首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
Here we show that 14-3-3 proteins bind to Pim kinase-phosphorylated Ser166 and Ser186 on the human E3 ubiquitin ligase mouse double minute 2 (Mdm2), but not protein kinase B (PKB)/Akt-phosphorylated Ser166 and Ser188. Pim-mediated phosphorylation of Ser186 blocks phosphorylation of Ser188 by PKB, indicating potential interplay between the Pim and PKB signaling pathways in regulating Mdm2. In cells, expression of Pim kinases promoted phosphorylation of Ser166 and Ser186, interaction of Mdm2 with endogenous 14-3-3s and p14ARF, and also increased the amount of Mdm2 protein by a mechanism that does not require Pim kinase activities. The implications of these findings for regulation of the p53 pathway, oncogenesis and drug discovery are discussed.

Structured summary

MINT-6823587:PIM3 (uniprotkb:Q86V86) phosphorylates (MI:0217) MDM2 (uniprotkb:Q00987) by protein kinase assay (MI:0424)MINT-6823623:MDM2 (uniprotkb:Q00987) physically interacts (MI:0218) with p14ARF (uniprotkb:Q8N7268N726) by coimmunoprecipitation (MI:0019)MINT-6823537:PKB (uniprotkb:P31749) phosphorylates (MI:0217) MDM2 (uniprotkb:Q00987) by protein kinase assay (MI:0424)MINT-6823574:PIM2 (uniprotkb:QP1W9) phosphorylates (MI:0217) MDM2 (uniprotkb:Q00987) by protein kinase assay (MI:0424)MINT-6823555:PIM1 (uniprotkb:P11309)P phosphorylates (MI:0217) MDM2 (uniprotkb:Q00987) by protein kinase assay (MI:0424)  相似文献   

2.
3.
4.
Ephrins and Eph receptors have key roles in regulation of cell migration during development. We found that the RacGAP β2-chimaerin (chimerin) bound to EphA2 and EphA4 and inactivated Rac1 in response to ephrinA1 stimulation. EphA4 bound to β2-chimaerin through its kinase domain and promoted binding of Rac1 to β2-chimaerin. In addition, knockdown of endogenous β2-chimaerin blocked ephrinA1-induced suppression of cell migration. These results suggest that β2-chimaerin is activated by EphA receptors and mediates the EphA receptor-dependent regulation of cell migration.

Structured summary

MINT-7013428: EphA1 (uniprotkb:Q60750) physically interacts (MI:0218) with Chimaerin beta 2 (uniprotkb:Q80XD1-2) and EphA4 (uniprotkb:O08542) by anti tag coimmunoprecipitation (MI:0007)MINT-7013515: Chimaerin beta 2 (uniprotkb:Q80XD1-2) physically interacts (MI:0218) with Rac1 (uniprotkb:P63001) by anti tag coimmunoprecipitation (MI:0007)MINT-7013410: EphA1 (uniprotkb:Q60750) physically interacts (MI:0218) with Chimaerin beta 1 (uniprotkb:Q80XD1-1) and EphA4 (uniprotkb:O08542) by anti tag coimmunoprecipitation (MI:0007)MINT-7013503: Chimaerin beta 1 (uniprotkb:Q80XD1-1) physically interacts (MI:0218) with EphA4 (uniprotkb:O08542) by anti tag coimmunoprecipitation (MI:0007)MINT-7013472: Chimaerin beta 2 (uniprotkb:Q80XD1-2) physically interacts (MI:0218) with EphA2 (uniprotkb:O43921) by anti tag coimmunoprecipitation (MI:0007)MINT-7013450: EphA1 (uniprotkb:Q60750) physically interacts (MI:0218) with EphA2 (uniprotkb:O43921) and Chimaerin beta 2 (uniprotkb:P52757-1) by anti tag coimmunoprecipitation (MI:0007)MINT-7013491: Chimaerin beta 2 (uniprotkb:Q80XD1-2) physically interacts (MI:0218) with EphA4 (uniprotkb:O08542) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

5.
Mcl-1 full-length (Mcl-11-350), a tightly regulated protein, plays an important role in protecting cells against apoptosis. Cleavage of Mcl-1 at Asp127 by caspase (Mcl-1C1) contributes to the regulation of Mcl-1 expression, but its pro-apoptotic function remains controversial. Here, we reported that Mcl-1128-350 expression induced caspase-dependent apoptosis. We demonstrated that Mcl-1128-350 but not Mcl-11-350 interacts with Bax. This interaction required an intact BH3 Mcl-1128-350 domain and leads to Bax activation and translocation to mitochondria. The silencing of Bax, but not of Bak, prevented Mcl-1128-350 induced apoptosis. In conclusion, Mcl-1128-350 exerts a pro-apoptotic function governed by its capacity to interact with Bax.

