; however, the penalty for evolving kinetic stability is remarkably large in that each factor of 2.4-8 in protease resistance is accompanied by a cost of ~10(5) in the spontaneous folding rate and ~5-9 kcal/mole in thermodynamic stability. These penalties have been overcome by the coevolution of increasingly effective pro regions to facilitate folding. Despite these costs, kinetic stability appears to be a potent mechanism for developing native-state properties that maximize protease longevity.  相似文献   

8.
The composition of the lipid bilayer is increasingly being recognised as important for the regulation of integral membrane protein folding and function, both in vivo and in vitro. The folding of only a few membrane proteins, however, has been characterised in different lipid environments. We have refolded the small multidrug transporter EmrE in vitro from a denatured state to a functional protein and monitored the influence of lipids on the folding process. EmrE is part of a multidrug resistance protein family that is highly conserved amongst bacteria and is responsible for bacterial resistance to toxic substances. We find that the secondary structure of EmrE is very stable and only small amounts are denatured even in the presence of unusually high denaturant concentrations involving a combination of 10 M urea and 5% SDS. Substrate binding by EmrE is recovered after refolding this denatured protein into dodecylmaltoside detergent micelles or into lipid vesicles. The yield of refolded EmrE decreases with lipid bilayer compositional changes that increase the lateral chain pressure within the bilayer, whilst conversely, the apparent rate of folding seems to increase. These results add further weight to the hypothesis that an increased lateral chain pressure hinders protein insertion across the bilayer. Once the protein is inserted, however, the greater pressure on the transmembrane helices accelerates correct packing and final folding. This work augments the relatively small number of biophysical folding studies in vitro on helical membrane proteins.  相似文献   

9.
Cytochrome c6A is a eukaryotic member of the Class I cytochrome c family possessing a high structural homology with photosynthetic cytochrome c6 from cyanobacteria, but structurally and functionally distinct through the presence of a disulfide bond and a heme mid-point redox potential of + 71 mV (vs normal hydrogen electrode). The disulfide bond is part of a loop insertion peptide that forms a cap-like structure on top of the core α-helical fold. We have investigated the contribution of the disulfide bond to thermodynamic stability and (un)folding kinetics in cytochrome c6A from Arabidopsis thaliana by making comparison with a photosynthetic cytochrome c6 from Phormidium laminosum and through a mutant in which the Cys residues have been replaced with Ser residues (C67/73S). We find that the disulfide bond makes a significant contribution to overall stability in both the ferric and ferrous heme states. Both cytochromes c6A and c6 fold rapidly at neutral pH through an on-pathway intermediate. The unfolding rate for the C67/73S variant is significantly increased indicating that the formation of this region occurs late in the folding pathway. We conclude that the disulfide bridge in cytochrome c6A acts as a conformational restraint in both the folding intermediate and native state of the protein and that it likely serves a structural rather than a previously proposed catalytic role.  相似文献   

10.
A dispersion of melting temperatures at pH 5.3 for individual residues of the BBL protein domain has been adduced as evidence for barrier-free downhill folding. Other members of the peripheral subunit domain family fold cooperatively at pH 7. To search for possible causes of anomalies in BBL's denaturation behavior, we measured the pH titration of individual residues by heteronuclear NMR. At 298 K, the pKa of His142 was close to that of free histidine at 6.47 ± 0.04, while that of the more buried His166 was highly perturbed at 5.39 ± 0.02. Protonation of His166 is thus energetically unfavorable and destabilizes the protein by ∼ 1.5 kcal/mol. Changes in Cα secondary shifts at pH 5.3 showed a decrease in helicity of the C-terminus of helix 2, where His166 is located, which was accompanied by a measured decrease of 1.1 ± 0.2 kcal/mol in stability from pH 7 to 5.3. Protonation of His166 perturbs, therefore, the structure of BBL. Only ∼ 1% of the structurally perturbed state will be present at the biologically relevant pH 7.6. Experiments at pH 5.3 report on a near-equal mixture of the two different native states. Further, at this pH, small changes of pH and pKa induced by changes in temperature will have near-maximal effects on pH-dependent conformational equilibria and on propagation of experimental error. Accordingly, conventional barrier-limited folding predicts some dispersion of measured thermal unfolding curves of individual residues at pH 5.3.  相似文献   

