首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
端粒维持研究进展   总被引:1,自引:0,他引:1  
端粒是现代生物学的研究热点,与肿瘤发生、基因表达调控、衰老有着密切的关系。本综述介绍当前对端粒维持机理研究的进展。在端粒维持过程中有两类重要的蛋白:端粒相关蛋白和端粒酶。端粒相关蛋白是直接或间接与端粒结合的蛋白 ,在维持端粒稳定性方面有重要作用。端粒酶,特别是其催化亚基hTERT,在端粒延长过程中起着不可替代的作用,与细胞永生化和癌变密切相关。此外还介绍了在某些细胞中存在的不依赖端粒酶的端粒延长机  相似文献   

2.
Telomeres are the protein-nucleic acid structures at the ends of eukaryote chromosomes. Tandem repeats of telomeric DNA are templated by the RNA component (TER1) of the ribonucleoprotein telomerase. These repeats are bound by telomere binding proteins, which are thought to interact with other factors to create a higher-order cap complex that stabilizes the chromosome end. In the budding yeast Kluyveromyces lactis, the incorporation of certain mutant DNA sequences into telomeres leads to uncapping of telomeres, manifested by dramatic telomere elongation and increased length heterogeneity (telomere deregulation). Here we show that telomere deregulation leads to enlarged, misshapen "monster" cells with increased DNA content and apparent defects in cell division. However, such deregulated telomeres became stabilized at their elongated lengths upon addition of only a few functionally wild-type telomeric repeats to their ends, after which the frequency of monster cells decreased to wild-type levels. These results provide evidence for the importance of the most terminal repeats at the telomere in maintaining the cap complex essential for normal telomere function. Analysis of uncapped and capped telomeres also show that it is the deregulation resulting from telomere uncapping, rather than excessive telomere length per se, that is associated with DNA aberrations and morphological defects.  相似文献   

3.
4.
Telomerase, a ribonucleoprotein, is responsible for the maintenance of eukaryotic genome integrity by replicating the ends of chromosomes. The core enzyme comprises the conserved protein TERT and an RNA subunit (TER) that, in contrast, displays large variations in size and structure. Here, we report the identification of the telomerase RNA from thermotolerant yeast Hansenula polymorpha (HpTER) and describe its structural features. We show further that the H. polymorpha telomerase reverse transcribes the template beyond the predicted boundary and adds a nontelomeric dT in vitro. Sequencing of the chromosomal ends revealed that this nucleotide is specifically present as a terminal nucleotide at the 3′ end of telomeres. Mutational analysis of HpTER confirmed that the incorporation of dT functions to limit telomere length in this species.  相似文献   

5.
Telomere lengths are maintained in many cancer cells by the ribonucleoprotein enzyme telomerase but can be further elongated by increasing telomerase activity through the overexpression of telomerase components. We report here that increased telomerase activity results in increased telomere length that eventually reaches a plateau, accompanied by the generation of telomere length heterogeneity and the accumulation of extrachromosomal telomeric repeat DNA, principally in the form of telomeric circles (t-circles). Telomeric DNA was observed in promyelocytic leukemia bodies, but no intertelomeric copying or telomere exchange events were identified, and there was no increase in telomere dysfunction-induced foci. These data indicate that human cells possess a mechanism to negatively regulate telomere length by trimming telomeric DNA from the chromosome ends, most likely by t-loop resolution to form t-circles. Additionally, these results indicate that some phenotypic characteristics attributed to alternative lengthening of telomeres (ALT) result from increased mean telomere length, rather than from the ALT mechanism itself.  相似文献   

