首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The maltose binding protein (MBP) fusion protein system is a versatile tool to express and isolate recombinant proteins inE. coli. In this system, MBP fusion proteins are efficiently isolated from whole cell lysate using amylose conjugated agarose beads and then eluted by competition with free maltose. Since MBP is a rather large molecule (∼42 kDa), for further experiments, the MBP part is usually proteolytically cleaved from the fusion protein and subsequently removed by ion-exchange chromatography or rebinding to amylose columns after washing out excess and MBP-bound maltose. In the present study, we have developed an improved method for the removal of cleaved MBP, which is advantageous over conventional methods. In this method, factor Xa cleaved MBP fusion proteins were incubated with Sepharose beads conjugated with MBP specific monoclonal antibodies and then precipitated by centrifugation, resulting in highly purified proteins in the supernatant.  相似文献   

2.
Protein folding involves the formation of secondary structural elements from the primary sequence and their association with tertiary assemblies. The relation of this primary sequence to a specific folded protein structure remains a central question in structural biology. An increasing body of evidence suggests that variations in homologous sequence ranging from point mutations to substantial insertions or deletions can yield stable proteins with markedly different folds. Here we report the structural characterization of domain IV (D4) and ΔD4 (polypeptides with 222 and 160 amino acids, respectively) that differ by virtue of an N-terminal deletion of 62 amino acids (28% of the overall D4 sequence). The high-resolution crystal structures of the monomeric D4 and the dimeric ΔD4 reveal substantially different folds despite an overall conservation of secondary structure. These structures show that the formation of tertiary structures, even in extended polypeptide sequences, can be highly context dependent, and they serve as a model for structural plasticity in protein isoforms.  相似文献   

3.
In the past decade, single-molecule force spectroscopy has provided new insights into the key interactions stabilizing folded proteins. A few recent studies probing the effects of ligand binding on mechanical protein stability have come to quite different conclusions. While some proteins seem to be stabilized considerably by a bound ligand, others appear to be unaffected. Since force acts as a vector in space, it is conceivable that mechanical stabilization by ligand binding is dependent on the direction of force application. In this study, we vary the direction of the force to investigate the effect of ligand binding on the stability of maltose binding protein (MBP). MBP consists of two lobes connected by a hinge region that move from an open to a closed conformation when the ligand maltose binds. Previous mechanical experiments, where load was applied to the N and C termini, have demonstrated that MBP is built up of four building blocks (unfoldons) that sequentially detach from the folded structure. In this study, we design the pulling direction so that force application moves the two MBP lobes apart along the hinge axis. Mechanical unfolding in this geometry proceeds via an intermediate state whose boundaries coincide with previously reported MBP unfoldons. We find that in contrast to N-C-terminal pulling experiments, the mechanical stability of MBP is increased by ligand binding when load is applied to the two lobes and force breaks the protein-ligand interactions directly. Contour length measurements indicate that MBP is forced into an open conformation before unfolding even if ligand is bound. Using mutagenesis experiments, we demonstrate that the mechanical stabilization effect is due to only a few key interactions of the protein with its ligand. This work illustrates how varying the direction of the applied force allows revealing important details about the ligand binding mechanics of a large protein.  相似文献   

4.
Although chaperone‐assisted protein crystallization remains a comparatively rare undertaking, the number of crystal structures of polypeptides fused to maltose‐binding protein (MBP) that have been deposited in the Protein Data Bank (PDB) has grown dramatically during the past decade. Altogether, 102 fusion protein structures were detected by Basic Local Alignment Search Tool (BLAST) analysis. Collectively, these structures comprise a range of sizes, space groups, and resolutions that are typical of the PDB as a whole. While most of these MBP fusion proteins were equipped with short inter‐domain linkers to increase their rigidity, fusion proteins with long linkers have also been crystallized. In some cases, surface entropy reduction mutations in MBP appear to have facilitated the formation of crystals. A comparison of the structures of fused and unfused proteins, where both are available, reveals that MBP‐mediated structural distortions are very rare.  相似文献   

5.
Native states of proteins are flexible, populating more than just the unique native conformation. The energetics and dynamics resulting from this conformational ensemble are inherently linked to protein function and regulation. Proteolytic susceptibility is one feature determined by this conformational energy landscape. As an attempt to investigate energetics of proteins on a proteomic scale, we challenged the Escherichia coli proteome with extensive proteolysis and determined which proteins, if any, have optimized their energy landscape for resistance to proteolysis. To our surprise, multiple soluble proteins survived the challenge. Maltose binding protein, a survivor from thermolysin digestion, was characterized by in vitro biophysical studies to identify the physical origin of proteolytic resistance. This experimental characterization shows that kinetic stability is responsible for the unusual resistance in maltose binding protein. The biochemical functions of the identified survivors suggest that many of these proteins may have evolved extreme proteolytic resistance because of their critical roles under stressed conditions. Our results suggest that under functional selection proteins can evolve extreme proteolysis resistance by modulating their conformational energy landscapes without the need to invent new folds, and that proteins can be profiled on a proteomic scale according to their energetic properties by using proteolysis as a structural probe.  相似文献   

