首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
DnaE intein from Nostoc punctiforme (Npu) is one of naturally occurring split inteins, which has robust protein splicing activity. Highly efficient trans-splicing activity of NpuDnaE intein could widen various biotechnological applications. However, structural basis of the efficient protein splicing activity is poorly understood. As a first step toward better understanding of protein trans-splicing mechanism, we present the backbone and side-chain resonance assignments of a single chain variant NpuDnaE intein as determined by triple resonance experiments with [13C,15N]-labeled protein.  相似文献   

2.
We have cloned and characterized a naturally occurring split mini-DnaE intein capable of protein trans-splicing in the cyanobacterium Synechococcus elongatus (Sel DnaE intein). Sel DnaE intein is homologous to Synechocystissp. PCC6803 (Ssp) DnaE intein and Nostoc punctiforme (Npu) DnaE intein, with a protein sequence identity of 60% for the N-terminal part of intein and 61% for the C-terminal part of intein. Our results demonstrate that the split reporters, split Renilla luciferase (Rluc) and enhanced green fluorescent protein (EGFP), can be reconstituted via Sel DnaE intein-mediated trans-splicing in mammalian cells. Based on Sel DnaE intein-mediated reconstitution of split Rluc, a human immunodeficiency virus (HIV) entry-mimicking cell-cell fusion assay was developed and validated as a useful assay for screening and pharmacologically characterizing potential HIV entry-targeting inhibitors.  相似文献   

3.
We have studied the naturally split α subunit of the DNA polymerase III (DnaE) intein from Nostoc punctiforme PCC73102 (Npu) using purified proteins and determined an apparent first-order rate constant of (1.1±0.2)×10-2 s−1 at 37 °C. This represents the highest rate reported for the protein trans-splicing reaction so far (t1/2 of 60 s). Furthermore, the reaction was very robust and high-yielding with respect to different extein sequences, temperatures from 6 to 37 °C, and the presence of up to 6 M urea. Given these outstanding properties, the Npu DnaE intein appears to be the intein of choice for many applications in protein and cellular chemistry.  相似文献   

4.
The DnaE intein of Synechocystis sp. PCC6803 (Ssp DnaE intein) is the first split intein identified in nature. Its N-terminal fragment (Int-n) is attached to the end of the N-terminal half of the DnaE protein (DnaE-n) to form the precursor DnaE-n/Int-n, while the C-terminal fragment (Int-c) precedes the C-terminal half of the DnaE protein (DnaE-c) to form the precursor Int-c/DnaE-c. Int-n and Int-c fragments in the separate precursors catalyze, in concert, a protein trans-splicing process to splice the flanking DnaE-n and DnaE-c into a functional catalytic subunit of DNA polymerase III. They then release themselves from the precursors. Previously, the Ssp DnaE intein has been used to reconstitute a protein trans-splicing mechanism in stably transformed Arabidopsis thaliana, resulting in successful reassembly of an intact and functional GUS from two halves of a split GUS protein. In this report, transient expression using a biolistic particle bombardment approach is described for functional analysis of Ssp DnaE intein. Analyses confirmed that the Ssp DnaE intein could catalyze protein trans-splicing not only in model plants but also in monocot and dicot crops. It also demonstrated that when up to 45 amino acid residues were removed from the C-terminus of the Int-n fragment, the Int-n fragment was still able to function in the protein trans-splicing process.  相似文献   

5.
A naturally occurring split intein from the dnaE gene of Synechocystis sp. PCC6803 (Ssp DnaE intein) has been shown to mediate efficient in vivo and in vitro trans-splicing in a foreign protein context. A cis-splicing Ssp DnaE intein construct displayed splicing activity similar to the trans-splicing form, which suggests that the N- and C-terminal intein fragments have a high affinity interaction. An in vitro trans-splicing system was developed that used a bacterially expressed N-terminal fragment of the Ssp DnaE intein and either a bacterially expressed or chemically synthesized intein C-terminal fragment. Unlike artificially split inteins, the Ssp DnaE intein fragments could be reconstituted in vitro under native conditions to mediate splicing as well as peptide bond cleavage. This property allowed the development of an on-column trans-splicing system that permitted the facile separation of reactants and products. Furthermore, the trans-splicing activity of the Ssp DnaE intein was successfully applied to the cyclization of proteins in vivo. Also, the isolation of the unspliced precursor on chitin resin allowed the cyclization reaction to proceed in vitro. The Ssp DnaE intein thus represents a potentially important protein for in vivo and in vitro protein manipulation.  相似文献   