6.
7.
The budding yeast Cdc13, Stn1 and Ten1 (CST) proteins are proposed to function as an RPA-like complex at telomeres that protects (‘caps'') chromosome ends and regulates their elongation by telomerase. We show that Stn1 has a critical function in both processes through the deployment of two separable domains. The N terminus of Stn1 interacts with Ten1 and carries out its essential capping function. The C terminus of Stn1 binds both Cdc13 and Pol12, and we present genetic data indicating that the Stn1–Cdc13 interaction is required to limit continuous telomerase action. Stn1 telomere association, similar to that of Cdc13, peaks during S phase. Significantly, the magnitude of Stn1 telomere binding is independent of telomere TG tract length, suggesting that the negative effect of Stn1 on telomerase action might be regulated by a modification of CST activity or structure in cis at individual telomeres. Genetic analysis suggests that the Tel1 kinase exerts an effect in parallel with the Stn1 C terminus to counteract its inhibition of telomerase. These data provide new insights into the coordination of telomere capping and telomerase regulation.  相似文献   

8.
Linear chromosomes shorten in every round of replication. In Drosophila, telomere-specialized long interspersed retrotransposable elements (LINEs) belonging to the jockey clade offset this shortening by forming head-to-tail arrays at Drosophila telomere ends. As such, these telomeric LINEs have been considered adaptive symbionts of the genome, protecting it from premature decay, particularly as Drosophila lacks a conventional telomerase holoenzyme. However, as reviewed here, recent work reveals a high degree of variation and turnover in the telomere-specialized LINE lineages across Drosophila. There appears to be no absolute requirement for LINE activity to maintain telomeres in flies, hence the suggestion that the telomere-specialized LINEs may instead be neutral or in conflict with the host, rather than adaptive.  相似文献   

9.
Wang F  Yin Y  Ye X  Liu K  Zhu H  Wang L  Chiourea M  Okuka M  Ji G  Dan J  Zuo B  Li M  Zhang Q  Liu N  Chen L  Pan X  Gagos S  Keefe DL  Liu L 《Cell research》2012,22(4):757-768
Rejuvenation of telomeres with various lengths has been found in induced pluripotent stem cells (iPSCs). Mechanisms of telomere length regulation during induction and proliferation of iPSCs remain elusive. We show that telomere dynamics are variable in mouse iPSCs during reprogramming and passage, and suggest that these differences likely result from multiple potential factors, including the telomerase machinery, telomerase-independent mechanisms and clonal influences including reexpression of exogenous reprogramming factors. Using a genetic model of telomerase-deficient (Terc(-/-) and Terc(+/-)) cells for derivation and passages of iPSCs, we found that telomerase plays a critical role in reprogramming and self-renewal of iPSCs. Further, telomerase maintenance of telomeres is necessary for induction of true pluripotency while the alternative pathway of elongation and maintenance by recombination is also required, but not sufficient. Together, several aspects of telomere biology may account for the variable telomere dynamics in iPSCs. Notably, the mechanisms employed to maintain telomeres during iPSC reprogramming are very similar to those of embryonic stem cells. These findings may also relate to the cloning field where these mechanisms could be responsible for telomere heterogeneity after nuclear reprogramming by somatic cell nuclear transfer.  相似文献   

10.
11.
12.
Human telomeres contain single-stranded 3'' G-overhangs that function in telomere end protection and telomerase action. Previously we have demonstrated that multiple steps involving C-strand end resection, telomerase elongation and C-strand fill-in contribute to G-overhang generation in telomerase-positive cancer cells. However, how G-overhangs are generated in telomerase-negative human somatic cells is unknown. Here, we report that C-strand fill-in is present at lagging-strand telomeres in telomerase-negative human cells but not at leading-strand telomeres, suggesting that C-strand fill-in is independent of telomerase extension of G-strand. We further show that while cyclin-dependent kinase 1 (CDK1) positively regulates C-strand fill-in, CDK1 unlikely regulates G-overhang generation at leading-strand telomeres. In addition, DNA polymerase α (Polα) association with telomeres is not altered upon CDK1 inhibition, suggesting that CDK1 does not control the loading of Polα to telomeres during fill-in. In summary, our results reveal that G-overhang generation at leading- and lagging-strand telomeres are regulated by distinct mechanisms in human cells.  相似文献   

