首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abnormal proteolytic processing of amyloid precursor protein (APP) is a pathologic feature of Alzheimer’s disease. Recent studies have demonstrated that serine/threonine phosphorylation specifically at amino-acid residue Thr668 (APP695 numbering) regulates APP processing. In this study, we investigated the possibility that tyrosine phosphorylation of APP regulates APP processing. A tyrosine kinase inhibitor decreased expression of the C83 fragment which is a cleaved product of APP by α-secretase. By overexpressing APP mutant proteins, Tyr687 was found to be the major tyrosine kinase phosphorylation site. Expression of the C83 fragment was decreased in APPY687A-expressing cells relative to APP wild-type (APPWT)-expressing cells, which likely reflects the different cellular localization patterns of these two proteins. Expression of APP intracellular domain (AICD) which is a cleaved product of the C83 fragment by γ-secretase was decreased in C83Y687A-expressing cells. These results suggest that phosphorylation of APP at Tyr687 regulates APP processing by α- and γ-secretases, determining the expression level of AICD.  相似文献   

2.
Cleavage of APP by BACE is the first proteolytic step in the production of Amyloid β (Aβ, which accumulates in senile plaques in Alzheimer’s disease. BACE-cleavage of APP is thought to happen in endosomes. However, there are controversial data whether APP and BACE can already interact on the cell surface dependent on the cholesterol level. To examine whether APP and BACE come into close proximity on the cell surface in living cells, we employed a novel technique by combining time-resolved Förster resonance energy transfer (FRET) measurements with total internal reflection microscopy (TIRET microscopy). Our data indicate that BACE and APP come into close proximity within the cell, but probably not on the cell surface. To analyze the impact of alterations in cholesterol level upon BACE-cleavage, we measured sAPP secretion. Alteration of APP processing and BACE proximity by cholesterol might be explained by alterations in cell membrane fluidity.  相似文献   

3.
Regulated Proteolysis of APP and ApoE Receptors   总被引:1,自引:0,他引:1  
The beta-amyloid precursor protein (APP) shares intracellular and extracellular-binding partners with the family of receptors for apolipoprotein E (apoE). Binding of APP and apoE receptors to specific extracellular matrix proteins (F-spondin and Reelin) promotes their presence on the cell surface and influences whether they will interact with specific cytoplasmic adaptor proteins. Cleavage of APP and apoE receptors at the cell surface occurs by alpha-secretase activities; thus, the processing of these proteins can be regulated by their trafficking either to or from the cell surface. Their cleavages can also be regulated by tissue inhibitor of metalloproteinase-3 (TIMP-3), a metalloprotease inhibitor in the extracellular matrix. ApoE receptors have functions in neuronal migration during development and in proper synaptic function in the adult. Thus, the functions of apoE receptors and by analogy of APP will be modified by the various extracellular and intracellular interactions reviewed in this paper.  相似文献   

4.
Estrogen depletion following menopause has been correlated with an increased risk of developing Alzheimer’s disease (AD). We previously explored the beneficial effect of (−)-epigallocatechin-3-gallate (EGCG) on AD mice and found increased non-amyloidogenic processing of amyloid precursor protein (APP) through the α-secretase a disintegrin and metallopeptidase domain 10 (ADAM10). Our results in this study suggest that EGCG-mediated enhancement of non-amyloidogenic processing of APP is mediated by the maturation of ADAM10 via an estrogen receptor-α (ERα)/phosphoinositide 3-kinase/Ak-transforming dependent mechanism, independent of furin-mediated ADAM10 activation. These data support prior assertions that central selective ER modulation could be a therapeutic target for AD and support the use of EGCG as a well-tolerated alternative to estrogen therapy in the prophylaxis and treatment of this disease.  相似文献   

