首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Firefly luciferase genes have been isolated from approximately 20 species of Lampyrinae, Luciolinae, and Photurinae. These are mostly nocturnal luminescent species that use light signals for sexual communication. In this study, we isolated three cDNAs for firefly luciferase from Psilocladinae (Cyphonocerus ruficollis) and Ototretinae (Drilaster axillaris and Stenocladius azumai), which are diurnal non-luminescent or weakly luminescent species that may use pheromones for communication. The amino acid sequences deduced from the three cDNAs showed 81-89% identities to each other and 60-81% identities with known firefly luciferases. The three purified recombinant proteins showed luminescence and fatty acyl-CoA synthetic activities, as observed in other firefly luciferases. The emission maxima by the three firefly luciferases (λmax, 545-546 nm) were shorter than those by known luciferases from the nocturnal fireflies (λmax, 550-568 nm). These results suggest that the primary structures and enzymatic properties of luciferases are conserved in Lampyridae, but the luminescence colors were red-shifted in nocturnal species compared to diurnal species.  相似文献   

3.
Firefly luciferase and fatty acyl-CoA synthetase are members of the acyl-CoA synthetase super family, which consists of a large N-terminal domain and a small C-terminal domain. Previously we found that firefly luciferase has fatty acyl-CoA synthetic activity, and also identified that the homolog of firefly luciferase in Drosophila melanogaster (CG6178) is a fatty acyl-CoA synthetase and is not a luciferase. In this study, we constructed chimeric proteins by exchanging the domain between Photinus pyralis luciferase (PpLase) and Drosophila CG6178, and determined luminescence and fatty acyl-CoA synthetic activities. A chimeric protein with the N-terminal domain of PpLase and the C-terminal domain of CG6178 (Pp/Dm) had luminescence activity, showing approximately 4% of the activity of wild-type luciferase. The Pp/Dm protein also had fatty acyl-CoA synthetic activity and the substrate specificity was similar to PpLase. In contrast, a chimeric protein with the N-terminal domain of CG6178 and the C-terminal of PpLase (Dm/Pp) had only fatty acyl-CoA synthetase activity, and the substrate specificity was similar to CG6178. These results suggest that the N-terminal domain of firefly luciferase is essential for substrate recognition, and that the C-terminal domain is indispensable but not specialized for the luminescence reaction.  相似文献   

4.
Oba Y  Iida K  Ojika M  Inouye S 《Gene》2008,407(1-2):169-175
A homologous gene of beetle luciferase, AbLL (Agrypnus binodulusluciferase-like gene) was isolated from a Japanese non-luminous click beetle, A. binodulus, and its gene product was characterized. The identity of amino acid sequence deduced from AbLL with the click beetle luciferase from the Jamaican luminous click beetle, Pyrophorus plagiophthalmus, is 55%, which is higher than that between click beetle luciferase and firefly luciferase (approximately 48%). Phylogenetic analysis indicated that AbLL places in a clade of beetle luciferases, suggesting that AbLL is an orthologous gene of beetle luciferase. The gene product of AbLL (AbLL) has medium- and long-chain fatty acyl-CoA synthetase activity, but not luciferase activity. The fatty acyl-CoA synthetic activity was slightly inhibited in the presence of beetle luciferin, suggesting that AbLL has poor affinity for beetle luciferin. By comparing the amino acid residues of the catalytic domains in beetle luciferases with AbLL, the key substitutions for the luminescence activity in beetle luciferase will be proposed.  相似文献   

