共查询到20条相似文献,搜索用时 0 毫秒
1.
alphaArg-376, betaLys-155, and betaArg-182 are catalytically important ATP synthase residues that were proposed to be involved in substrate Pi binding and subsequent steps of ATP synthesis [Senior, A.E., Nadanaciva, S. and Weber, J. (2002) Biochim. Biophys. Acta 1553, 188-211]. Here, it was shown using purified Escherichia coli F(1)-ATPase that whereas Pi protected wild-type from reaction with 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, mutations betaK155Q, betaR182Q, betaR182K, and alphaR376Q abolished protection. Therefore, in ATP synthesis initial binding of substrate Pi in open catalytic site betaE is supported by each of these three residues. 相似文献
2.
Shovanlal Gayen 《FEBS letters》2010,584(4):713-718
The C-terminal residues 98-104 are important for structure stability of subunit H of A1AO ATP synthases as well as its interaction with subunit A. Here we determined the structure of the segment H85-104 of H from Methanocaldococcus jannaschii, showing a helix between residues Lys90 to Glu100 and flexible tails at both ends. The helix-helix arrangement in the C-terminus was investigated by exchange of hydrophobic residues to single cysteine in mutants of the entire subunit H (HI93C, HL96C and HL98C). Together with the surface charge distribution of H85-104, these results shine light into the A-H assembly of this enzyme. 相似文献
3.
Goran Biukovi? Shovanlal Gayen Konstantin Pervushin Gerhard Grüber 《Biophysical journal》2009,97(1):286-294
A series of truncated forms of subunit H were generated to establish the domain features of that protein. Circular dichroism analysis demonstrated that H is divided at least into a C-terminal coiled-coil domain within residues 54-104, and an N-terminal domain formed by adjacent α-helices. With a cysteine at the C-terminus of each of the truncated proteins (H1-47, H1-54, H1-59, H1-61, H1-67, H1-69, H1-71, H1-78, H1-80, H1-91, and H47-105), the residues involved in formation of the coiled-coil interface were determined. Proteins H1-54, H1-61, H1-69, and H1-80 showed strong cross-link formation, which was weaker in H1-47, H1-59, H1-71, and H1-91. A shift in disulfide formation between cysteins at positions 71 and 80 reflected an interruption in the periodicity of hydrophobic residues in the region 71AEKILEETEKE81. To understand how the N-terminal domain of H is formed, we determined for the first time, to our knowledge, the solution NMR structure of H1-47, which revealed an α-helix between residues 15-42 and a flexible N-terminal stretch. The α-helix includes a kink that would bring the two helices of the C-terminus into the coiled-coil arrangement. H1-47 revealed a strip of alanines involved in dimerization, which were tested by exchange to single cysteines in subunit H mutants. 相似文献
4.
Sankaranarayanan Rishikesan Youg R. Thaker Malathy S.S. Manimekalai Susana Geifman Shochat 《BBA》2009,1787(4):242-251
Understanding the structural traits of subunit G is essential, as it is needed for V1VO assembly and function. Here solution NMR of the recombinant N- (G1-59) and C-terminal segment (G61-114) of subunit G, has been performed in the absence and presence of subunit d of the yeast V-ATPase. The data show that G does bind to subunit d via its N-terminal part, G1-59 only. The residues of G1-59 involved in d binding are Gly7 to Lys34. The structure of G1-59 has been solved, revealing an α-helix between residues 10 and 56, whereby the first nine- and the last three residues of G1-59 are flexible. The surface charge distribution of G1-59 reveals an amphiphilic character at the N-terminus due to positive and negative charge distribution at one side and a hydrophobic surface on the opposite side of the structure. The C-terminus exhibits a strip of negative residues. The data imply that G1-59-d assembly is accomplished by hydrophobic interactions and salt-bridges of the polar residues. Based on the recently determined NMR structure of segment E18-38 of subunit E of yeast V-ATPase and the presently solved structure of G1-59, both proteins have been docked and binding epitopes have been analyzed. 相似文献
5.
