首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
2.
Recently, salidroside (p-hydroxyphenethyl-β-d-glucoside) has been identified as one of the most potent compounds isolated from plants of the Rhodiola genus used widely in traditional Chinese medicine, but pharmacokinetic data on the compound are unavailable. We were the first to report the cytotoxic effects of salidroside on cancer cell lines derived from different tissues, and we found that human breast cancer MDA-MB-231 cells (estrogen receptor negative) were sensitive to the inhibitory action of low-concentration salidroside. To further investigate the cytotoxic effects of salidroside on breast cancer cells and reveal possible ER-related differences in response to salidroside, we used MDA-MB-231 cells and MCF-7 cells (estrogen receptor-positive) as models to study possible molecular mechanisms; we evaluated the effects of salidroside on cell growth characteristics, such as proliferation, cell cycle duration, and apoptosis, and on the expression of apoptosis-related molecules. Our results demonstrated for the first time that salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells and may be a promising candidate for breast cancer treatment.  相似文献   

3.
4.
5.
The incidence of postmenopausal osteoporosis is increasing as the population ages. Even though estrogen replacement therapy has proven beneficial in reducing the number of skeletal fractures, the known risks and associated side-effects of estrogen replacement therapy make compliance poor. Recent research has focused on the development of tissue specific estrogen agonist/anatagonists such as droloxifene which can prevent estrogen deficiency-induced bone loss without causing uterine hypertrophy. Furthermore, droloxifene acts as a full estrogen antagonist on breast tissue and is being evaluated for treatment of advanced breast cancer. In this report we propose a common mechanism of action for droloxifene that underlies its estrogen agonist and antagonist effects in different tissues. Droloxifene and estrogen, which have identical effects on bone in vivo, both induced p53 expression and apoptosis in cells of in vitro rat bone marrow cultures resulting in a decrease in the number of bone-resorbing osteoclasts. Droloxifene is growth inhibitory in MCF-7 human breast cancer cells and therefore acts as an antagonist, whereas estrogen is mitogenic to these cells and acts as an agonist. Droloxifene, but not estrogen, induced p53 expression and apoptosis in MCF-7 cells. These results indicate that the induction of apoptosis by droloxifene may be the common mechanism for both its estrogen agonist effects in bone and its antagonist effects in breast tissue. J. Cell. Biochem. 65:159–171. © 1997 Wiley-Liss, Inc.  相似文献   

6.
Adipose-derived stem cells (ASCs) are regarded as a major player of breast cancer microenvironment. By production of various growth factors and expression of regulatory molecules, it is postulated that ASCs protect breast cancer cells from the host immune responses. In this study, the expressions of insulin-like growth factor-1 (IGF-1), hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), CXCL8 (IL-8) in breast cancer cells and adipose-derived stem cells isolated from breast tissue of women with breast cancer were investigated. The results were analyzed comparatively in normal ASCs isolated from healthy normal women. In case of breast cancer tissues, results were analyzed between high stage and low stage patients. The expressions of extracted mRNAs were determined using real-time quantitative RT-PCR. As a result, in breast cancer tissues, IGF-1 and IL-8 mRNAs had 28.6 and 56-fold more expressions in high stage compared to low stage patients. In ASCs, relative quantifications (RQ) of VEGF, IL-8, HGF and IGF-1 was about 2-fold higher in patients than controls. Data of this study conclude that presence of resident ASCs within the scaffold of breast tissue may support breast tumor growth and progression through the expressions of tumor promoting factors.  相似文献   

7.
Dekanty A  Milán M 《EMBO reports》2011,12(10):1003-1010
Morphogens are conserved, secreted signalling molecules that regulate the size, shape and patterning of animal tissues and organs. Recent experimental evidence has emphasized the fundamental role of tissue growth in expanding the expression domains of morphogens and their target genes, in generating morphogen gradients and in modulating the response of cells to morphogens. Moreover, the classic view of how morphogens, particularly through their concentration gradient, regulate tissue size during development has been revisited recently. In this review, we discuss how morphogens and tissue growth affect each other, and we attempt to integrate genetic and molecular evidence from vertebrate and invertebrate model systems to put forward the idea that the interaction between growth and morphogens is a general feature of highly proliferative tissues.  相似文献   