11.
Autotransporters are a superfamily of virulence proteins produced by Gram-negative bacteria. They consist of an N-terminal β-helical domain (“passenger domain”) that is secreted into the extracellular space and a C-terminal β-barrel domain (“β-domain”) that anchors the protein to the outer membrane. Because the periplasm lacks ATP, vectorial folding of the passenger domain in a C-to-N-terminal direction has been proposed to drive the secretion reaction. Consistent with this hypothesis, mutations that disrupt the folding of the C terminus of the passenger domain of the Escherichia coli O157:H7 autotransporter EspP have been shown to cause strong secretion defects. Here, we show that point mutations introduced at specific locations near the middle or N terminus of the EspP β-helix that perturb folding also impair secretion, but to a lesser degree. Surprisingly, we found that even multiple mutations that potentially abolish the stability of several consecutive rungs of the β-helix only moderately reduce secretion efficiency. Although these results provide evidence that the free energy derived from passenger domain folding contributes to secretion efficiency, they also suggest that a significant fraction of the energy required for secretion is derived from another source.  相似文献   

12.
Small proteins often fold in an apparent two-state manner with the absence of detectable early-folding intermediates. Recently, using native-state hydrogen exchange, intermediates that exist after the rate-limiting transition state have been identified for several proteins. However, little is known about the folding kinetics from these post-transition intermediates to their corresponding native states. Herein, we have used protein engineering and a laser-induced temperature-jump (T-jump) technique to investigate this issue and have applied it to Rd-apocyt b(562) , a four-helix bundle protein. Previously, it has been shown that Rd-apocyt b(562) folds via an on-pathway hidden intermediate, which has only the N-terminal helix unfolded. In the present study, a double mutation (V16G/I17A) in the N-terminal helix of Rd-apocyt b(562) was made to further increase the relative population of this intermediate state at high temperature by selectively destabilizing the native state. In the circular dichroism thermal melting experiment, this mutant showed apparent two-state folding behavior. However, in the T-jump experiment, two kinetic phases were observed. Therefore, these results are in agreement with the idea that a folding intermediate is populated on the folding pathway of Rd-apocyt b(562) . Moreover, it was found that the exponential growth rate of the native state from this intermediate state is roughly (25 microsec)(-1) at 65 degrees C.  相似文献   

13.
Using small-angle X-ray scattering combined with a continuous-flow mixing device, we monitored the microsecond compaction dynamics in the folding of Escherichia coli dihydrofolate reductase, an alpha/beta-type protein. A significant collapse of the radius of gyration from 30 A to 23.2 A occurs within 300 micros after the initiation of refolding by a urea dilution jump. The subsequent folding after the major chain collapse occurs on a considerably longer time-scale. The protein folding trajectories constructed by comparing the development of the compactness and the secondary structure suggest that the specific hydrophobic collapse model rather than the framework model better explains the experimental observations. The folding trajectory of this alpha/beta-type protein is located between those of alpha-helical and beta-sheet proteins, suggesting that native structure determines the folding landscape.  相似文献   

14.
The diseases caused by dermatophytes are common among several other infections which cause serious threat to human health. It is evident that enzyme squalene epoxidase is responsible for prolonged dermatophyte infection and it is appealing to note that this enzyme is also responsible for fatty acid synthesis in these groups of fungi. In the present study, terbinafine drug which targets enzyme squalene epoxidase has been explored to design its various novel analogues. The present study suggests that many more prominent drug analogues could be constituted which may be crucial towards designing new drug candidates. In the present study, we have designed a series of such analogues viz. [(2E)-6,6-dimethylhept-2-en-4-yn-1-yl](methyl)(naphthalen-1-ylmethyl)amine, N-[8-({[(2E)-6,6-dimethylhept-2-en-4-yn-1-yl](methyl)amino}methyl)naphthalen-1-yl]-2-(sulfoamino) acetamide, {[4-(dihydroxyamino)-8-({[(2E)-6,6-dimethylhept-2-en-4-yn-1-yl](methyl)amino}methyl)naphthalen-1-yl]sulfanyl}methanol and (R)-{[4-({[(2E,6R)-6,7-dimethyloct-2-en-4-yn-1-yl](methyl)amino}methyl)-5-[(hydroxysulfamoyl)amino]naphthalen-1-yl]amino}sulfinic acid. Moreover, further by molecular docking approach the binding between enzyme and designed analogues was further analysed. The present preliminary report suggested a considerably good docking interaction score of −338.75 kcal/mol between terbinafine and squalene epoxidase from Trichophyton rubrum. This preliminary study implies that few designed candidate ligands can be effectual towards the activity of this enzyme and can play crucial role in pathogenesis control of T. rubrum.  相似文献   