Structured summary

MINT-7306752: Mcl-1 (uniprotkb:Q07820) physically interacts (MI:0915) with BAK (uniprotkb:Q16611) by anti tag coimmunoprecipitation (MI:0007)MINT-7306728: Mcl-1 (uniprotkb:Q07820) physically interacts (MI:0914) with BAX (uniprotkb:Q07812) and BAK (uniprotkb:Q16611) by anti tag coimmunoprecipitation (MI:0007)MINT-7307171: F1 ATPase (uniprotkb:Q5TC12), Mcl-1 (uniprotkb:Q07820) and BAX (uniprotkb:Q07812) colocalize (MI:0403) by cosedimentation through density gradients (MI:0029)  相似文献   

6.
N-methyl-d-aspartate receptors (NMDARs) mediate excitatory synaptic transmission in the brain. Here we demonstrate interactions between the NR2A and NR2B subunits of NMDARs with flotillin-1 (flot-1), a lipid raft-associated protein. When mapped, analogous regions in the far distal C-termini of NR2A and NR2B mediate binding to flot-1, and the prohibitin homology domain of flot-1 contains binding sites for NR2A and NR2B. Although NR2B can also directly bind to flot-2 via a separate region of its distal C-terminus, NMDARs were significantly more colocalized with flot-1 than flot-2 in cultured hippocampal neurons. Overall, this study defines a novel interaction between NMDARs and flotillins.

Structured summary

MINT-7013094: NR2A (uniprotkb:Q00959), NR2B (uniprotkb:Q00960) and Flot2 (uniprotkb:Q9Z2S9) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7013147: Flot1 (uniprotkb:Q9Z1E1) physically interacts (MI:0218) with NR2A (uniprotkb:Q00959) by anti bait coimmunoprecipitation (MI:0006)MINT-7013189: Flot1 (uniprotkb:Q9Z1E1) physically interacts (MI:0218) with Flot2 (uniprotkb:Q9Z2S9) by anti bait coimmunoprecipitation (MI:0006)MINT-7013033: NR2A (uniprotkb:Q00959) physically interacts (MI:0218) with Flot1 (uniprotkb:Q9Z1E1) by two hybrid (MI:0018)MINT-7013178: NR1 (uniprotkb:P35439) physically interacts (MI:0218) with Flot2 (uniprotkb:Q9Z2S9) by anti bait coimmunoprecipitation (MI:0006)MINT-7013197, MINT-7013210: NR2B (uniprotkb:Q00960) and NR2A (uniprotkb:Q00959) physically interact (MI:0218) with Flot2 (uniprotkb:Q9Z2S9) by anti bait coimmunoprecipitation (MI:0006)MINT-7013002: NR2B (uniprotkb:Q00960) physically interacts (MI:0218) with Flot1 (uniprotkb:O08917) by two hybrid (MI:0018)MINT-7013117: Flot1 (uniprotkb:Q9Z1E1), NR2B (uniprotkb:Q00960) and NR2A (uniprotkb:Q00959) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7013171: NR1 (uniprotkb:P35439) physically interacts (MI:0218) with Flot1 (uniprotkb:Q9Z1E1) by anti bait coimmunoprecipitation (MI:0006)MINT-7013017: NR2A (uniprotkb:Q00959) physically interacts (MI:0218) with Flot1 (uniprotkb:O08917) by two hybrid (MI:0018)MINT-7013054: NR2B (uniprotkb:Q00960) physically interacts (MI:0218) with Flot1 (uniprotkb:Q9Z1E1) by two hybrid (MI:0018)MINT-7013129: Flot1 (uniprotkb:Q9Z1E1) physically interacts (MI:0218) with NR2B (uniprotkb:Q00960) by anti bait coimmunoprecipitation (MI:0006)MINT-7013155: NR1 (uniprotkb:P35439) physically interacts (MI:0218) with NR2B (uniprotkb:Q00960) by anti bait coimmunoprecipitation (MI:0006)MINT-7013074: NR2B (uniprotkb:Q00960) physically interacts (MI:0218) with Flot2 (uniprotkb:Q9Z2S9) by two hybrid (MI:0018)MINT-7013162: NR1 (uniprotkb:P35439) physically interacts (MI:0218) with NR2A (uniprotkb:Q00959) by anti bait coimmunoprecipitation (MI:0006)  相似文献   