5.
6.
In recent years, transgenic mice have become valuable tools for studying mechanisms of Alzheimer's disease (AD). With the aim of developing an animal model better for memory and neurobehavioural testing, we have generated a transgenic rat model of AD. These animals express human amyloid precursor protein (APP) containing the Swedish AD mutation. The highest level of expression in the brain is found in the cortex, hippocampus, and cerebellum. Starting after the age of 15 months, the rats show increased tau phosphorylation and extracellular Abeta staining. The Abeta is found predominantly in cerebrovascular blood vessels with very rare diffuse plaques. We believe that crossing these animals with mutant PS1 transgenic rats will result in accelerated plaque formation similar to that seen in transgenic mice.  相似文献   

7.
LR11 (SorLA) is a recently identified neuronal protein that interacts with amyloid precursor protein (APP), a central player in the pathology of the Alzheimer's disease (AD). AD is a neurodegenerative disease and the most common cause of dementia in the elderly. Current estimates suggest that as many as 5.3 million Americans are living with AD. Recent investigations have uncovered the pathophysiological relevance of APP intracellular trafficking in AD. LR11 is of particular importance due to its role in regulating APP transport and processing. LR11 is a type I transmembrane protein and belongs to a novel family of Vps10p receptors. Using a new expression vector, pMTTH (MBP-MCS1 (multiple cloning site)-Thrombin protease cleavage site-MCS2-TEV protease cleavage site-MCS3-His(6)), we successfully expressed, purified and reconstituted the LR11 transmembrane (TM) and cytoplasmic (CT) domains into bicelles and detergent micelles for NMR structural studies. This new construct allowed us to overcome several obstacles during sample preparation. MBP fused LR11TM and LR11TMCT proteins are preferably expressed at high levels in Escherichia coli membrane, making a refolding of the protein unnecessary. The C-terminal His-tag allows for easy separation of the target protein from the truncated products from the C-terminus, and provides a convenient route for screening detergents to produce high quality 2D (1)H-(15)N TROSY spectra. Thrombin protease cleavage is compatible with most of the commonly used detergents, including a direct cleavage at the E. coli membrane surface. This new MBP construct may provide an effective route for the preparation of small proteins with TM domains.  相似文献   

8.
In Alzheimer’s disease (AD), enhancing α-secretase processing of amyloid precursor protein (APP) is an important pathway to decrease neurotoxic amyloid β (Aβ) secretion. The α-secretase is reported to be regulated by protein kinase C (PKC) and various endogenous proteins or cell surface receptors. In this report, we first examined whether Aβ reduces α-secretase activity, and showed that Aβ peptide 1–40 (0.001 and 0.01 μM) reduced the secretion of soluble amyloid precursor protein α (sAPPα) in carbachol-stimulated SH-SY5Y neuroblastoma cells. E-64-d (3 μM), which is a potent calpain inhibitor that prevents PKC degradation, ameliorated the Aβ-induced reduction of sAPPα secretion. In addition, we observed that Aβ significantly enhanced ceramide production by activating neutral sphingomyelinase. The cell-permeable ceramide analog, C2-ceramide (1 μg/mL), also reduced sAPPα secretion, and in addition, E-64-d eliminated the observed decrease of sAPPα secretion. C2-ceramide induced down-regulation of PKC-α, -β1, and -β2 isozymes in SH-SY5Y cells. These findings suggest that ceramide may play an important role in sAPPα processing by modulating PKC activity.  相似文献   

9.
Oxidative stress, a risk factor in the pathophysiology of Alzheimer’s disease, is intimately associated with aging. We previously reported that the X-XOD free radical generating system acts as a modulator of lipid metabolism and a mild inducer of apoptotic death. Using the same cell model, the present study examines the metabolism/processing of the amyloid precursor protein (APP). Prior to inducing cell death, X-XOD promoted the secretion of α-secretase-cleaved soluble APP (sAPPα) and increased the level of APP carboxy-terminal fragments produced by α and γ secretase (αCTF and γCTF/AICD). In contrast, it reduced the activity of β-secretase and the level of secreted Aβ. The present results indicate that mild oxidative stress maintained throughout culturing regulates APP metabolism/processing in SK-N-MC human neuroblastoma cells.  相似文献   