15.
Bacterial virulence depends on the correct folding of surface-exposed proteins, a process catalyzed by the thiol-disulfide oxidoreductase DsbA, which facilitates the synthesis of disulfide bonds in Gram-negative bacteria. The Neisseria meningitidis genome possesses three genes encoding active DsbAs: DsbA1, DsbA2 and DsbA3. DsbA1 and DsbA2 have been characterized as lipoproteins involved in natural competence and in host interactive biology, while the function of DsbA3 remains unknown.This work reports the biochemical characterization of the three neisserial enzymes and the crystal structures of DsbA1 and DsbA3. As predicted by sequence homology, both enzymes adopt the classic Escherichia coli DsbA fold. The most striking feature shared by all three proteins is their exceptional oxidizing power. With a redox potential of − 80 mV, the neisserial DsbAs are the most oxidizing thioredoxin-like enzymes known to date. Consistent with these findings, thermal studies indicate that their reduced form is also extremely stable. For each of these enzymes, this study shows that a threonine residue found within the active-site region plays a key role in dictating this extraordinary oxidizing power. This result highlights how residues located outside the CXXC motif may influence the redox potential of members of the thioredoxin family.  相似文献   

16.
The current work employs a novel approach for characterizing structural changes during the refolding of acid-denatured cytochrome c (cyt c). At various time points (ranging from 10 ms to 5 min) after a pH jump from 2 to 7, the protein is exposed to a microsecond hydroxyl radical (·OH) pulse that induces oxidative labeling of solvent-exposed side chains. Most of the covalent modifications appear as + 16-Da adducts that are readily detectable by mass spectrometry. The overall extent of labeling decreases as folding proceeds, reflecting dramatic changes in the accessibility of numerous residues. Peptide mapping and tandem mass spectrometry reveal that the side chains of C14, C17, H33, F46, Y48, W59, M65, Y67, Y74, M80, I81, and Y97 are among the dominant sites of oxidation. Temporal changes in the accessibility of these residues are consistent with docking of the N- and C-terminal helices as early as 10 ms. However, structural reorganization at the helix interface takes place up to at least 1 s. Initial misligation of the heme iron by H33 leads to distal crowding, giving rise to low solvent accessibility of the displaced (native) M80 ligand and the adjacent I81. W59 retains a surprisingly high level of accessibility long into the folding process, indicating the presence of packing defects in the hydrophobically collapsed core. Overall, the results of this work are consistent with previous hydrogen/deuterium exchange studies that proposed a foldon-mediated mechanism. The structural data obtained by ·OH labeling monitor the packing and burial of side chains, whereas hydrogen/deuterium exchange primarily monitors the formation of secondary structure elements. Hence, the two approaches yield complementary information. Considering the very short time scale of pulsed oxidative labeling, an extension of the approach used here to sub-millisecond folding studies should be feasible.  相似文献   

17.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and RuBisCO-like protein (RLP) catalyze similar enolase-type reactions. Both enzymes have a conserved non-catalytic Lys122 or Arg122 on the β-strand E lying in the interface between the N- and C-terminal domains. We used site-directed mutagenesis to analyze the function of Lys122 in the form II Rhodospirillum rubrum RuBisCO (RrRuBisCO) and Bacillus subtilis RLP (BsRLP). The K122R mutant of RrRuBisCO had a 40% decrease in kcat for carboxylase activity, a 2-fold increase in Km for CO2, and a 1.9-fold increase in Km for ribulose-1,5-bisphosphate. K122M and K122E mutants of RrRuBisCO were almost inactive. None of the substitutions affected the thermal stability of RrRuBisCO. The K122R mutant of BsRLP had a 32% decrease in kcat and lower thermal stability than the wild-type enzyme. The K122M and K122E mutants of BsRLP failed to form a catalytic dimer. Our results suggest that the lysine residue is essential for function in both enzymes, although in each case, its role is likely distinct.  相似文献   