6.
We present an implementation of the TOXCAT membrane protein self-association assay that measures the change in apparent free energy of transmembrane helix dimerization caused by point mutations. Quantifying the reporter gene expression from cells carrying wild-type and mutant constructs shows that single point mutations that disrupt dimerization of the transmembrane domain of glycophorin A reproducibly lower the TOXCAT signal more than 100-fold. Replicate cultures can show up to threefold changes in the level of expression of the membrane bound fusion construct, and correcting for these variations improves the precision of the calculated apparent free energy change. The remarkably good agreement between our TOXCAT apparent free energy scale and free energy differences from sedimentation equilibrium studies for point mutants of the glycophorin A transmembrane domain dimer indicate that sequence changes usually affect membrane helix-helix interactions quite similarly in these two very different environments. However, the effects of point mutations at threonine 87 suggest that intermonomer polar contacts by this side-chain contribute significantly to dimer stability in membranes but not in detergents. Our findings demonstrate that a comparison of quantitative measurements of helix-helix interactions in biological membranes and genuine thermodynamic data from biophysical measurements on purified proteins can elucidate how changes in the lipidic environment modulate membrane protein stability.  相似文献   

7.
The principal objective of this study was to explore protein conformational changes using fluorescence resonance energy transfer (FRET) technology. Maltose binding protein (MBP) was adopted as a target model, due to its well-characterized structure and ligand specificity. To the best of our knowledge, this is the first report to provide information regarding the biological distance between the two lobes of MBP upon maltose binding. For the FRET pair, ECFP and EYFP were used as the donor and the acceptor, and were linked genetically to the C-terminal and N-terminal regions of MBP (ECFP:MBP:EYFP), respectively. After the FRET reaction, maltose-treated MBP was shown to exhibit a considerable energy transfer (FRET efficiency (E) = ∼0.11, Distance (D) = ∼6.93 nm) at the ensemble level, which was regarded as reflective of the increase in donor quenching and the upshift in acceptor emission intensity, thereby suggesting that the donor and the acceptor had been brought close together as the result of structural alterations in MBP. However, upon glucose treatment, no FRET phenomenon was detected, thereby implying the specificity of interaction between MBP and maltose. The in vitro FRET results were also confirmed via the acceptor photobleaching method. Therefore, our data showed that maltose-stimulated conformational changes of MBP could be measured by FRET, thereby providing biological information, including the FRET efficiency and the intramolecular distance.  相似文献   

8.
We previously reported the construction of a family of reagentless fluorescent biosensor proteins by the structure-based design of conjugation sites for a single, environmentally sensitive small molecule dye, thus providing a mechanism for the transduction of ligand-induced conformational changes into a macroscopic fluorescence observable. Here we investigate the microscopic mechanisms that may be responsible for the macroscopic fluorescent changes in such Fluorescent Allosteric Signal Transduction (FAST) proteins. As case studies, we selected three individual cysteine mutations (F92C, D95C, and S233C) of Escherichia coli maltose binding protein (MBP) covalently labeled with a single small molecule fluorescent probe, N-((2-iodoacetoxy)ethyl)-N-methyl)amino-7-nitrobenz-2-oxa-1,3-diazole (NBD), each giving rise to a robust FAST protein with a distinct maltose-dependent fluorescence response. The fluorescence emission intensity, anisotropy, lifetime, and iodide-dependent fluorescence quenching were determined for each conjugate in the presence and absence of maltose. Structure-derived solvent accessible surface areas of the three FAST proteins are consistent with experimentally observed quenching data. The D95C protein exhibits the largest fluorescence change upon maltose binding. This mutant was selected for further characterization, and residues surrounding the fluorophore coupling site were mutagenized. Analysis of the resulting mutant FAST proteins suggests that specific hydrogen-bonding interactions between the fluorophore molecule and two tyrosine side-chains, Tyr171 and Tyr176, in the open state but not the closed, are responsible for the dramatic fluorescence response of this construct. Taken together these results provide insights that can be used in future design cycles to construct fluorescent biosensors that optimize signaling by engineering specific hydrogen bonds between a fluorophore and protein.  相似文献   