Cytochrome a1 was solubilized with Triton X-100 from a membrane-envelope preparation of Nitrosomonas and partially purified by repeated fractionation with (NH4)2SO4. The purified fraction of cytochrome a1 was enriched over the crude extract by a factor of 16 and 300 with respect to protein and c-type cytochrome, respectively. The cytochrome was characterized as cytochrome a1 on the basis of (a) reduced absorption maxima at 444 nm and 595 nm, (b) acid acetone extractibility and ether solubility of the heme and (c) absorption maximum of 587 nm of the ferro-hemochrome in alkaline pyridine. The α absorption band shifted from 600 nm to 595 nm upon solubilization of the cytochrome with Triton X-100. Spectral shifts were observed in the presence of cyanide and azide and the cytochrome changed with aging to a form with a reduced absorption band at 422 nm. Cytochrome a1 was reduced anaerobically in the presence of reduced mammalian cytochrome c and was rapidly reoxidized in the presence of O2. CO caused a shift in the soret peak of the reduced form but did not prevent reoxidation of cytochrome a1 in the presence of CO-O2 (95:5, v/v). 相似文献
6.
The insertion of inner membrane proteins in Escherichia coli occurs almost exclusively via the SecYEG pathway, while some membrane proteins require the membrane protein insertase YidC. In vitro analysis demonstrates that subunit a of the F1F0 ATP synthase (F0a) is strictly dependent on Ffh, SecYEG and YidC for its membrane insertion but independent of the proton motive force. The insertion of the first transmembrane segment of F0a also depends on Ffh and SecYEG but not on YidC, whereas the insertion is strongly dependent on the proton motive force, unlike the full-length F0a protein. These data demonstrate an extensive role of YidC in the assembly of the F0 sector of the F1F0 ATP synthase. 相似文献
7.
Projection maps of a V1-Vma5p hybrid complex, composed of subunit C (Vma5p) of Saccharomyces cerevisiae V-ATPase and the C-depleted V1 from Manduca sexta, were determined from single particle electron microscopy. V1-Vma5p consists of a headpiece and an elongated wedgelike stalk with a 2.1×3.0 nm protuberance and a 9.5×7.5 globular domain, interpreted to include Vma5p. The interaction face of Vma5p in V1 was explored by chemical modification experiments. 相似文献
8.
In common with the F1-ATPase from other sources, yeast mitochondrial F1-ATPase was inhibited by 4-chloro-7-nitrobenzofurazan. Total inhibition of the F1-ATPase activity was compatible with the modification of a single tyrosine residue per F1-ATPase molecule. Radioactive labelling experiments localized this modification on a β-subunit. The inactive modified enzyme retained the capacity to bind the photoaffinity label 8-azido-1,N6-etheno-ATP, which has previously been shown to bind nucleotide sites of low affinity. As well, the inactive modified enzyme bound MgATP with high affinity, yielding a Kd of 14 μM. The results are consistent with the hypothesis of alternating, or cooperative, site catalysis by F1-ATPase. 相似文献
9.
ZntA is a P-type ATPase which transports Zn2+, Pb2+ and Cd2+ out of the cell. Two cysteine-containing motifs, CAAC near the N-terminus and CPC in transmembrane helix 6, are involved in binding of the translocated metal. We have studied these motifs by mutating the cysteines to serines. The roles of two other possible metal-binding residues, K693 and D714, in transmembrane helices 7 and 8, were also addressed. The mutation CAAC → SAAS reduces the ATPase activity by 50%. The SAAS mutant is phosphorylated with ATP almost as efficiently as the wild type. However, its phosphorylation with Pi is poorer than that of the wild type and its dephosphorylation rate is faster than that of the wild type ATPase. The CPC → SPS mutant is inactive but residual phosphorylation with ATP could still be observed. The most important findings of this work deal with the prospective metal-binding residues K693 and D714: the substitution K693N eliminates the Zn2+-stimulated ATPase activity completely, although significant Zn2+-dependent phosphorylation by ATP remains. The K693N ATPase is hyperphosphorylated by Pi. ZntA carrying the change D714M has strong metal-independent ATPase activity and is very weakly phosphorylated both by ATP and Pi. In conclusion, K693 and D714 are functionally essential and appear to contribute to the metal specificity of ZntA, most probably by being parts of the metal-binding site made up by the CPC motif. 相似文献
10.