8.
Mucins are high molecular weight, multifunctional glycoproteins comprised of two structural classes-the large transmembrane mucins and the gel-forming or secreted mucins. The primary function of mucins is to protect and lubricate the luminal surfaces of epithelium-lined ducts in the human body. Recent studies have identified a differential expression of both membrane bound (MUC1, MUC4 and MUC16) and secreted mucins (MUC2, MUC5AC, MUC5B and MUC6) in breast cancer tissues when compared with the non-neoplastic breast tissues. Functional studies have also uncovered many unique roles of mucins during the progression of breast cancer, which include modulation in proliferative, invasive and metastatic potential of tumor cells. Mucins function through many unique domains that can form complex association with various signaling molecules including growth factor receptors and intercellular adhesion molecules. While there is growing information about mucins in various malignancies including breast cancer, no focused review is there on the expression and functional roles of mucins in breast cancer. In this present review, we have discussed the differential expression and functional roles of mucins in breast cancer. The potential of mucins as diagnostic and prognostic markers and as therapeutic targets in breast cancer have also been discussed.  相似文献   

9.
Epithelial-mesenchymal transition (EMT) refers to plastic changes in epithelial tissue architecture. Breast cancer stromal cells provide secreted molecules, such as transforming growth factor β (TGFβ), that promote EMT on tumor cells to facilitate breast cancer cell invasion, stemness and metastasis. TGFβ signaling is considered to be abnormal in the context of cancer development; however, TGFβ acting on breast cancer EMT resembles physiological signaling during embryonic development, when EMT generates or patterns new tissues. Interestingly, while EMT promotes metastatic fate, successful metastatic colonization seems to require the inverse process of mesenchymal-epithelial transition (MET). EMT and MET are interconnected in a time-dependent and tissue context-dependent manner and are coordinated by TGFβ, other extracellular proteins, intracellular signaling cascades, non-coding RNAs and chromatin-based molecular alterations. Research on breast cancer EMT/MET aims at delivering biomolecules that can be used diagnostically in cancer pathology and possibly provide ideas for how to improve breast cancer therapy.  相似文献   

10.
Molecular-focused cancer therapies, e.g., molecularly targeted therapy and immunotherapy, so far demonstrate only limited efficacy in cancer patients. We hypothesize that underestimating the role of biophysical factors that impact the delivery of drugs or cytotoxic cells to the target sites (for associated preferential cytotoxicity or cell signaling modulation) may be responsible for the poor clinical outcome. Therefore, instead of focusing exclusively on the investigation of molecular mechanisms in cancer cells, convection-diffusion of cytotoxic molecules and migration of cancer-killing cells within tumor tissue should be taken into account to improve therapeutic effectiveness. To test this hypothesis, we have developed a mathematical model of the interstitial diffusion and uptake of small cytotoxic molecules secreted by T-cells, which is capable of predicting breast cancer growth inhibition as measured both in vitro and in vivo. Our analysis shows that diffusion barriers of cytotoxic molecules conspire with γδ T-cell scarcity in tissue to limit the inhibitory effects of γδ T-cells on cancer cells. This may increase the necessary ratios of γδ T-cells to cancer cells within tissue to unrealistic values for having an intended therapeutic effect, and decrease the effectiveness of the immunotherapeutic treatment.  相似文献   

11.
NgBR is a type I receptor with a single transmembrane domain and was identified as a specific receptor for Nogo-B. Our recent findings demonstrated that NgBR binds farnesylated Ras and recruits Ras to the plasma membrane, which is a critical step required for the activation of Ras signaling in human breast cancer cells and tumorigenesis. Here, we first use immunohistochemistry and real-time PCR approaches to examine the expression patterns of Nogo-B and NgBR in both normal and breast tumor tissues. Then, we examine the relationship between NgBR expression and molecular subtypes of breast cancer, and the roles of NgBR in estrogen-dependent survivin signaling pathway. Results showed that NgBR and Nogo-B protein were detected in both normal and breast tumor tissues. However, the expression of Nogo-B and NgBR in breast tumor tissue was much stronger than in normal breast tissue. The statistical analysis demonstrated that NgBR is highly associated with ER-positive/HER2-negative breast cancer. We also found that the expression of NgBR has a strong correlation with the expression of survivin, which is a well-known apoptosis inhibitor. The correlation between NgBR and survivin gene expression was further confirmed by real-time PCR. In vitro results also demonstrated that estradiol induces the expression of survivin in ER-positive T47D breast tumor cells but not in ER-negative MDA-MB-468 breast tumor cells. NgBR knockdown with siRNA abolishes estradiol-induced survivin expression in ER-positive T47D cells but not in ER-negative MDA-MB-468 cells. In addition, estradiol increases the expression of survivin and cell growth in ER-positive MCF-7 and T47D cells whereas knockdown of NgBR with siRNA reduces estradiol-induced survivin expression and cell growth. In summary, these results indicate that NgBR is a new molecular marker for breast cancer. The data suggest that the expression of NgBR may be essential in promoting ER-positive tumor cell proliferation via survivin induction in breast cancer.  相似文献   