10.
β-淀粉样前体蛋白及白介素-1β与老年性痴呆病的发生发展有密切关系.用SH-SY5Y细胞株研究了rh-IL-1β对细胞中APPmRNA表达的影响.Northern杂交结果显示,IL-1β可诱导SH-SY5Y细胞中APPmRNA的表达增加,且有时间剂量反应关系.通过转录延伸实验证实,IL-1β对APP基因表达的诱导作用主要发生在转录水平.  相似文献   

11.
The amyloid precursor protein (APP) belongs to a conserved gene family, also including the amyloid precursor-like proteins, APLP1 and APLP2. We have previously shown that all members of the APP protein family are up-regulated upon retinoic acid (RA)-induced neuronal differentiation of SH-SY5Y neuroblastoma cells. Here, we demonstrate that RA also affects the processing of APLP2 and APP, as shown by increased shedding of both sAPLP2 and sAPPalpha, as well as elevated levels of the APP intracellular domains (AICDs). Brain-derived neurotrophic factor (BDNF) has been reported to induce APP promoter activity and RA induces expression of the tyrosine kinase receptor B (TrkB) in neuroblastoma cells. We show that the increase in shedding of both APLP2 and APP in response to RA is not mediated through the TrkB receptor. However, BDNF concomitant with RA increased the expression of APP even further. In addition, the secretion of sAPLP2 and sAPPalpha as well as the levels of AICDs were increased in response to BDNF. In contrast, the levels of membrane-bound APP C-terminal fragment C99 significantly decreased. Our results suggest that RA and BDNF shifts APP processing towards the alpha-secretase pathway. In addition, we show that RA and BDNF regulate N-linked glycosylation of APLP1.  相似文献   

12.
Alzheimer’s disease (AD) is one of the most common neurodegenerative diseases leading to dementia. Although cytotoxicity of amyloid β peptides has been intensively studied within pathophysiology of AD, the physiological function of amyloid precursor protein (APP) still remains unclarified. We have shown previously that secreted APPα (sAPPα) is associated with glial differentiation of neural stem cells. To elucidate specific mechanisms underlying sAPPα-induced gliogenesis, we examined the potential involvement of bone morphogenic proteins (BMPs). BMPs are one of the factors involved in glial differentiation of neural progenitor cells. When expressions of BMP-2, -4, and -7 were examined, upregulation of BMP-4 expression was solely observed as a result of treatment with sAPPα in a time and dose-dependent manner. Furthermore, the treatment of sAPPα promoted phosphorylation of Smad1/5/8, a downstream signaling mediator of BMP receptors. Interestingly, N-terminal domain of APP (1–205) was sufficient to elevate BMP4 expression, resulting in an increase of glial fibrillary acidic protein (GFAP) expression and phosphorylation of Smad1/5/8. However, the application of APP neutralizing antibody and anti-BMP4 antibody significantly suppressed expression of BMP-4 as well as phosphorylation of Smad1/5/8. Thus, our results indicate that sAPPα-induced gliogenesis is in part mediated by the BMP-4 signaling pathway. We also observed upregulation of BMP-4 and phosphorylation of Smad1/5/8 in APP transgenic mice. It is imperative to unravel the mechanisms underlying the role of BMP-4 during APPα-induced glial differentiation in hope of providing novel prevention or treatment for AD.  相似文献   