9.
10.
Protein translocation in Escherichia coli is mediated by the translocase that, in its minimal form, comprises a protein-conducting pore (SecYEG) and a motor protein (SecA). The SecYEG complex forms a narrow channel in the membrane that allows passage of secretory proteins (preproteins) in an unfolded state only. It has been suggested that the SecA requirement for translocation depends on the folding stability of the mature preprotein domain. Here we studied the effects of the signal sequence and SecB on the folding and translocation of folding stabilizing and destabilizing mutants of the mature maltose binding protein (MBP). Although the mutations affect the folding of the precursor form of MBP, these are drastically overruled by the combined unfolding stabilization of the signal sequence and SecB. Consequently, the translocation kinetics, the energetics and the SecA and SecB dependence of the folding mutants are indistinguishable from those of wild-type preMBP. These data indicate that unfolding of the mature domain of preMBP is likely not a rate-determining step in translocation when the protein is targeted to the translocase via SecB.  相似文献   

11.
The hyperthermophilic archaeon Pyrococcus furiosus can utilize different carbohydrates, such as starch, maltose and trehalose. Uptake of alpha-glucosides is mediated by two different, binding protein-dependent, ATP-binding cassette (ABC)-type transport systems. The maltose transporter also transports trehalose, whereas the maltodextrin transport system mediates the uptake of maltotriose and higher malto-oligosaccharides, but not maltose. Both transport systems are induced during growth on their respective substrates.  相似文献   

12.
用马铃薯淀粉柱可以直接分离麦芽糖结合蛋白-乳酸脱氢酶辅酶结合结构域融合蛋白,并得到满意的结果.它提纯的程度和吸附量都和商品交联直链淀粉亲和层析柱相比拟,但是成本却要低很多,而且从市场上买来的马铃薯淀粉就可以应用.它可以成为大规模生产的一种工艺路线.  相似文献   

13.
Two-component signal transduction pathways consisting of a histidine kinase and a response regulator are used by prokaryotes to respond to diverse environmental and intracellular stimuli. Most species encode numerous paralogous histidine kinases that exhibit significant structural similarity. Yet in almost all known examples, histidine kinases are thought to function as homodimers. We investigated the molecular basis of dimerization specificity, focusing on the model histidine kinase EnvZ and RstB, its closest paralog in Escherichia coli. Direct binding studies showed that the cytoplasmic domains of these proteins each form specific homodimers in vitro. Using a series of chimeric proteins, we identified specificity determinants at the base of the four-helix bundle in the dimerization and histidine phosphotransfer domain. Guided by molecular coevolution predictions and EnvZ structural information, we identified sets of residues in this region that are sufficient to establish homospecificity. Mutating these residues in EnvZ to the corresponding residues in RstB produced a functional kinase that preferentially homodimerized over interacting with EnvZ. EnvZ and RstB likely diverged following gene duplication to yield two homodimers that cannot heterodimerize, and the mutants we identified represent possible evolutionary intermediates in this process.  相似文献   

14.
We report the backbone dynamics of monomeric phospholamban in dodecylphosphocholine micelles using (1)H/(15)N heteronuclear NMR spectroscopy. Phospholamban is a 52-amino acid membrane protein that regulates Ca-ATPase in cardiac muscle. Phospholamban comprises three structural domains: a transmembrane domain from residues 22 to 52, a connecting loop from 17 to 21, and a cytoplasmic domain from 1 to 16 that is organized in an "L"-shaped structure where the transmembrane and the cytoplasmic domain form an angle of approximately 80 degrees (Zamoon et al., 2003; Mascioni et al., 2002). T(1), T(2), and (1)H/(15)N nuclear Overhauser effect values measured for the amide backbone resonances were interpreted using the model-free approach of Lipari and Szabo. The results point to the existence of four dynamic domains, revealing the overall plasticity of the cytoplasmic helix, the flexible loop, and part of the transmembrane domain (residues 22-30). In addition, using Carr-Purcell-Meiboom-Gill-based experiments, we have characterized phospholamban dynamics in the micros-ms timescale. We found that the majority of the residues in the cytoplasmic domain, the flexible loop, and the first ten residues of the transmembrane domain undergo dynamics in the micros-ms range, whereas minimal dynamics were detected for the transmembrane domain. Hydrogen/deuterium exchange factors measured at different temperatures support the existence of slow motion in both the loop and the cytoplasmic helix. We propose that these dynamic properties are critical factors in the biomolecular recognition of phospholamban by Ca-ATPase and other interacting proteins such as protein kinase A and protein phosphatase 1.  相似文献   