13.
The absence of telomerase in many eukaryotes leads to the gradual shortening of telomeres, causing replicative senescence. In humans, this proliferation barrier constitutes a tumor suppressor mechanism and may be involved in cellular aging. Yet the heterogeneity of the senescence phenotype has hindered the understanding of its onset. Here we investigated the regulation of telomere length and its control of senescence heterogeneity. Because the length of the shortest telomeres can potentially regulate cell fate, we focus on their dynamics in Saccharomyces cerevisiae. We developed a stochastic model of telomere dynamics built on the protein-counting model, where an increasing number of protein-bound telomeric repeats shift telomeres into a nonextendable state by telomerase. Using numerical simulations, we found that the length of the shortest telomere is well separated from the length of the others, suggesting a prominent role in triggering senescence. We evaluated this possibility using classical genetic analyses of tetrads, combined with a quantitative and sensitive assay for senescence. In contrast to mitosis of telomerase-negative cells, which produces two cells with identical senescence onset, meiosis is able to segregate a determinant of senescence onset among the telomerase-negative spores. The frequency of such segregation is in accordance with this determinant being the length of the shortest telomere. Taken together, our results substantiate the length of the shortest telomere as being the key genetic marker determining senescence onset in S. cerevisiae.  相似文献   

14.
Human telomeres contain single-stranded 3' G-overhangs that function in telomere end protection and telomerase action. Previously we have demonstrated that multiple steps involving C-strand end resection, telomerase elongation and C-strand fill-in contribute to G-overhang generation in telomerase-positive cancer cells. However, how G-overhangs are generated in telomerase-negative human somatic cells is unknown. Here, we report that C-strand fill-in is present at lagging-strand telomeres in telomerase-negative human cells but not at leading-strand telomeres, suggesting that C-strand fill-in is independent of telomerase extension of G-strand. We further show that while cyclin-dependent kinase 1 (CDK1) positively regulates C-strand fill-in, CDK1 unlikely regulates G-overhang generation at leading-strand telomeres. In addition, DNA polymerase α (Polα) association with telomeres is not altered upon CDK1 inhibition, suggesting that CDK1 does not control the loading of Polα to telomeres during fill-in. In summary, our results reveal that G-overhang generation at leading- and lagging-strand telomeres are regulated by distinct mechanisms in human cells.  相似文献   

15.
Huang J  Wang F  Okuka M  Liu N  Ji G  Ye X  Zuo B  Li M  Liang P  Ge WW  Tsibris JC  Keefe DL  Liu L 《Cell research》2011,21(5):779-792
Telomerase and telomeres are important for indefinite replication of stem cells. Recently, telomeres of somatic cells were found to be reprogrammed to elongate in induced pluripotent stem cells (iPSCs). The role of telomeres in developmental pluripotency in vivo of embryonic stem cells (ESCs) or iPSCs, however, has not been directly addressed. We show that ESCs with long telomeres exhibit authentic developmental pluripotency, as evidenced by generation of complete ESC pups as well as germline-competent chimeras, the most stringent tests available in rodents. ESCs with short telomeres show reduced teratoma formation and chimera production, and fail to generate complete ESC pups. Telomere lengths are highly correlated (r > 0.8) with the developmental pluripotency of ESCs. Short telomeres decrease the proliferative rate or capacity of ESCs, alter the expression of genes related to telomere epigenetics, down-regulate genes important for embryogenesis and disrupt germ cell differentiation. Moreover, iPSCs with longer telomeres generate chimeras with higher efficiency than those with short telomeres. Our data show that functional telomeres are essential for the developmental pluripotency of ESCs/iPSCs and suggest that telomere length may provide a valuable marker to evaluate stem cell pluripotency, particularly when the stringent tests are not feasible.  相似文献   