5.
The squid Watasenia scintillans emits blue light from numerous photophores. According to Tsuji [F.I. Tsuji, Bioluminescence reaction catalyzed by membrane-bound luciferase in the “firefly squid”, Watasenia scintillans, Biochim. Biophys. Acta 1564 (2002) 189–197.], the luminescence from arm light organs is caused by an ATP-dependent reaction involving Mg2+, coelenterazine disulfate (luciferin), and an unstable membrane-bound luciferase. We stabilized and partially purified the luciferase in the presence of high concentrations of sucrose, and obtained it as particulates (average size 0.6–2 µm). The ATP-dependent luminescence reaction of coelenterazine disulfate catalyzed by the particulate luciferase was investigated in detail. Optimum temperature of the luminescence reaction is about 5 °C. Coelenterazine disulfate is a strictly specific substrate in this luminescence system; any modification of its structure resulted in a very heavy loss in its light emission capability. The light emitter is the excited state of the amide anion form of coelenteramide disulfate. The quantum yield of coelenterazine disulfate is calculated at 0.36. ATP could be replaced by ATP-γ-S, but not by any other analogues tested. The amount of AMP produced in the luminescence reaction was much smaller than that of coelenteramide disulfate, suggesting that the reaction mechanism of the Watasenia bioluminescence does not involve the formation of adenyl luciferin as an intermediate.  相似文献   

6.
Gaussia luciferase secreted by the copepod Gaussia princeps catalyzes the oxidation of coelenterazine to produce blue light. The primary structure of Gaussia luciferase deduced from the cDNA sequence shows two repeat sequences of 71 amino acid residues, suggesting the luciferase consists of two structural domains. Two domains in Gaussia luciferase were expressed independently in Escherichia coli cells, purified and characterized. We found that both domains have luminescence activity with coelenterazine, and the catalytic properties including luminescence spectrum, optimal pH, substrate specificity and luminescence stimulation by halogen ions (Cl, Br and I) are identical to intact Gaussia luciferase. Thus, Gaussia luciferase has two catalytic domains for the luminescence reaction.  相似文献   

7.
Recently we found that firefly luciferase is a bifunctional enzyme, catalyzing not only the luminescence reaction but also long-chain fatty acyl-CoA synthesis. Further, the gene product of CG6178 (CG6178), an ortholog of firefly luciferase in Drosophila melanogaster, was found to be a long-chain fatty acyl-CoA synthetase and dose not function as a luciferase. We investigated the substrate specificities of firefly luciferase and CG6178 as an acyl-CoA synthetase utilizing a series of carboxylic acids. The results indicate that these enzymes synthesize acyl-CoA efficiently from various saturated medium-chain fatty acids. Lauric acid is the most suitable substrate for these enzymes, and the product of lauroyl CoA was identified with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Phylogenetic analysis indicated that firefly luciferase and CG6178 genes belong to the group of plant 4-coumarate:CoA ligases, and not to the group of medium- and long-chain fatty acyl-CoA synthetases in mammals. These results suggest that insects have a novel type of fatty acyl-CoA synthetase.  相似文献   

8.
N-Myristoyltransferase (NMT) catalyses the attachment of the 14-carbon saturated fatty acid, myristate, to the amino-terminal glycine residue of a subset of eukaryotic proteins that function in multiple cellular processes, including vesicular protein trafficking and signal transduction. In these pathways, N-myristoylation facilitates association of substrate proteins with membranes or the hydrophobic domains of other partner peptides. NMT function is essential for viability in all cell types tested to date, demonstrating that this enzyme has potential as a target for drug development. Here, we provide genetic evidence that NMT is likely to be essential for viability in insect stages of the pathogenic protozoan parasite, Leishmania donovani, causative agent of the tropical infectious disease, visceral leishmaniasis. The open reading frame of L. donovaniNMT has been amplified and used to overproduce active recombinant enzyme in Escherichia coli, as demonstrated by gel mobility shift assays of ligand binding and peptide-myristoylation activity in scintillation proximity assays. The purified protein has been crystallized in complex with the non-hydrolysable substrate analogue S-(2-oxo)pentadecyl-CoA, and its structure was solved by molecular replacement at 1.4 Å resolution. The structure has as its defining feature a 14-stranded twisted β-sheet on which helices are packed so as to form an extended and curved substrate-binding groove running across two protein lobes. The fatty acyl-CoA is largely buried in the N-terminal lobe, its binding leading to the loosening of a flap, which in unliganded NMT structures, occludes the protein substrate binding site in the carboxy-terminal lobe. These studies validate L. donovani NMT as a potential target for development of new therapeutic agents against visceral leishmaniasis.  相似文献   