15.
16.
The interaction between human cytomegalovirus (HCMV) protease and a peptide substrate was studied using a surface plasmon resonance (SPR)-based biosensor. Immobilization of the enzyme to the sensor chip surface by amine coupling resulted in an active enzyme with a higher catalytic efficiency than the enzyme in solution, primarily due to a lower K(m) value. The interaction between immobilized protease and substrate was characterized by a biphasic SPR signal. Rate constants for the formation of the initial enzyme-substrate complex could be determined from the sensorgrams. Simulated binding curves based on the determined k(cat) and the rate constants indicated that the complex binding signal did not originate from the accumulation of intermediates in the catalytic reaction. By chemical crosslinking of the immobilized HCMV protease, which was shown to limit the enzyme's structural flexibility, it was revealed that the obtained sensorgrams were composed of a signal caused by substrate binding and considerable structural alterations in the immobilized enzyme. Furthermore, HCMV protease was inactivated by chemical crosslinking, indicating that structural flexibility is essential for this enzyme. Parallel experiments with immobilized alpha-chymotrypsin revealed that it does not undergo similar conformational changes on peptide binding and that crosslinking did not inactivate the enzyme. The simultaneous detection of binding and conformational changes using optical biosensor technology is expected to be of importance for further characterization of the enzymatic properties of HCMV protease and for identification of inhibitors of this enzyme. It can also be of use for studies of other flexible proteins.  相似文献   

17.
An expression system for aqualysin I from Thermus aquaticus YT-1, a thermophilic serine protease belonging to the proteinase K family, in Escherichia coli is available, but the efficiency of production has been rather low for detailed analysis of the product. We developed a maltose biding protein (MBP)-fused proaqualysin I expression plasmid (pMAQ-c2Δ) in which MBP is attached to the N-terminus of proaqualysin I. MBP appeared effectively to suppress the folding-promoting activity of the N-terminal propeptide when the bacteria were grown at 30 °C, leading to a massive accumulation of fusion aqualysin I precursor. The precursor was converted efficiently to mature aqualysin I by heat treatment at 70 °C, enabling us to obtain 40 times more aqualysin I than is available using expression systems such as pAQNΔC105. By analyzing the product of the pMAQ-c2Δ-derived inactive mutant expression vector, pMAQ-S222A, it was confirmed that aqualysin I was initially expressed as a whole fusion protein and then processed autocatalytically.  相似文献   

18.
19.
Ellis JJ  Jones S 《Proteins》2008,70(4):1518-1526
Many protein-RNA recognition events are known to exhibit conformational changes from qualitative observations of individual complexes. However, a quantitative estimation of conformational changes is required if protein-RNA docking and template-based methods for RNA binding site prediction are to be developed. This study presents the first quantitative evaluation of conformational changes that occur when proteins bind RNA. The analysis of twelve RNA-binding proteins in the bound and unbound states using error-scaled difference distance matrices is presented. The binding site residues are mapped to each structure, and the conformational changes that affect these residues are evaluated. Of the twelve proteins four exhibit greater movements in nonbinding site residues, and a further four show the greatest movements in binding site residues. The remaining four proteins display no significant conformational change. When interface residues are found to be in conformationally variable regions of the protein they are typically seen to move less than 2 A between the bound and unbound conformations. The current data indicate that conformational changes in the binding site residues of RNA binding proteins may not be as significant as previously suggested, but a larger data set is required before wider conclusions may be drawn. The implications of the observed conformational changes for protein function prediction are discussed.  相似文献   

20.
The design, construction, and characterization of a prototype-regenerable glucose biosensor based on the reversible immobilization of glucose oxidase (GOx) using cellulose binding domain (CBD) technology is described. GOx, chemically linked to CBD, is immobilized by binding to a cellulose matrix on the sensor-indicating electode. Enzyme immobilization can be reversed by perfusing the cellulose matrix with a suitable eluting solution. An autocavable sensor membrane system is employed which is shown to be practical for use in real microbial fermentations. The prototype glucose biosensor was used without failure or deterioration during fed-batch fermentations of Escherichia coli reaching a maximum cell density of 85 g (dry weight)/L. Medium glucose concentration based on sensor output correlated closely with off-line glucose analysis and was controlled manually at 0.44 +/- 0.2 g/L for 2 h based on glucose sensor output. The sensor enzyme component could be eluted and replaced without interrupting the fermentation. To our knowledge, no other in situ biosensor has been used for such an extended period of time in such a high-cell-density fermentation. (c) 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号