7.
8.
The mechanism underlying the protein-protein interaction of hnRNP K and PRMT family proteins is unclear. We examined and confirmed the arginine methylation of hnRNP K protein by PRMT1, not CARM1, via their direct binding. We also studied hnRNP K protein complexes containing CARM1, as well as PRMT1, using co-immunoprecipitation analysis. PRMT family proteins might be involved in the regulation of hnRNP K functions in nuclear receptor coactivator, transactivation, and p21 gene and protein expressions. We believe these observations will help provide insights into the regulation of hnRNP K protein functions via the recruitment of its associated proteins, including its arginine methylation-modifying proteins.

Structured summary

MINT-6803853: hnRPK, (uniprotkb:P61978) binds (MI:0407) to PRMT1 (uniprotkb:Q99873) by pull down (MI:0096)MINT-6803884: hnRPK, (uniprotkb:P61978) physically interacts (MI:0218) with CARM1 (uniprotkb:Q86X55) by anti tag coimmunoprecipitation (MI:0007)MINT-6803869: hnRPK, (uniprotkb:P61978) physically interacts (MI:0218) with PRMT1 (uniprotkb:Q99873) by anti tag coimmunoprecipitation (MI:0007)MINT-6803939: hnRPK, (uniprotkb:P61978) binds (MI:0407) to PRMT2 (uniprotkb:P55345) by pull down (MI:0096)MINT-6803929: hnRPK, (uniprotkb:P61978) binds (MI:0407) to RMT (uniprotkb:P38074) by pull down (MI:0096)MINT-6803896: hnRPK, (uniprotkb:P61978) binds (MI:0407) to PRMT3 (uniprotkb:O60678) by pull down (MI:0096)MINT-6803834: PRMT1 (uniprotkb:Q99873) methylates (MI:0213) hnRPK, (uniprotkb:P61978) by methyltransferase assay (MI:0515)  相似文献   

9.
Chromodomain, helicase, DNA-binding protein 8 (CHD8) is an ATP-dependent chromatin remodeling enzyme that has been demonstrated to exist within a large protein complex which includes WDR5, Ash2L, and RbBP5, members of the Mixed Lineage Leukemia (MLL) histone modifying complexes. Here we show that CHD8 relocalizes to the promoter of the MLL regulated gene HOXA2 upon gene activation. Depletion of CHD8 enhances HOXA2 expression under activating conditions. Furthermore, depletion of CHD8 results in a loss of the WDR5/Ash2L/RbBP5 subcomplex, and consequently H3K4 trimethylation, at the HOXA2 promoter. These studies suggest that CHD8 alters HOXA2 gene expression and regulates the recruitment of chromatin modifying enzymes.

Structured summary

MINT-7542810: CHD8 (uniprotkb:Q9HCK8) physically interacts (MI:0915) with RbBP5 (uniprotkb:Q15291) by anti tag coimmunoprecipitation (MI:0007)MINT-7542794: CHD8 (uniprotkb:Q9HCK8) physically interacts (MI:0915) with WDR5 (uniprotkb:P61964) by anti tag coimmunoprecipitation (MI:0007)MINT-7542820: CHD8 (uniprotkb:Q9HCK8) physically interacts (MI:0915) with ASH2L (uniprotkb:Q9UBL3) by anti tag coimmunoprecipitation (MI:0007)MINT-7542769: CHD8 (uniprotkb:Q9HCK8) physically interacts (MI:0914) with RbBP5 (uniprotkb:Q15291), ASH2L (uniprotkb:Q9UBL3) and WDR5 (uniprotkb:P61964) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

10.
Inhibitor of growth 2 (ING2) gene encodes a candidate tumor suppressor and is frequently reduced in many tumors. However, the mechanisms underlying the regulation of ING2, in particular its protein stability, are still unclear. Here we show that the homologous to E6AP carboxyl terminus (HECT)-type ubiquitin ligase Smad ubiquitination regulatory factor 1 (Smurf1) interacts with and targets ING2 for poly-ubiquitination and proteasomal degradation. Intriguingly, the ING2 binding domain in Smurf1 was mapped to the catalytic HECT domain. Furthermore, the C-terminal PHD domain of ING2 was required for Smurf1-mediated degradation. This study provided the first evidence that the stability of ING2 could be regulated by ubiquitin-mediated degradation.