6.
Iwai H  Züger S  Jin J  Tam PH 《FEBS letters》2006,580(7):1853-1858
Protein trans-splicing by the naturally split intein of the gene dnaE from Nostoc punctiforme (Npu DnaE) was demonstrated here with non-native exteins in Escherichia coli. Npu DnaE possesses robust trans-splicing activity with an efficiency of > 98%, which is superior to that of the DnaE intein from Synechocystis sp. strain PCC6803 (Ssp DnaE). Both the N- and C-terminal parts of the split Npu DnaE intein can be substituted with the corresponding fragment of Ssp DnaE without loss of trans-splicing activity. Protein splicing with the Npu DnaEN is also more tolerant of amino acid substitutions in the C-terminal extein sequence.  相似文献   

7.
Chen L  Pradhan S  Evans TC 《Gene》2001,263(1-2):39-48
We report that the N- and C-terminal splicing domains of the intein found in the dnaE gene of Synechocystis sp. PCC6803 (Ssp DnaE intein) are capable of association in vivo and in vitro, even with key splicing residues changed to alanine (Cys(1), Asn(159), and Cys(+1) to Ala). These studies utilized the herbicide resistant form of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) from Salmonella typhimurium and an Escherichia coli strain with the EPSPS gene deleted from its genome (E. coli strain ER2799). EPSPS was mapped to identify potential split sites using a facile Tn7 linker scanning procedure. Forty positions were found to tolerate a five amino acid insertion while 21 sites did not, as assayed by the rescue of growth of E. coli strain ER2799. Further characterization of these sites by inserting a full length Ssp DnaE intein identified residue 235 of EPSPS as the optimal position. The EPSPS gene was then divided into amino acids 1-235 and 236-427 which were fused to residues 1-123 and 124-159 of a splicing defective Ssp DnaE intein, respectively. Expression of the EPSPS-intein fusions from separate DNA molecules conferred resistance to the herbicide glyphosate, indicating that the intein splicing domains were bringing the EPSPS fragments together to generate activity. As a control the split EPSPS without the intein-affinity domain did not allow cell growth. The use of an intein as an in vivo affinity domain was termed intein-mediated protein complementation (IPC). Intein fragment assembly was verified in vitro by immobilizing the C-terminal splicing domain of the Ssp DnaE intein on a resin and demonstrating that the N-terminal 235 amino acids of EPSPS only bound to the resin when fused to the N-terminal splicing domain of the Ssp DnaE intein. As chloroplast DNA is not transmitted by pollen in plants such as corn and soybean, transgene spread via pollen may be controlled in the future by expressing inactive gene fragments from separate DNA locations, such as the nuclear and chloroplast genome, and using the split intein to generate protein activity.  相似文献   

8.
Nichols NM  Evans TC 《Biochemistry》2004,43(31):10265-10276
The ability to separately purify the naturally split Synechocystis sp. PCC6803 (Ssp) DnaE intein domains has allowed detailed examination of both universal and Ssp DnaE intein-specific steps in the protein splicing pathway. By engineering substitutions at both the +1 and penultimate intein positions, we have further characterized intein reaction kinetics in this system. Replacement of the crucial +1Cys with serine decreased N-terminal cleavage and trans-splicing rates; however, this substitution did not prevent splicing or the ability of ZnCl2 to inhibit it. Substitution of the penultimate intein residue (alanine) with a typically conserved histidine did not increase the rate or extent of trans-splicing or cleavage under typical assay conditions. Despite the observation that this histidine aids in asparagine cyclization for other inteins, it did not encourage C-terminal cleavage for the Ssp DnaE intein or uncouple it from N-terminal cleavage. Both the +1Ser and Ala to His mutants were insensitive to ZnCl2 during trans-cleavage experiments, uncoupling a previously linked inhibition in asparagine cyclization from an inhibition in trans-thioesterification detected for the wild-type intein.  相似文献   