16.
17.
Telomeres are obligatory chromosomal landmarks that demarcate the ends of linear chromosomes to distinguish them from broken ends and can also serve to organize the genome. In both budding and fission yeast, they cluster at the periphery of the nucleus, potentially to establish a compartment of silent chromatin. To gain insight into telomere organization in higher organisms, we investigated their distribution in interphase nuclei of Drosophila melanogaster. We focused on the syncytial blastoderm, an excellent developmental stage for live imaging due to the synchronous division of the nuclei at this time. We followed the EGFP-labeled telomeric protein HOAP in vivo and found that the 16 telomeres yield four to six foci per nucleus, indicative of clustering. Furthermore, we confirmed clustering in other somatic tissues. Importantly, we observed that HOAP signal intensity in the clusters increases in interphase, potentially due to loading of HOAP to newly replicated telomeres. To determine the rules governing clustering, we used in vivo imaging and fluorescence in situ hybridization to test several predictions. First, we inspected mutant embryos that develop as haploids and found that clustering is not mediated by associations between homologs. Second, we probed specifically for a telomere of novel sequence and found strong evidence against DNA sequence identity and homology as critical factors. Third, we ruled out predominance of intrachromosomal interactions by marking both ends of a chromosome. Based on these results, we propose that clustering is independent of sequence and is likely maintained by an as yet undetermined factor.  相似文献   

18.
端粒及端粒酶研究的最新进展   总被引:7,自引:0,他引:7  
胡建  覃文新  万大方  顾健人 《生命科学》2001,13(3):113-118,138
端粒是位于真核细胞染色体末端由重复DNA序列和蛋白组成的复合物,它具有保护染色体、介导染色体复制、引导减数分裂时的同源染爸体配对和调节细胞衰老等方面的作用。正常体细胞每分裂一代,端粒就会缩短一段,而端粒酶的作用是将一段端粒序列加到端粒末端,从而维持端粒长度。正常体细胞中是没有端粒酶活性的,而在大多数肿瘤细胞中都发现了端粒酶的表达,提示端粒和端粒酶在癌症发生和肿瘤细胞行为中具有重要作用。  相似文献   

19.
With the smooth move towards the coming expected clinical reports of anticancer pharmaceutical molecules targeting telomeres and telomerase, and also with the exciting success in the extension of lifespan by regulating telomerase activity without increased onset of oncogenesis in laboratory mouse models (Garcia-Cao et al., 2006; Jaskelioff et al., 2011), we are convinced that targeting telomeres based on telomerase will be a potential approach to conquer both aging and cancer and the idea of longevity seems to be no more mysterious. More interestingly, emerging evidences from clinical research reveal that other telomeric factors, like specifi c telomeric binding proteins and nonspecific telomere associated proteins also show crucial importance in aging and oncogenesis. This stems from their roles in the stability of telomere structure and in the inhibition of DNA damage response at telomeres. Uncapping these proteins from chromosome ends leads to dramatic telomere loss and telomere dysfunction which is more abrupt than those induced by telomerase inactivation. Abnormal expression of these factors results in developmental failure, aging and even oncogenesis evidenced by several experimental models and clinical cases, indicating telomere specifi c proteins and its associated proteins have complimentary roles to telomerase in telomere protection and controlling cellular fate. Thus, these telomeric factors might be potential clinical biomarkers for early detection or even therapeutic targets of aging and cancer. Future studies to elucidate how these proteins function in telomere protection might benefit patients suffering aging or cancer who are not sensitive to telomerase mediation.  相似文献   

20.
Telomere lengths are tightly regulated within a narrow range in normal human cells. Previous studies have extensively focused on how short telomeres are extended and have demonstrated that telomerase plays a central role in elongating short telomeres. However, much about the molecular mechanisms of regulating excessively long telomeres is unknown. In this report, we demonstrated that the telomerase enzymatic component, hTERT, plays a dual role in the regulation of telomere length. It shortens excessively long telomeres and elongates short telomeres simultaneously in one cell, maintaining the optimal telomere length at each chromosomal end for efficient protection. This novel hTERT-mediated telomere-shortening mechanism not only exists in cancer cells, but also in primary human cells. The hTERT-mediated telomere shortening requires hTERT’s enzymatic activity, but the telomerase RNA component, hTR, is not involved in that process. We found that expression of hTERT increases telomeric circular DNA formation, suggesting that telomere homologous recombination is involved in the telomere-shortening process. We further demonstrated that shelterin protein TPP1 interacts with hTERT and recruits hTERT onto the telomeres, suggesting that TPP1 might be involved in regulation of telomere shortening. This study reveals a novel function of hTERT in telomere length regulation and adds a new element to the current molecular model of telomere length maintenance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号