Sami Kereïche Gert T. Oostergetel Egbert J. Boekema Chantal D. van der Weij-de Wit 《BBA》2008,1777(9):1122-1128
Photosynthetic supercomplexes from the cryptophyte Rhodomonas CS24 were isolated by a short detergent treatment of membranes from the cryptophyte Rhodomonas CS24 and studied by electron microscopy and low-temperature absorption and fluorescence spectroscopy. At least three different types of supercomplexes of photosystem I (PSI) monomers and peripheral Chl a/c2 proteins were found. The most common complexes have Chl a/c2 complexes at both sides of the PSI core monomer and have dimensions of about 17 × 24 nm. The peripheral antenna in these supercomplexes shows no obvious similarities in size and/or shape with that of the PSI-LHCI supercomplexes from the green plant Arabidopsis thaliana and the green alga Chlamydomonas reinhardtii, and may be comprised of about 6-8 monomers of Chl a/c2 light-harvesting complexes. In addition, two different types of supercomplexes of photosystem II (PSII) dimers and peripheral Chl a/c2 proteins were found. The detected complexes consist of a PSII core dimer and three or four monomeric Chl a/c2 proteins on one side of the PSII core at positions that in the largest complex are similar to those of Lhcb5, a monomer of the S-trimer of LHCII, Lhcb4 and Lhcb6 in green plants. 相似文献
11.
The kinetics of single-electron injection into the oxidized nonrelaxed state (OH → EH transition) of the aberrant ba3 cytochrome oxidase from Thermus thermophilus, noted for its lowered efficiency of proton pumping, was investigated by time-resolved optical spectroscopy. Two main phases of intraprotein electron transfer were resolved. The first component (τ ∼ 17 μs) reflects oxidation of CuA and reduction of the heme groups (low-spin heme b and high-spin heme a3 in a ratio close to 50:50). The subsequent component (τ ∼ 420 μs) includes reoxidation of both hemes by CuB. This is in significant contrast to the OH → EH transition of the aa3-type cytochrome oxidase from Paracoccus denitrificans, where the fastest phase is exclusively due to transient reduction of the low-spin heme a, without electron equilibration with the binuclear center. On the other hand, the one-electron reduction of the relaxed O state in ba3 oxidase was similar to that in aa3 oxidase and only included rapid electron transfer from CuA to the low-spin heme b. This indicates a functional difference between the relaxed O and the pulsed OH forms also in the ba3 oxidase from T. thermophilus. 相似文献
12.
In this study, we have investigated the association between osteoporosis and osteocalcin (BGLAP) − 298 C>T, estrogen receptor 1 (ER1) 397 T>C, collagen type1 alpha 1 (Col1A1) 2046 G>T and calcitonin receptor (CALCR) 1340 T>C polymorphisms. Genomic DNA was obtained from 266 persons (158 osteoporotic and 108 healthy controls). Genomic DNA was extracted from EDTA-preserved peripheral venous blood of patients and controls by a salting-out method and analyzed by PCR-RFLP. As a result, there was no statistically significant difference in the genotype and allele frequencies of patients and controls for BGLAP − 298 C>T, Col1A1 2046 G>T, ER1 397 T>C and CALCR 1340 T>C polymorphisms. However, ER1 CC genotype compared with TT + TC genotypes was found to increase the two fold the risk of osteoporosis [p = 0.039, OR = 2.156, 95% CI (1.083–4.293)] and CALCR CC genotype compared with TT + TC genotypes was found to have protective effect against osteoporosis [p = 0.045, OR = 0.471, 95% CI (0.237–0.9372)]. In the combined genotype analysis, ER1/CALCR TCCC combined genotype was estimated to have protective effect against osteoporosis [p = 0.0125, OR = 0.323, 95% CI (0.1383–0.755)] whereas BGLAP/Col1A1 CCTT and ER1/CALCR CCTT combined genotypes were estimated as risk factors for osteoporosis in Turkish population (p = 0.027, p = 0.009 respectively). 相似文献
13.
Studies investigating the associations between glutathione S-transferase (GST) genetic polymorphisms and primary open-angle glaucoma (POAG) have reported controversial results. Therefore, a meta-analysis was performed to clarify the effects of GSTM1 and GSTT1 polymorphisms on POAG risk. Published literatures from PubMed, EMBASE, ISI Web of Science and CBM databases were retrieved. All studies evaluating the association between GSTM1/GSTT1 polymorphisms and POAG were included. Pooled odds ratio (OR) and 95% confidence interval (CI) were calculated using fixed- or random-effects model. Eleven studies on GSTM1 (1339 cases and 1412 controls) and seven studies on GSTT1 (958 cases, 1003 controls) were included. Overall analysis showed that the association between GSTM1 and GSTT1 null genotype and POAG risk is not statistically significant. Subgroup analyses showed that the null genotype of GSTM1 increased the risk of POAG in Asians. In GSTM1–GSTT1 interaction analysis, individuals with dual null genotype were associated with a significantly increased risk of POAG when compared with the dual present genotype. In conclusion, the present meta-analysis suggested that GSTM1 null genotypes are associated with increased POAG risk in Asian populations but not in Caucasian and mixed populations. Dual null genotype of GSTM1/GSTT1 is associated with increased risk of POAG. Given the limited sample size, the finding on GST polymorphisms needs further investigation. 相似文献
14.