9.
In protein splicing, an intervening protein sequence (intein) in the host protein excises itself out and ligates two split host protein sequences (exteins) to produce a mature host protein. Inteins require the involvement for the splicing of the first residue of the extein that follows the intein (which is Cys, Ser, or Thr). Other extein residues near the splicing junctions could modulate splicing efficiency even when they are not directly involved in catalysis. Mutual interdependence between this molecular parasite (intein) and its host protein (exteins) is not beneficial for intein spread but could be advantageous for intein survival during evolution. Elucidating extein-intein dependency has increasingly become important since inteins are recognized as useful biotechnological tools for protein ligation. We determined the structures of one of inteins with high splicing efficiency, the RadA intein from Pyrococcus horikoshii (PhoRadA). The solution NMR structure and the crystal structures elucidated the structural basis for its high efficiency and directed our efforts of engineering that led to rational design of a functional minimized RadA intein. The crystal structure of the minimized RadA intein also revealed the precise interactions between N-extein and the intein. We systematically analyzed the effects at the -1 position of N-extein and were able to significantly improve the splicing efficiency of a less robust splicing variant by eliminating the unfavorable extein-intein interactions observed in the structure. This work provides an example of how unveiling structure-function relationships of inteins offer a promising way of improving their properties as better tools for protein engineering.  相似文献   

10.
Zheng Y  Wu Q  Wang C  Xu MQ  Liu Y 《Bioscience reports》2012,32(5):433-442
Inteins are intervening protein sequences that undergo self-excision from a precursor protein with the concomitant ligation of the flanking polypeptides. Split inteins are expressed in two separated halves, and the recognition and association of two halves are the first crucial step for initiating trans-splicing. In the present study, we carried out the structural and thermodynamic analysis on the interaction of two halves of DnaE split intein from Synechocystis sp. PCC6803. Both isolated halves (IN and IC) are disordered and undergo conformational transition from disorder to order upon association. ITC (isothermal titration calorimetry) reveals that the highly favourable enthalpy change drives the association of the two halves, overcoming the unfavourable entropy change. The high flexibility of two fragments and the marked thermodynamic preference provide a robust association for the formation of the well-folded IN/IC complex, which is the basis for reconstituting the trans-splicing activity of DnaE split intein.  相似文献   

11.
Martin DD  Xu MQ  Evans TC 《Biochemistry》2001,40(5):1393-1402
A naturally occurring trans-splicing intein from the dnaE gene of Synechocystis sp. PCC6803 (Ssp DnaE intein) was used to characterize the intein-catalyzed splicing reaction. Trans-splicing/cleavage reactions were initiated by combining the N-terminal splicing domain of the Ssp DnaE intein containing five native N-extein residues and maltose binding protein as the N-extein with the C-terminal Ssp DnaE intein splicing domain (E(C)) with or without thioredoxin fused in-frame to its carboxy terminus. Observed rate constants (k(obs)) for dithiothreitol-induced N-terminal cleavage, C-terminal cleavage, and trans-splicing were (1.0 +/- 0.5) x 10(-3), (1.9 +/- 0.9) x 10(-4), and (6.6 +/- 1.3) x 10(-5) s(-1), respectively. Preincubation of the intein fragments showed no change in k(obs), indicating association of the two splicing domains is rapid relative to the subsequent steps. Interestingly, when E(C) concentrations were substoichiometric with respect to the N-terminal splicing domain, the levels of N-terminal cleavage were equivalent to the amount of E(C), even over a 24 h period. Activation energies for N-terminal cleavage and trans-splicing were determined by Arrhenius plots to be 12.5 and 8.9 kcal/mol, respectively. Trans-splicing occurred maximally at pH 7.0, while a slight increase in the extent of N-terminal cleavage was observed at higher pH values. This work describes an in-depth kinetic analysis of the splicing and cleavage activity of an intein, and provides insight for the use of the split intein as an affinity domain.  相似文献   