Structured summary

MINT-7894271: ING2 (uniprotkb:Q9H160) binds (MI:0407) to Smurf1 (uniprotkb:Q9HCE7) by pull-down (MI:0096)MINT-7894319, MINT-7894339: ING2 (uniprotkb:Q9H160) physically interacts (MI:0915) with Smurf1 (uniprotkb:Q9HCE7) by anti tag co-immunoprecipitation (MI:0007)MINT-7894301: Smurf1 (uniprotkb:Q9HCE7) physically interacts (MI:0915) with ING2 (uniprotkb:Q9H160) by anti bait co-immunoprecipitation (MI:0006)MINT-7894358: ING1b (uniprotkb:Q9UK53-2) physically interacts (MI:0915) with Smurf1 (uniprotkb:Q9HCE7) by anti tag co-immunoprecipitation (MI:0007)MINT-7894249: ING2 (uniprotkb:Q9H160) physically interacts (MI:0915) with ubiquitin (uniprotkb:P62988) by anti tag co-immunoprecipitation (MI:0007)  相似文献   

11.
Xin Yu Liu 《FEBS letters》2008,582(29):4023-4031
The protein kinase transforming-growth-factor-β-activated kinase-1 (TAK1) is a key regulator in the pro-inflammatory signaling pathway and is activated by tumor necrosis factor-α, interleukin-1 (IL-1) and lipopolysaccharide (LPS). We describe the identification of TAK1 as a client protein of the 90 kDa heat-shock protein (Hsp90)/cell division cycle protein 37 (Cdc37) chaperones. However, Hsp90 is not required for the activation of TAK1 as short exposure to the Hsp90 inhibitor, 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) did not affect its activation by LPS or IL-1. Prolonged treatment of cells with 17-AAG inhibits Hsp90 and downregulates TAK1. Our results suggest that Hsp90 is required for the folding and stability of TAK1 but is displaced and no longer required when TAK1 is complexed to TAK1-binding protein-1 (TAB1).

Structured summary

MINT-6797182:
TAK1 (uniprotkb:O43318-2) physically interacts (MI:0218) with CDC37 (uniprotkb:Q16543) and HSP90 (uniprotkb:P07900) by anti bait coimmunoprecipitation (MI:0006)
MINT-6797194:
TAK1 (uniprotkb:O43318-2) physically interacts (MI:0218) with TAB1 (uniprotkb:Q15750), HSP90 (uniprotkb:P07900) and CDC37 (uniprotkb:Q16543) by anti bait coimmunoprecipitation (MI:0006)
MINT-6797248:
TAK1 (uniprotkb:Q62073) physically interacts (MI:0218) with HSP90 (uniprotkb:P07901), CDC37 (uniprotkb:Q61081), TAB2 (uniprotkb:Q99K90) and TAB1 (uniprotkb:Q8CF89) by anti bait coimmunoprecipitation (MI:0006)
MINT-6797232:
TAK1 (uniprotkb:O43318-2) physically interacts (MI:0218) with HSP90 (uniprotkb:P07900) and CDC37 (uniprotkb:Q16543) by pull down (MI:0096)
MINT-6797216:
TAK1 (uniprotkb:O43318-2) physically interacts (MI:0218) with TAB2 (uniprotkb:Q9NYJ8), CDC37 (uniprotkb:Q16543), HSP90 (uniprotkb:P07900) and TAB1 (uniprotkb:Q15750) by anti bait coimmunoprecipitation (MI:0006)
  相似文献   

12.
The p53 tumour suppressor protein is tightly controlled by the E3 ubiquitin ligase, mouse double minute 2 (MDM2), but maintains MDM2 expression as part of a negative feedback loop. We have identified the immunophilin, 25 kDa FK506-binding protein (FKBP25), previously shown to be regulated by p53-mediated repression, as an MDM2-interacting partner. We show that FKBP25 stimulates auto-ubiquitylation and proteasomal degradation of MDM2, leading to the induction of p53. Depletion of FKBP25 by siRNA leads to increased levels of MDM2 and a corresponding reduction in p53 and p21 levels. These data are consistent with the idea that FKBP25 contributes to regulation of the p53-MDM2 negative feedback loop.