Sankaranarayanan Rishikesan 《生物化学与生物物理学报:生物膜》2010,1798(10):1961-1968
Subunit G is an essential stalk subunit of the eukaryotic proton pump V1VO ATPase. Previously the structure of the N-terminal region, G1-59, of the 13 kDa subunit G was solved at higher resolution. Here solution NMR was performed to determine the structure of the recombinant C-terminal region (G61-101) of subunit G of the Saccharomyces cerevisiae V1VO ATPase. The protein forms an extended α-helix between residues 64 and 100, whereby the first five- and the last residues of G61-101 are flexible. The surface charge distribution of G61-101 reveals an amphiphilic character at the C-terminus due to positive and negative charge distribution at one side and a hydrophobic surface on the opposite side of the structure. The hydrophobic surface pattern is mainly formed by alanine residues. The alanine residues 72, 74 and 81 were exchanged by a single cysteine in the entire subunit G. Cysteines at positions 72 and 81 showed disulfide formation. In contrast, no crosslink could be formed for the mutant Ala74Cys. Together with the recently determined NMR solution structure of G1-59, the presented solution structure of G61-101 enabled us to present a first structural model of the entire subunit G of the S. cerevisiae V1VO ATPase. 相似文献
15.
16.
Rosa L. López-Marqués José R. Pérez-Castiñeira Sergio Marco Michael G. Palmgren 《生物化学与生物物理学报:生物膜》2005,1716(1):69-76
Although several proton-pumping pyrophosphatases (H+-PPases) have been overexpressed in heterologous systems, purification of these recombinant integral membrane proteins in large amounts in order to study their structure-function relationships has proven to be a very difficult task. In this study we report a new method for large-scale production of pure and stable thermophilic H+-PPase from Thermotoga maritima. Following overexpression in yeast, a “Hot-Solve” procedure based on high-temperature solubilization and metal-affinity chromatography was used to obtain a highly purified detergent-solubilized TVP fraction with a yield around 1.5 mg of protein per litre of yeast culture. Electron microscopy showed the monodispersity of the purified protein and single particle analysis provided the first direct evidence of a dimeric structure for H+-PPases. We propose that the method developed could be useful for large-scale purification of other recombinant thermophilic membrane proteins. 相似文献
17.
Chunli Zhang Matteo Allegretti Janet Vonck Julian D. Langer Marco Marcia Guohong Peng Hartmut Michel 《Biochimica et Biophysica Acta (BBA)/General Subjects》2014
Background
F1FO ATP synthases catalyze the synthesis of ATP from ADP and inorganic phosphate driven by ion motive forces across the membrane. A number of ATP synthases have been characterized to date. The one from the hyperthermophilic bacterium Aquifex aeolicus presents unique features, i.e. a putative heterodimeric stalk. To complement previous work on the native form of this enzyme, we produced it heterologously in Escherichia coli.Methods
We designed an artificial operon combining the nine genes of A. aeolicus ATP synthase, which are split into four clusters in the A. aeolicus genome. We expressed the genes and purified the enzyme complex by affinity and size-exclusion chromatography. We characterized the complex by native gel electrophoresis, Western blot, and mass spectrometry. We studied its activity by enzymatic assays and we visualized its structure by single-particle electron microscopy.Results
We show that the heterologously produced complex has the same enzymatic activity and the same structure as the native ATP synthase complex extracted from A. aeolicus cells. We used our expression system to confirm that A. aeolicus ATP synthase possesses a heterodimeric peripheral stalk unique among non-photosynthetic bacterial F1FO ATP synthases.Conclusions
Our system now allows performing previously impossible structural and functional studies on A. aeolicus F1FO ATP synthase.General significance
More broadly, our work provides a valuable platform to characterize many other membrane protein complexes with complicated stoichiometry, i.e. other respiratory complexes, the nuclear pore complex, or transporter systems. 相似文献18.