12.
Brenzel S  Kurpiers T  Mootz HD 《Biochemistry》2006,45(6):1571-1578
In protein trans-splicing, an intein domain split into two polypeptide chains mediates linkage of the flanking amino acid sequences, the N- and C-terminal exteins, with a native peptide bond. This process can be exploited to assemble proteins from two separately prepared fragments, e.g., for the segmental labeling with isotopes for NMR studies or the incorporation of chemical and biophysical probes. Split inteins can be artificially generated by genetic means; however, the purified inteinN and inteinC fragments usually require a denaturation and renaturation treatment to fold into the active intein, thus preventing their application to proteins that cannot be refolded. Here, we report that the purified fragments of the artificially split DnaB helicase of Synechocystis spp. PCC6803 (Ssp DnaB) intein are active under native conditions. The first-order rate constant of the protein trans-splicing reaction was 7.1 x 10(-4) s(-1). The previously described split vacuolar ATPase of Saccharomyces cerevisiae (Sce VMA) intein is the only other artificially split intein that is active under native conditions; however, it requires induced complex formation of the intein fragments by auxiliary dimerization domains for efficient protein trans-splicing. In contrast, fusion of the dimerization domains to the split Ssp DnaB intein fragments had no effect on activity. This difference was also reflected by a higher thermostability of the split Ssp DnaB intein. Further investigations of the split Sce VMA intein under optimized conditions revealed a first-order rate constant of 9.4 x 10(-4) s(-1) for protein trans-splicing and 1.7 x 10(-3) s(-1) for C-terminal cleavage involving a Cys1Ala mutant. Finally, we show that the two split inteins are orthogonal, suggesting further applications for the assembly of proteins from more than two parts.  相似文献   

13.
Synthetic biology has developed numerous parts for building synthetic gene circuits. However, few parts have been described for prokaryotes to integrate two signals at a promoter in an AND fashion, i.e. the promoter is only activated in the presence of both signals. Here we present a new part for this function: a split intein T7 RNA polymerase. We divide T7 RNA polymerase into two expression domains and fuse each to a split intein. Only when both domains are expressed does the split intein mediate protein trans-splicing, yielding a full-length T7 RNA polymerase that can transcribe genes via a T7 promoter. We demonstrate an AND gate with the new part: the signal-to-background ratio is very high, resulting in an almost digital signal. This has utility for more complex circuits and so we construct a band-pass filter in Escherichia coli. The split intein approach should be widely applicable for engineering artificial gene circuit parts.  相似文献   

14.
Inteins are internal protein sequences capable of catalyzing a protein splicing reaction by self-excising from a precursor protein and simultaneously joining the flanking sequences with a peptide bond. Split inteins have separate pieces (N-intein and C-intein) that reassemble non-covalently to catalyze a protein trans-splicing reaction joining two polypeptides. Protein splicing has become increasingly useful tools in many fields of biological research and biotechnology. However, natural and engineered inteins have failed previously to function when being flanked by proline residue at the −1 or +2 positions, which limits general uses of inteins. In this study, different engineered inteins were tested. We found that engineered Ssp DnaX mini-intein and split inteins could carry out protein splicing with proline at the +2 positions or at both −1 and +2 positions. Under in vivo conditions in E. coli cells, the mini-intein, S1 split intein, and S11 split intein spliced efficiently, whereas the S0 split intein did not splice with proline at both −1 and +2 positions. The S1 and S11 split inteins also trans-spliced efficiently in vitro with proline at the +2 positions or at both −1 and +2 positions, but the S0 split intein trans-spliced inefficiently with proline at the +2 position and did not trans-splice with proline at both −1 and +2 positions. These findings contribute significantly to the toolbox of intein-based technologies by allowing the use of inteins in proteins having proline at the splicing point.  相似文献   