Structured summary

MINT-6823686:MDM2 (uniprotkb:Q00987) physically interacts (MI:0218) with FKBP25 (uniprotkb:Q00688) by anti bait coimmunoprecipitation (MI:0006)MINT-6823707, MINT-6823722:MDM2 (uniprotkb:Q00987) physically interacts (MI:0218) with FKBP25 (uniprotkb:Q62446) by pull down (MI:0096)MINT-6823775:P53 (uniprotkb:Q04637) physically interacts (MI:0218) with MDM2 (uniprotkb:Q00987) by anti bait coimmunoprecipitation (MI:0006)MINT-6823735, MINT-6823749:FKBP25 (uniprotkb:Q62446) binds (MI:0407) to MDM2 (uniprotkb:Q00987) by pull down (MI:0096)MINT-6823761:Ubiquitin (UNIPROTKB:62988)P physically interacts (MI:0218) with MDM2 (uniprotkb:Q00987) by pull down (MI:0096)MINT-6823669:MDM2 (uniprotkb:Q00987) physically interacts (MI:0218) with FKBP25 (uniprotkb:Q00688) by two hybrid (MI:0018)  相似文献   

13.
14.
Hee-Won Seo 《FEBS letters》2009,583(1):55-60
The interplay between hypoxia-inducible factor-1α (HIF-1α) and histone deacetylase (HDACs) have been well studied; however, the mechanism of cross-talk is unclear. Here, we investigated the roles of HDAC4 and HDAC5 in the regulation of HIF-1α function and its associated mechanisms. HDAC4 and HDAC5 enhanced transactivation by HIF-1α without stabilizing HIF-1α. HDAC4 and HDAC5 physically associated with HIF-1α through the inhibitory domain (ID) that is the binding site for factor inhibiting HIF-1 (FIH-1). In the presence of these HDACs, binding of HIF-1α to FIH-1 decreased, whereas binding to p300 increased. These results indicate that HDAC4 and HDAC5 increase the transactivation function of HIF-1α by promoting dissociation of HIF-1α from FIH-1 and association with p300.

Structured summary:

MINT-6802187:HIF1 alpha (uniprotkb:Q16665) physically interacts (MI:0218) with FIH1 (uniprotkb:Q9NWT6) by anti bait coimmunoprecipitation (MI:0006)MINT-6802058:HIF1 alpha (uniprotkb:Q16665) physically interacts (MI:0218) with HDAC4 (uniprotkb:P56524) by pull down (MI:0096)MINT-6802021:HIF1 alpha (uniprotkb:Q61221) physically interacts (MI:0218) with HDAC4 (uniprotkb:P56524) by anti bait coimmunoprecipitation (MI:0006)MINT-6802036:HIF1 alpha (uniprotkb:Q61221) physically interacts (MI:0218) with HDAC5 (uniprotkb:Q9UQL6) by anti bait coimmunoprecipitation (MI:0006)MINT-6802102:HIF1 alpha (uniprotkb:Q16665) physically interacts (MI:0218) with HDAC5 (uniprotkb:Q9UQL6) by pull down (MI:0096)MINT-6802121, MINT-6802156:P300 (uniprotkb:Q09472) physically interacts (MI:0218) with HIF1 alpha (uniprotkb:Q16665) by anti bait coimmunoprecipitation (MI:0006)  相似文献   

15.
Cytosolic thioredoxins are small conserved proteins that are involved in cellular redox regulation. Here, we report that a major and cold-induced thioredoxin h of rice, OsTrx23, has an inhibitory activity on stress-activated mitogen-activated protein kinases (MAPKs), OsMPK3 and OsMPK6 in vitro. This inhibition effects were redox-dependent and did not involve stable physical interaction. The data suggested a novel mechanism for redox regulation of MAPKs in plants.