18.
Previous results indicate that the folding pathways of cytochrome c and other proteins progressively build the target native protein in a predetermined stepwise manner by the sequential formation and association of native-like foldon units. The present work used native state hydrogen exchange methods to investigate a structural anomaly in cytochrome c results that suggested the concerted folding of two segments that have little structural relationship in the native protein. The results show that the two segments, an 18-residue omega loop and a 10-residue helix, are able to unfold and refold independently, which allows a branch point in the folding pathway. The pathway that emerges assembles native-like foldon units in a linear sequential manner when prior native-like structure can template a single subsequent foldon, and optional pathway branching is seen when prior structure is able to support the folding of two different foldons.  相似文献   

19.
Characterization of the transition-state ensemble and the nature of the free-energy barrier for protein folding are areas of intense activity and some controversy. A key issue that has emerged in recent years is the width of the free-energy barrier and the susceptibility of the transition state to movement. Here we report denaturant-induced and temperature-dependent folding studies of a small mixed α-β protein, the N-terminal domain of L9 (NTL9). The folding of NTL9 was determined using fluorescence-detected stopped-flow fluorescence measurements conducted at seven different temperatures between 11 and 40 °C. Plots of the log of the observed first-order rate constant versus denaturant concentration, “chevron plots,” displayed the characteristic V shape expected for two-state folding. There was no hint of deviation from linearity even at the lowest denaturant concentrations. The relative position of the transition state, as judged by the Tanford β parameter, βT, shifts towards the native state as the temperature is increased. Analysis of the temperature dependence of the kinetic and equilibrium m values indicates that the effect is due to significant movement of the transition state and also includes a contribution from temperature-dependent ground-state effects. Analysis of the Leffler plots, plots of ΔGversus ΔG°, and their cross-interaction parameters confirms the transition-state movement. Since the protein is destabilized at high temperature, the shift represents a temperature-dependent Hammond effect. This provides independent confirmation of a recent theoretical prediction. The magnitude of the temperature-denaturant cross-interaction parameter is larger for NTL9 than has been reported for the few other cases studied. The implications for temperature-dependent studies of protein folding are discussed.  相似文献   

20.
Frederik A.J. Rotsaert 《BBA》2008,1777(2):211-219
We have compared the efficacy of inhibition of the cytochrome bc1 complexes from yeast and bovine heart mitochondria and Paracoccus denitrificans by antimycin, ilicicolin H, and funiculosin, three inhibitors that act at the quinone reduction site at center N of the enzyme. Although the three inhibitors have some structural features in common, they differ significantly in their patterns of inhibition. Also, while the overall folding pattern of cytochrome b around center N is similar in the enzymes from the three species, amino acid sequence differences create sufficient structural differences so that there are striking differences in the inhibitors binding to the three enzymes. Antimycin is the most tightly bound of the three inhibitors, and binds stoichiometrically to the isolated enzymes from all three species under the cytochrome c reductase assay conditions. Ilicicolin H also binds stoichiometrically to the yeast enzyme, but binds approximately 2 orders of magnitude less tightly to the bovine enzyme and is essentially non-inhibitory to the Paracoccus enzyme. Funiculosin on the other hand inhibits the yeast and bovine enzymes similarly, with IC50 ∼ 10 nM, while the IC50 for the Paracoccus enzyme is more than 10-fold higher. Similar differences in inhibitor efficacy were noted in bc1 complexes from yeast mutants with single amino acid substitutions at the center N site, although the binding affinity of quinone and quinol substrates were not perturbed to a degree that impaired catalytic function in the variant enzymes. These results reveal a high degree of specificity in the determinants of ligand-binding at center N, accompanied by sufficient structural plasticity for substrate binding as to not compromise center N function. The results also demonstrate that, in principle, it should be possible to design novel inhibitors targeted toward center N of the bc1 complex with appropriate species selectivity to allow their use as drugs against pathogenic fungi and parasites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号