15.
Protein splicing is mediated by inteins that auto-catalytically join two separated protein fragments with a peptide bond. Here we engineered a genetically encoded synthetic photoactivatable intein (named LOVInC), by using the light-sensitive LOV2 domain from Avena sativa as a switch to modulate the splicing activity of the split DnaE intein from Nostoc punctiforme. Periodic blue light illumination of LOVInC induced protein splicing activity in mammalian cells. To demonstrate the broad applicability of LOVInC, synthetic protein systems were engineered for the light-induced reassembly of several target proteins such as fluorescent protein markers, a dominant positive mutant of RhoA, caspase-7, and the genetically encoded Ca2+ indicator GCaMP2. Spatial precision of LOVInC was demonstrated by targeting activity to specific mammalian cells. Thus, LOVInC can serve as a general platform for engineering light-based control for modulating the activity of many different proteins.  相似文献   

16.
The first naturally occurring split intein was found in the dnaE gene of Synechocystis sp. PCC6803 and belongs to a subclass of inteins without a penultimate histidine residue. We describe two high-resolution crystal structures, one derived from an excised Ssp DnaE intein and the second from a splicing-deficient precursor protein. The X-ray structures indicate that His147 in the conserved block F activates the side-chain N(delta) atom of the intein C-terminal Asn159, leading to a nucleophilic attack on the peptide bond carbonyl carbon atom at the C-terminal splice site. In this process, Arg73 appears to stabilize the transition state by interacting with the carbonyl oxygen atom of the scissile bond. Arg73 also seems to substitute for the conserved penultimate histidine residue in the formation of an oxyanion hole, as previously identified in other inteins. The finding that the precursor structure contains a zinc ion chelating the highly conserved Cys160 and Asp140 reveals the structural basis of Zn2+-mediated inhibition of protein splicing. Furthermore, it is of interest to observe that the carbonyl carbon atom of Asn159 and N(eta) of Arg73 are 2.6 angstroms apart in the free intein structure and 10.6 angstroms apart in the precursor structure. The orientation change of the aromatic ring of Tyr-1 following the initial acyl shift may be a key switching event contributing to the alignment of Arg73 and the C-terminal scissile bond, and may explain the sequential reaction property of the Ssp DnaE intein.  相似文献   

17.
Protein trans-splicing by split inteins holds great potential for the chemical modification and semisynthesis of proteins. However, the structural requirements of the extein sequences immediately flanking the intein are only poorly understood. This knowledge is of particular importance for protein labeling, when synthetic moieties are to be attached to the protein of interest as seamlessly as possible. Using the semisynthetic Ssp DnaB intein both in form of its wild-type sequence and its evolved M86 mutant, we systematically varied the sequence upstream of the short synthetic IntN fragment using both proteinogenic amino acids and unnatural building blocks. We could show for the wild-type variant that the native N-extein sequence could be reduced to the glycine residue at the (?1) position directly flanking the intein without significant loss of activity. The glycine at this position is strongly preferred over building blocks containing a phenyl group or extended alkyl chain adjacent to the scissile amide bond of the N-terminal splice junction. Despite their negative effects on the splicing yields, these unnatural substrates were well processed in the N–S acyl shift to form the respective thioesters and did not result in an increased decoupling of the asparagine cyclization step at the C-terminal splicing junction. Therefore, the transesterification step appeared to be the bottleneck of the protein splicing pathway. The fluorophore 7-hydroxycoumarinyl-4-acetic acid as a minimal N-extein was efficiently ligated to the model protein, in particular with the M86 mutant, probably because of its higher resemblance to glycine with an aliphatic c-α carbon atom at the (?1) position. This finding indicates a way for the virtually traceless labeling of proteins without inserting extra flanking residues. Due to its overall higher activity, the M86 mutant appears most promising for many protein labeling and chemical modification schemes using the split intein approach.  相似文献   