Structured summary

MINT-7234362: MPK3 (uniprotkb:Q10N20) phosphorylates (MI:0217) MBP (uniprotkb:P02687) by protein kinase assay (MI:0424)MINT-7234435: MPK6 (uniprotkb:Q336X9) phosphorylates (MI:0217) MBP (uniprotkb:P02687) by protein kinase assay (MI:0424)  相似文献   

16.
We reported a novel interaction between Beclin 1, a key regulator of autophagy, and survivin, a member of the inhibitor of apoptosis protein family. We found that knock-down of Beclin 1 down-regulated survivin protein, and the turnover rate of survivin was increased when Beclin 1 expression was silenced. Knock-down of Beclin 1 sensitized glioma cells to TRAIL-induced apoptosis, and introduction of survivin antagonized the sensitizing effect, suggesting that down-regulation of survivin mediates the enhanced sensitivity to TRAIL-induced apoptosis. These results demonstrate a novel interaction between Beclin 1 and survivin, and may provide a potential mechanism underlying the cross-talk between autophagy and apoptosis.

Structured summary

MINT-7969366: Beclin-1 (uniprotkb:Q14457) physically interacts (MI:0915) with survivin (uniprotkb:O15392) by anti tag coimmunoprecipitation (MI:0007)MINT-7968986, MINT-7969161: survivin (uniprotkb:O15392) physically interacts (MI:0915) with Beclin-1 (uniprotkb:Q14457) by anti bait coimmunoprecipitation (MI:0006)  相似文献   

17.
Sylvia S. Dias 《FEBS letters》2009,583(22):3543-3548
The E3 ubiqutin ligase, murne double-minute clone 2 (MDM2), promotes the degradation of p53 under normal homeostatic conditions. Several serine residues within the acidic domain of MDM2 are phosphorylated to maintain its activity but become hypo-phosphorylated following DNA damage, leading to inactivation of MDM2 and induction of p53. However, the signalling pathways that mediate these phosphorylation events are not fully understood. Here we show that the oncogenic and cell cycle-regulatory protein kinase, polo-like kinase-1 (PLK1), phosphorylates MDM2 at one of these residues, Ser260, and stimulates MDM2-mediated turnover of p53. These data are consistent with the idea that deregulation of PLK1 during tumourigenesis may help suppress p53 function.

Structured summary

MINT-7266353: MDM2 (uniprotkb:Q00987) physically interacts (MI:0915) with PLK1 (uniprotkb:P53350) by pull down (MI:0096)MINT-7266344, MINT-7266329: MDM2 (uniprotkb:Q00987) physically interacts (MI:0915) with PLK1 (uniprotkb:P53350) by anti bait coimmunoprecipitation (MI:0006)MINT-7266250: PLK1 (uniprotkb:P53350) phosphorylates (MI:0217) p53 (uniprotkb:P04637) by protein kinase assay (MI:0424)MINT-7266241, MINT-7266318: PLK1 (uniprotkb:P53350) phosphorylates (MI:0217) MDM2 (uniprotkb:P23804) by protein kinase assay (MI:0424)MINT-7266231, MINT-7266805, MINT-7266264, MINT-7266299: PLK1 (uniprotkb:P53350) phosphorylates (MI:0217) MDM2 (uniprotkb:Q00987) by protein kinase assay (MI:0424)  相似文献   

18.
ELL-associated protein 30 (EAP30) was initially characterized as a component of the Holo-ELL complex, which contains the elongation factor ELL. Both ELL and Holo-ELL stimulate RNA pol II elongation in vitro. However, ELL and not Holo-ELL inhibits RNA pol II initiation. It is not clear how these two discrete functions of ELL are regulated. Here we report that mini-chromosome maintenance 2 (MCM2) binds to EAP30 and show that MCM2 competes with ELL for binding to EAP30 thus potentially modulating the stability of Holo-ELL.