13.
Effect of Ischemic Neuronal Insults on Amyloid Precursor Protein Processing   总被引:3,自引:0,他引:3  
The nature of the association between ischemic stroke and Alzheimer’s disease (AD) at the cellular and molecular level is still unknown. We evaluated the effect of ischemic neuronal insults on the regulation of amyloid precursor protein (APP) processing. We used an in vitro model of cerebral ischemia (oxygen-glucose deprivation) to evaluate the effect of ischemic neuronal insults on the amyloidogenic and non-amyloidogenic pathways using human neuroblastoma cell line and primary cultured cells of transgenic mice which expressed human APP (Tg2576). Ischemic neuronal insults increased the production of Aβ in Tg2576 primary culture cells compared to controls. A disintegrin and metalloprotease 10 (ADAM 10) was markedly increased in early stage of ischemic insults, which was followed by decreased level of ADAM 10 expression in later stage. The protein and mRNA expression of β-site cleavage enzyme (BACE) and BACE activity was not significantly different between the group of ischemic insults and control. By contrast, the activity of γ-secretase was significantly increased after 4 h of ischemic insults, as compared to controls. The present study showed that the ischemic neuronal insults increased the production of Aβ by influencing APP metabolism, which may link the role of ischemic insults to the pathogenesis of AD.  相似文献   

14.
The proteolytic processing of amyloid β precursor protein (APP) has long been studied because of its association with the pathology of Alzheimer's disease (AD). The ectodomain of APP is shed by α- or β-secretase cleavage. The remaining membrane bound stub can then undergo regulated intramembrane proteolysis (RIP) by γ-secretase. This cleavage can release amyloid β (Aβ) from the stub left by β-secretase cleavage but also releases the APP intracellular domain (AICD) after α- or β-secretase cleavage. The physiological functions of this proteolytic processing are not well understood. We compare the proteolytic processing of APP to the ligand-dependent RIP of Notch. In this review, we discuss recent evidence suggesting that TAG1 is a functional ligand for APP. The interaction between TAG1 and APP triggers γ-secretase-dependent release of AICD. TAG1, APP and Fe65 colocalise in the neurogenic ventricular zone and in fetal neural progenitor cells in vitro. Experiments in TAG1, APP and Fe65 null mice as well as TAG1 and APP double-null mice demonstrate that TAG1 induces a γ-secretase- and Fe65-dependent suppression of neurogenesis.  相似文献   

15.
Huttunen HJ  Greco C  Kovacs DM 《FEBS letters》2007,581(8):1688-1692
Previous studies have shown that acyl-coenzyme A:cholesterol acyl transferase (ACAT), an enzyme that controls cellular equilibrium between free cholesterol and cholesteryl esters, modulates proteolytic processing of APP in cell-based and animal models of Alzheimer's disease. Here we report that ACAT-1 RNAi reduced cellular ACAT-1 protein by approximately 50% and cholesteryl ester levels by 22% while causing a slight increase in the free cholesterol content of ER membranes. This correlated with reduced proteolytic processing of APP and 40% decrease in Abeta secretion. These data show that even a modest decrease in ACAT activity can have robust suppressive effects on Abeta generation.  相似文献   

16.
Saheen Nehar 《FEBS letters》2009,583(19):3247-23
Amyloid-beta peptide (Aβ) achieves neurodegeneration through unknown mechanisms. To elucidate some of these mechanisms, we conducted a cDNA subtraction analysis of Aβ-mediated neurotoxicity in neuronal cells and observed an up-regulation of the novel gene p17. The p17 protein was also found elevated in Alzheimer’s disease (AD) mouse model. Here, we characterised p17 primarily in cell lines with respect to its localisation, function and physiological expression. We discovered that p17 acts downstream of protein kinase C and inhibits the tyrosine receptor kinase B-brain-derived neurotrophic factor (TrkB-BDNF) pathway. It impedes survival factors and enhances amyloid precursor protein expression thus suggesting its involvement in the Aβ-mediated pro-apoptotic pathways in AD.  相似文献   