18.
Three inteins were found when analyzing a pair of split dnaE genes encoding the catalytic subunit of DNA polymerase III in the oceanic N2-fixing cyanobacterium Trichodesmium erythraeum. The three inteins (DnaE-1, DnaE-2, and DnaE-3) were clustered in a 70-amino acid (aa) region of the predicted DnaE protein. The DnaE-1 intein is 1258 aa long and three times as large as a typical intein, due to the presence of large tandem repeats in which a 57-aa sequence is repeated 17 times. The DnaE-2 intein has a more typical size of 428 aa with putative protein splicing and endonuclease domains. The DnaE-3 intein is a split intein consisting of a 102-aa N-terminal part and a 36-aa C-terminal part encoded on the first and second split dnaE genes, respectively. Synthesis of a mature DnaE protein is predicted to involve expression of two split dnaE genes followed by two protein cis-splicing reactions and one protein trans-splicing reaction. Tandem repeats in the DnaE-1 intein inhibited the protein splicing activity of this intein when tested in Escherichia coli cells and may potentially regulate DnaE synthesis in vivo.  相似文献   

19.
《Gene》1998,207(2):187-195
Most protein-splicing elements (inteins) function both as catalysts of protein splicing and as homing endonucleases. In order to identify the domains of inteins that are essential for protein splicing, the intein sequence embedded in the recA gene of Mycobacterium tuberculosis was genetically dissected. The effect of various modifications of the intein on the ability to mediate splicing was studied in Escherichia coli transformed with plasmids in which the coding sequence for the RecA intein was inserted in-frame between coding regions for the E. coli maltose-binding protein and a polypeptide containing a hexahistidine sequence as the N- and C-exteins, respectively. One type of genetic alteration of the RecA intein involved deletion of the the central region encoding 229 amino acids (aa), representing the entire homing endonuclease homology domain. The residual intein (211 aa plus an undecapeptide spacer) was able to promote protein splicing as efficiently as the wild-type intein, indicating that the homing endonuclease domain plays no role in the protein-splicing process and that the protein-splicing active center is confined to the N- and C-terminal segments of the intein, less than 110 aa each. Another type of alteration involved the introduction of overlapping translation termination and initiation codons in-frame into the intein coding region. The modified RecA intein, although synthesized as two separate components, could nevertheless mediate protein splicing, indicating that the N- and C-terminal protein-splicing domains can interact with sufficient affinity and specificity to allow protein-splicing to occur in trans. The efficiency of trans-splicing was much enhanced when the homing endonuclease domain was entirely deleted so that the length of the interacting N- and C-terminal intein fragments was only about 110 aa each.  相似文献   

20.
Nichols NM  Benner JS  Martin DD  Evans TC 《Biochemistry》2003,42(18):5301-5311
Use of the naturally split, self-splicing Synechocystis sp. PCC6803 DnaE intein permits separate purification of the N- and C-terminal intein domains. Otherwise spontaneous intein-mediated reactions can therefore be controlled in vitro, allowing detailed study of intein kinetics. Incubation of the Ssp DnaE intein with ZnCl(2) inhibited trans splicing, hydrolysis-mediated N-terminal trans cleavage, and C-terminal trans cleavage reactions. Maximum inhibition of the splicing reaction was achieved at equal molar concentrations of ZnCl(2) and intein domains, suggesting a 1:1 metal ion:intein binding stoichiometry. Mutation of the (+)1 cysteine residue to valine (C(+)1V) alleviated the inhibitory effects of ZnCl(2). Valine substitution in the absence of ZnCl(2) blocked trans splicing and decreased C-terminal cleavage kinetics in a manner similar to that of the native (+)1 cysteine in the presence of ZnCl(2). These data are consistent with Zn(2+)-mediated inhibition of the Ssp DnaE intein via chelation of the (+)1 cysteine residue. N-Terminal trans cleavage can occur via both spontaneous hydrolysis and nucleophilic (e.g., DTT) attack. Comparative examination of N-terminal cleavage rates using amino acid substitution (C(+)1V) and Zn(2+)-mediated inhibition permitted the maximum contribution of hydrolysis to overall N-terminal cleavage kinetics to be determined. Stable intermediates consisting of the associated intein domains were detected by PAGE and provided evidence of a rapid C-terminal cleavage step. Acute control of the C-terminal reaction was achieved by the rapid reversal of Zn(2+)-mediated inhibition by EDTA. By inhibiting both the splicing pathway and spontaneous hydrolysis with Zn(2+), reactants can be diverted from the trans splicing to the trans cleavage pathway where DTT and EDTA can regulate N- and C-terminal cleavage, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号