9.
10.
To characterize the luminescence properties of nanoKAZ, a 16 amino acid substituted mutant of the catalytic 19 kDa protein (KAZ) of Oplophorus luciferase, the effects of each mutated amino acid were investigated by site-specific mutagenesis. All 16 single substituted KAZ mutants were expressed in Escherichia coli cells and their secretory expressions in CHO-K1 cells were also examined using the signal peptide sequence of Gaussia luciferase. Luminescence activity of KAZ was significantly enhanced by single amino acid substitutions at V44I, A54I, or Y138I. Further, the triple mutant KAZ-V44I/A54I/Y138I, named eKAZ, was prepared and these substitutions synergistically enhanced luminescence activity, showing 66-fold higher activity than wild-KAZ and also 7-fold higher activity than nanoKAZ using coelenterazine as a substrate. Substrate specificity of eKAZ for C2- and/or C6-modified coelenterazine analogues was different from that of nanoKAZ, indicating that three amino acid substitutions may be responsible for the substrate recognition of coelenterazine to increase luminescence activity. In contrast, these substitutions did not stimulate protein secretion from CHO-K1 cells, suggesting that the folded-protein structure of KAZ might be different from that of nanoKAZ.  相似文献   

11.
CYP51 (sterol 14α-demethylase) is an efficient target for clinical and agricultural antifungals and an emerging target for treatment of Chagas disease, the infection that is caused by multiple strains of a protozoan pathogen Trypanosoma cruzi. Here, we analyze CYP51A from the Y strain T. cruzi. In this protein, proline 355, a residue highly conserved across the CYP51 family, is replaced with serine. The purified enzyme retains its catalytic activity, yet has been found less susceptible to inhibition. These biochemical data are consistent with cellular experiments, both in insect and human stages of the pathogen. Comparative structural analysis of CYP51 complexes with VNI and two derivatives suggests that broad-spectrum CYP51 inhibitors are likely to be preferable as antichagasic drug candidates.  相似文献   

12.
13.
Due to the strict enantioselectivity of firefly luciferase, only d-luciferin can be used as a substrate for bioluminescence reactions. Unfortunately, luciferin racemizes easily and accumulation of nonluminous l-luciferin has negative influences on the light emitting reaction. Thus, maintaining the enantiopurity of luciferin in the reaction mixture is one of the most important demands in bioluminescence applications using firefly luciferase. In fireflies, however, l-luciferin is the biosynthetic precursor of d-luciferin, which is produced from the L-form undergoing deracemization. This deracemization consists of three successive reactions: l-enantioselective thioesterification by luciferase, in situ epimerization, and hydrolysis by thioesterase. In this work, we introduce a deracemizative luminescence system inspired by the biosynthetic pathway of d-luciferin using a combination of firefly luciferase from Luciola cruciata (LUC-G) and fatty acyl-CoA thioesterase II from Escherichia coli (TESB). The enzymatic reaction property analysis indicated the importance of the concentration balance between LUC-G and TESB for efficient d-luciferin production and light emission. Using this deracemizative luminescence system, a highly sensitive quantitative analysis method for l-cysteine was constructed. This LUC-G-TESB combination system can improve bioanalysis applications using the firefly bioluminescence reaction by efficient deracemization of D-luciferin.  相似文献   

14.
The surface of Trypanosoma cruzi is covered by a dense glycocalix which is characteristic of each stage of the life cycle. Its composition and complexity depend mainly on mucin-like proteins. A remarkable feature of O-glycan biosynthesis in trypanosomes is that it initiates with the addition of a GlcNAc instead of the GalNAc residue that is commonly used in vertebrate mucins. The fact that the interplay between trans-sialidase and mucin is crucial for pathogenesis, and both families have stage-specific members is also remarkable. Recently the enzyme that transfers the first GlcNAc from UDP-GlcNAc to a serine or threonine residue was kinetically characterized. The relevance of this enzyme is evidenced by its role as catalyzer of the first step in O-glycosylation. In this paper we describe how this gene is expressed differentially along the life cycle with a pattern that is very similar to that of trans-sialidases. Its localization was determined, showing that the protein predicted to be in the Golgi apparatus is also present in reservosomes. Finally our results indicate that this enzyme, when overexpressed, enhances T. cruzi infectivity.  相似文献   