17.
Several clinical trials have reported beneficial effects of the Ginkgo biloba extract EGb761 in the prevention and therapy of cognitive disorders including Alzheimer’s disease (AD). The aim of the present long-term feeding trial was to study the impact of dietary EGb761 on Amyloid precursor protein (APP) metabolism in mice transgenic for human APP (Tg2576). Tg2576 mice were fed diets with and without EGb761 (300 mg/kg diet) for 1 and 16 months, respectively. Long-term treatment (16 months) with EGb761 significantly lowered human APP protein levels by ∼50% as compared to controls in the cortex but not in the hippocampus. However, APP levels were not affected by EGb761 in young mice. Current data indicate that APP seems to be an important molecular target of EGb761 in relation to the duration of the Ginkgo biloba treatment and/or the age of the animals. Potential neuroprotective properties of EGb761 may be, at least partly, related to its APP lowering activity.  相似文献   

18.
19.
Ascertaining the time-dependent regulation of induced apoptosis and radioresistance is important to understand the relationship between the level of spontaneous apoptosis in cells and their radiosensitivity. Accordingly, we investigated the time-dependent expression of apoptosis related genes and radioresistance in neuroblastoma cells. Serum-starved human SK-N-MC cells were exposed to low linear energy transfer (LET) radiation (2 Gy) and incubated for 15, 30, 45 min, and 48 h. Radioresistance was investigated by examining the NFκB DNA-binding activity, cellular toxicity, DNA fragmentation, and expression of apoptotic signal transduction molecules. NFκB DNA binding activity was analyzed using electrophoretic mobility shift assay (EMSA). Cellular toxicity was measured using MTT assay. DNA fragmentation was quantified by labeling with fluorescein-conjugated deoxynucleotides. Microarray analysis was performed using cDNA microarray and relative gene expression was measured as % GAPDH and, subsequently validated using Q-PCR. Induction of NFκB analyzed using EMSA showed an increased DNA-binding activity at all time points investigated. Induced DNA fragmentation was observed after 15, 30, and 45 min post-radiation. Relatively, induced fragmentation was reduced after 48 h. Compared to the untreated controls cellular toxicity was induced with low LET radiation after 15, 30, and 45 min. Conversely, cytotoxicity was relatively less at 48 h after low LET radiation. Microarray analysis after low LET radiation revealed time-dependent modulation of apoptosis-related genes that are involved in radio-adaptation, spontaneous apoptosis-related early-responsive genes and late response genes. These results suggest that the time-dependent regulation of apoptotic response may determine the relationship between the level of spontaneous apoptosis in cells and their radiosensitivity.  相似文献   

20.
Beta-amyloid (Aβ) is the major constituent of senile plaques found in the brains of Alzheimer’s disease patients. Aβ is derived from the sequential cleavage of Amyloid Precursor Protein (APP) by β and γ-secretases. Despite the importance of Aβ to AD pathology, the subcellular localization of these cleavages is not well established. Work in our laboratory and others implicate the endosomal/lysosomal system in APP processing after internalization from the cell surface. However, the intracellular trafficking of APP is relatively understudied.While cell-surface proteins are amendable to many labeling techniques, there are no simple methods for following the trafficking of membrane proteins from the Golgi. To this end, we created APP constructs that were tagged with photo-activatable GFP (paGFP) at the C-terminus. After synthesis, paGFP has low basal fluorescence, but it can be stimulated with 413 nm light to produce a strong, stable green fluorescence. By using the Golgi marker Galactosyl transferase coupled to Cyan Fluorescent Protein (GalT-CFP) as a target, we are able to accurately photoactivate APP in the trans-Golgi network. Photo-activated APP-paGFP can then be followed as it traffics to downstream compartments identified with fluorescently tagged compartment marker proteins for the early endosome (Rab5), the late endosome (Rab9) and the lysosome (LAMP1). Furthermore, using inhibitors to APP processing including chloroquine or the γ-secretase inhibitor L685, 458, we are able to perform pulse-chase experiments to examine the processing of APP in single cells.We find that a large fraction of APP moves rapidly to the lysosome without appearing at the cell surface, and is then cleared from the lysosome by secretase-like cleavages. This technique demonstrates the utility of paGFP for following the trafficking and processing of intracellular proteins from the Golgi to downstream compartments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号