Structured summary

MINT-7277033: EAP30 (uniprotkb:Q96H20) physically interacts (MI:0915) with RPB1 (uniprotkb:P24928) by anti tag coimmunoprecipitation (MI:0007)MINT-7277085: EAP30 (uniprotkb:Q96H20) binds (MI:0407) to ELL (uniprotkb:P55199) by pull down (MI:0096)MINT-7277072: EAP30 (uniprotkb:Q96H20) physically interacts (MI:0915) with ELL (uniprotkb:P55199) by anti tag coimmunoprecipitation (MI:0007)MINT-7277100: EAP30 (uniprotkb:Q96H20) physically interacts (MI:0915) with ELL (uniprotkb:P55199) by competition binding (MI:0405)MINT-7277153: MCM2 (uniprotkb:P49736) binds (MI:0407) to ELL (uniprotkb:P55199) by pull down (MI:0096)MINT-7276989: EAP30 (uniprotkb:Q96H20) physically interacts (MI:0915) with MCM2 (uniprotkb:P49736) by pull down (MI:0096)MINT-7277005: EAP30 (uniprotkb:Q96H20) physically interacts (MI:0915) with RPB1 (uniprotkb:P24928) by pull down (MI:0096)MINT-7276960, MINT-7277168: MCM2 (uniprotkb:P49736) physically interacts (MI:0915) with EAP30 (uniprotkb:Q96H20) by two hybrid (MI:0018)MINT-7276971, MINT-7277121, MINT-7277137: MCM2 (uniprotkb:P49736) binds (MI:0407) to EAP30 (uniprotkb:Q96H20) by pull down (MI:0096)MINT-7277018, MINT-7277061: EAP30 (uniprotkb:Q96H20) physically interacts (MI:0915) with MCM2 (uniprotkb:P49736) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

19.
The γ-secretase, composed of presenilin-1 (PS1) or presenilin-2 (PS2), nicastrin (NCT), anterior pharynx-defective phenotype 1 (APH-1), and PEN-2, is critical for the development of Alzheimer’s disease (AD). PSs are autoproteolytically cleaved, producing an N-terminal fragment (NTF) and a hydrophilic loop domain-containing C-terminal fragment. However, the role of the loop domain in the γ-secretase complex assembly remains unknown. Here, we report a novel PS2 isoform generated by alternative splicing, named PS2β, which is composed of an NTF with a hydrophilic loop domain. PS2β disturbed the interaction between NCT and APH-1, resulting in the inhibition of amyloid-β production. We concluded that PS2β may inhibit γ-secretase activity by affecting the γ-secretase complex assembly.

Structured summary

MINT-7025654: APH1 (uniprotkb:Q96BI3) physically interacts (MI:0218) with PEN2 (uniprotkb:Q9NZ42), PS2 beta (uniprotkb:Q61144-2) and PS1 (uniprotkb:P49769) by anti tag coimmunoprecipitation (MI:0007)MINT-7025631: APH1 (uniprotkb:Q96BI3) physically interacts (MI:0218) with NCT (uniprotkb:Q92542), PEN2 (uniprotkb:Q9NZ42) and PS1 (uniprotkb:P49769) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

20.
You Lee Son 《FEBS letters》2010,584(18):3862-3866
Liver X receptor (LXR)/retinoid X receptor (RXR) heterodimers have been shown to perform critical functions in cholesterol and lipid metabolism. Here, we have conducted a comparative analysis of the contributions of LXR and RXR binding to steroid receptor coactivator-1 (SRC-1), which contains three copies of the NR box. We demonstrated that the coactivator-binding surface of LXR, but not that of RXR, is critically important for physical and functional interactions with SRC-1, thereby confirming that RXR functions as an allosteric activator of SRC-1-LXR interaction. Notably, we identified NR box-2 and -3 as the essential binding targets for the SRC-1-induced stimulation of LXR transactivity, and observed the competitive in vitro binding of NR box-2 and -3 to LXR.

Structured summary

MINT-7986678, MINT-7986639, MINT-7986700, MINT-7986720, MINT-7986736, MINT-7986760, MINT-7986787: LXR (uniprotkb:Q13133) physically interacts (MI:0915) with SRC1 (uniprotkb:Q15788) and RXR (uniprotkb:P19793) by pull down (MI:0096)MINT-7986596, MINT-7986621: SRC1 (uniprotkb:Q15788) physically interacts (MI:0915) with LXR (uniprotkb:Q13133) by pull down (MI:0096)MINT-7986555, MINT-7986575: LXR (uniprotkb:Q13133) physically interacts (MI:0915) with SRC1 (uniprotkb:Q15788) by two hybrid (MI:0018)MINT-7986808, MINT-7986907, MINT-7986890: SRC1 (uniprotkb:Q15788) binds (MI:0407) to LXR (uniprotkb:Q13133) by pull down (MI:0096)MINT-7986822, MINT-7986848, MINT-7986865: SRC1 (uniprotkb:Q15788) binds (MI:0407) to RXR (uniprotkb:P19793) by pull down (MI:0096)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号