15.
Germinated, unpolished rice was found to contain a substantial amount of D-serine, with the ratio of the D-enantiomer to the L-enantiomer being higher for serine than for other amino acids. The relative amount of D-serine (D/(D + L)%) reached approximately 10% six days after germination. A putative serine racemase gene (serr, clone No. 001-110-B03) was found in chromosome 4 of the genomic DNA of Oryza sativa L. ssp. Japonica cv. Nipponbare. This was expressed as serr in Escherichia coli and its gene product (SerR) was purified to apparent homogeneity. SerR is a homodimer with a subunit molecular mass of 34.5 kDa, and is highly specific for serine. In addition to a serine racemase reaction, SerR catalyzes D- and L-serine dehydratase reactions, for which the specific activities were determined to be 2.73 and 1.42 nkatal/mg, respectively. The optimum temperature and pH were respectively determined for the racemase reaction (35 °C and pH 9.0) and for the dehydratase reaction (35 °C and pH 9.5). SerR was inhibited by PLP-enzyme inhibitors. ATP decreased the serine racemase activity of SerR but increased the serine dehydratase activity. Kinetic analysis showed that Mg2+ increases the catalytic efficiency of the serine racemase activity of SerR and decreases that of the serine dehydratase activity. Fluorescence-quenching analysis of the tryptophan residues in SerR indicated that the structure of SerR is distorted by the addition of Mg2+, and this structural change probably regulates the two enzymatic activities.  相似文献   

16.
Field-collected adults of the southern pine sawyer, Monochamus titillator (F.) (Coleoptera: Cerambycidae), naturally infested with fourth-stage juveniles (dauerlarvae) of the pinewood nematode, Bursaphelenchus xylophilus (Steiner and Buhrer, 1934) Nickle, 1970, were maturation fed on excised shoots of typical slash pine, Pinus elliottii Engelm. var elliottii, for 21 days. During August 1981, a male and female adult beetle were held in a sleeve cage placed on the terminal of a side branch of each of seven replicate, healthy 10-year-old slash pine trees. All seven branch terminals showed evidence of beetle feeding on the bark after 1 week, and pinewood nematodes were present in wood samples taken near these feeding sites. Four of the seven trees showed wilt symptoms in 4-6 weeks and died about 9 weeks after beetle feeding. Pinewood nematodes were recovered from the roots and trunks of the dead trees. Each of seven replicate slash pine log bolts was enclosed in a jar with a pair of the same beetles used in the sleeve cages. After 1 week, wood underlying beetle oviposition sites in the bark of all replicate log bolts was infested with the pinewood nematode.  相似文献   

17.
The importance of symbiotic microbes to insects cannot be overstated; however, we have a poor understanding of the evolutionary processes that shape most insect–microbe interactions. Many bark beetle (Coleoptera: Curculionidae, Scolytinae) species are involved in what have been described as obligate mutualisms with symbiotic fungi. Beetles benefit through supplementing their nutrient‐poor diet with fungi and the fungi benefit through gaining transportation to resources. However, only a few beetle–fungal symbioses have been experimentally manipulated to test whether the relationship is obligate. Furthermore, none have tested for adaptation of beetles to their specific symbionts, one of the requirements for coevolution. We experimentally manipulated the western pine beetle–fungus symbiosis to determine whether the beetle is obligately dependent upon fungi and to test for fine‐scale adaptation of the beetle to one of its symbiotic fungi, Entomocorticium sp. B. We reared beetles from a single population with either a natal isolate of E. sp. B (isolated from the same population from which the beetles originated), a non‐natal isolate (a genetically divergent isolate from a geographically distant beetle population), or with no fungi. We found that fungi were crucial for the successful development of western pine beetles. We also found no significant difference in the effects of the natal and non‐natal isolate on beetle fitness parameters. However, brood adult beetles failed to incorporate the non‐natal fungus into their fungal transport structure (mycangium) indicating adaption by the beetle to particular genotypes of symbiotic fungi. Our results suggest that beetle–fungus mutualisms and symbiont fidelity may be maintained via an undescribed recognition mechanism of the beetles for particular symbionts that may promote particular associations through time.  相似文献   