Silvia C. Locatelli-Hoops Inna Gorshkova Klaus Gawrisch Alexei A. Yeliseev 《Biochimica et Biophysica Acta - Proteins and Proteomics》2013,1834(10):2045-2056
Human peripheral cannabinoid receptor CB2, a G protein-coupled receptor (GPCR) involved in regulation of immune response has become an important target for pharmaceutical drug development. Structural and functional studies on CB2 may benefit from immobilization of the purified and functional receptor onto a suitable surface at a controlled density and, preferably in a uniform orientation. The goal of this project was to develop a generic strategy for preparation of functional recombinant CB2 and immobilization at solid interfaces. Expression of CB2 as a fusion with Rho-tag (peptide composed of the last nine amino acids of rhodopsin) in E. coli was evaluated in terms of protein levels, accessibility of the tag, and activity of the receptor. The structural integrity of CB2 was tested by ligand binding to the receptor solubilized in detergent micelles, captured on tag-specific monoclonal 1D4 antibody-coated resin. Highly pure and functional CB2 was obtained by sequential chromatography on a 1D4- and Ni-NTA-resin and its affinity to the 1D4 antibody characterized by surface plasmon resonance (SPR). Either the purified receptor or fusion CB2 from the crude cell extract was captured onto a 1D4-coated CM4 chip (Biacore) in a quantitative fashion at uniform orientation as demonstrated by the SPR signal. Furthermore, the accessibility of the extracellular surface of immobilized CB2 and the affinity of interaction with a novel monoclonal antibody NAA-1 was studied by SPR. In summary, we present an integral strategy for purification, surface immobilization, ligand- and antibody binding studies of functional cannabinoid receptor CB2. 相似文献
19.
Genetic variations in DNA repair genes are thought to modify DNA repair capacity and may to be related to cancer susceptibility. However, epidemiological study results have been inconsistent. In this meta-analysis, we assessed 24 case–control studies of association between the X-ray repair cross complementing group 1 (XRCC1) Arg399Gln polymorphism and bladder cancer susceptibility in the general population and in Asian and non-Asian subgroups. A moderately significant association with bladder cancer risk was found for AG vs GG (OR = 1.110, 95% CI = 1.018–1.210). No significant associations with bladder cancer risk were found for AA vs GG (OR = 0.942, 95% CI = 0.823–1.077), the dominant model AA/AG vs GG (OR = 1.075, 95% CI = 0.990–1.167) and the recessive model AA vs AG/GG(OR = 0.890, 95% CI = 0.788–1.005). In subgroup analysis, a moderately significant association was also found for AG vs GG (OR = 1.091, 95% CI = 1.008–1.180) in non-Asian subgroup. The analysis suggests that the XRCC1 Arg399Gln polymorphism might be a moderate risk factor for bladder cancer, especially in non-Asian population. 相似文献
20.
Mikhail A. Galkin 《BBA》2006,1757(3):206-214
An unusual effect of temperature on the ATPase activity of E. coli F1Fo ATP synthase has been investigated. The rate of ATP hydrolysis by the isolated enzyme, previously kept on ice, showed a lag phase when measured at 15 °C, but not at 37 °C. A pre-incubation of the enzyme at room temperature for 5 min completely eliminated the lag phase, and resulted in a higher steady-state rate. Similar results were obtained using the isolated enzyme after incorporation into liposomes. The initial rates of ATP-dependent proton translocation, as measured by 9-amino-6-chloro-2-methoxyacridine (ACMA) fluorescence quenching, at 15 °C also varied according to the pre-incubation temperature. The relationship between this temperature-dependent pattern of enzyme activity, termed thermohysteresis, and pre-incubation with other agents was examined. Pre-incubation of membrane vesicles with azide and Mg2+, without exogenous ADP, resulted in almost complete inhibition of the initial rate of ATPase when assayed at 10 °C, but had little effect at 37 °C. Rates of ATP synthesis following this pre-incubation were not affected at any temperature. Azide inhibition of ATP hydrolysis by the isolated enzyme was reduced when an ATP-regenerating system was used. A gradual reactivation of azide-blocked enzyme was slowed down by the presence of phosphate in the reaction medium. The well-known Mg2+ inhibition of ATP hydrolysis was shown to be greatly enhanced at 15 °C relative to at 37 °C. The results suggest that thermohysteresis is a consequence of an inactive form of the enzyme that is stabilized by the binding of inhibitory Mg-ADP. 相似文献