18.
In protein synthesis, threonyl-tRNA synthetase (ThrRS) must recognize threonine (Thr) from the 20 kinds of amino acids and the cognate tRNAThr from different tRNAs in order to generate Thr-tRNAThr. In general, an organism possesses one kind of gene corresponding to ThrRS. However, it has been recently found that some organisms have two different genes for ThrRS in the genome, suggesting that their proteins ThrRS-1 and ThrRS-2 function separately and complement each other in the threonylation of tRNAThr, one for catalysis and the other for trans-editing of misacylated Ser-tRNAThr. In order to clarify their three-dimensional structures, we performed X-ray analyses of two putatively assigned ThrRSs from Aeropyrum pernix (ApThrRS-1 and ApThrRS-2). These proteins were overexpressed in Escherichia coli, purified, and crystallized. The crystal structure of ApThrRS-1 has been successfully determined at 2.3 Å resolution. ApThrRS-1 is a dimeric enzyme composed of two identical subunits, each containing two domains for the catalytic reaction and for anticodon binding. The essential editing domain is completely missing as expected. These structural features reveal that ThrRS-1 catalyzes only the aminoacylation of the cognate tRNA, suggesting the necessity of the second enzyme ThrRS-2 for trans-editing. Since the N-terminal sequence of ApThrRS-2 is similar to the sequence of the editing domain of ThrRS from Pyrococcus abyssi, ApThrRS-2 has been expected to catalyze deaminoacylation of a misacylated serine moiety at the CCA terminus.  相似文献   

19.
Phosphoribosyl pyrophosphate (PRPP) synthetase catalyzes the transfer of the pyrophosphate group from ATP to ribose-5-phosphate (R5P) yielding PRPP and AMP. PRPP is an essential metabolite that plays a central role in cellular metabolism. The enzyme from a thermophilic archaeon Thermoplasma volcanium (Tv) was expressed in Escherichia coli, crystallized, and its X-ray molecular structure was determined in a complex with its substrate R5P and with substrate analogs β,γ-methylene ATP and ADP in two monoclinic crystal forms, P21. The β,γ-methylene ATP- and the ADP-bound binary structures were determined from crystals grown from ammonium sulfate solutions; these crystals diffracted to 1.8 Å and 1.5 Å resolutions, respectively. Crystals of the ternary complex with ADP-Mg2+ and R5P were grown from a polyethylene glycol solution in the absence of sulfate ions, and they diffracted to 1.8 Å resolution; the unit cell is approximately double the size of the unit cell of the crystals grown in the presence of sulfate. The Tv PRPP synthetase adopts two conformations, open and closed, at different stages in the catalytic cycle. The binding of substrates, R5P and ATP, occurs with PRPP synthetase in the open conformation, whereas catalysis presumably takes place with PRPP synthetase in the closed conformation. The Tv PRPP synthetase forms a biological dimer in contrast to the tetrameric or hexameric quaternary structures of the Methanocaldococcus jannaschii and Bacillus subtilis PRPP synthetases, respectively.  相似文献   

20.
Bioluminescence in beetles is dependent upon the enzyme luciferase. It has been hypothesised luciferase evolved from a fatty acyl-CoA synthetase gene deriving a novel bioluminescent function (neofunctionalization) after a gene duplication event. We evaluated this hypothesis within a phylogenetic framework using independent evidence obtained from the genome of Tribolium castaneum, published luciferase genes and novel luciferase and luciferase-like sequences. This phylogenetic study provides evidence for a large gene family of luciferase and luciferase-like paralogues in bioluminescent and non-bioluminescent beetles. All luciferase sequences formed a clade supporting a protoluciferase existing prior to the divergence of the Lampyridae, Elateridae and Phengodidae (Elateroidea). Multiple luciferase genes were identified from members of the Photurinae and the Luciolinae indicating complex gene duplication events within lampyrid genomes. The majority of luciferase residues were identified to be under purifying selection as opposed to positive selection. We conclude that beetle luciferase may have arisen from a process of subfunctionalization as opposed to neofunctionalization early on in the evolution of the Elateroidea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号