12.
We have evaluated the level of pp60c-src protein kinase activity in a variety of human tumor tissues and human tumor cell lines, and have estimated the abundance of the c-src protein in several of these tissues and cell lines. All cell lines derived from tumors of neuroectodermal origin that express a neural phenotype were found to possess c-src molecules with high levels of tyrosine-specific protein kinase activity. In contrast, cell lines derived from tumors of neuroectodermal origin that do not express neural characteristics, such as glioblastomas and melanomas, were found to have pp60c-src molecules with low levels of protein kinase activity. A similar pattern was observed when we analyzed the activity of c-src molecules extracted directly from corresponding tumor tissues. Analysis of human tumor cell lines derived from tissues other than those of neuroectodermal origin revealed that pp60c-src protein kinase activity was low in most cases. Exceptions to this observation were all rhabdomyosarcoma, osteogenic sarcoma, Ewing's sarcoma, and colon carcinoma lines tested. Comparison of pp60c-src kinase activity in normal skeletal muscle and rhabdomyosarcoma tissue and in normal breast tissue and breast adenocarcinoma tissue revealed that pp60c-src kinase activity was specifically elevated in the tumor tissues in both cases. However, the amount of pp60c-src protein in both normal and tumor tissues was found to be similar. These observations suggest that increases in the specific activity of the pp60c-src phosphotransferase in some rhabdomyosarcomas and breast carcinomas may be a characteristic acquired during the malignant transformation of the cells that is retained in cell lines established from these tumors.  相似文献   

13.
Peptide growth factors and other receptor-binding cytokine ligands are of interest in contemporary molecular health care approaches in applications such as wound healing, tissue regeneration, and gene therapy. Development of effective technologies based on operation of these regulatory molecules requires an ability to deliver the ligands to target cells in a reliable and well-characterizable manner. Quantitative information concerning the fate of peptide ligands within tissues is necessary for adequate interpretation of experimental observations at the tissue level and for truly rational engineering design of ligand-based therapies. To address this need, we are undertaking efforts to elucidate effects of key molecular and cellular parameters on temporal and spatial distribution of cytokines in cell population and cell/matrix systems. In this article we summarize some of our recent findings on dynamics of growth factor depletion by cellular endocytic trafficking, growth factor transport through cellular matrices, and growth factor production and release by autocrine cell systems. (c) 1996 John Wiley & Sons, Inc.  相似文献   

14.
The cornea, the most densely innervated tissue on the surface of the body, becomes innervated in a series of highly coordinated developmental events. During cornea development, chick trigeminal nerve growth cones reach the cornea margin at embryonic day (E)5, where they are initially repelled for days from E5 to E8, instead encircling the corneal periphery in a nerve ring prior to entering on E9. The molecular events coordinating growth cone guidance during cornea development are poorly understood. Here we evaluated a potential role for the Robo-Slit nerve guidance family. We found that Slits 1, 2 and 3 expression in the cornea and lens persisted during all stages of cornea innervation examined. Robo1 expression was developmentally regulated in trigeminal cell bodies, expressed robustly during nerve ring formation (E5-8), then later declining concurrent with projection of growth cones into the cornea. In this study we provide in vivo and in vitro evidence that Robo-Slit signaling guides trigeminal nerves during cornea innervation. Transient, localized inhibition of Robo-Slit signaling, by means of beads loaded with inhibitory Robo-Fc protein implanted into the developing eyefield in vivo, led to disorganized nerve ring formation and premature cornea innervation. Additionally, when trigeminal explants (source of neurons) were oriented adjacent to lens vesicles or corneas (source of repellant molecules) in organotypic tissue culture both lens and cornea tissues strongly repelled E7 trigeminal neurites, except in the presence of inhibitory Robo-Fc protein. In contrast, E10 trigeminal neurites were not as strongly repelled by cornea, and presence of Robo-Slit inhibitory protein had no effect. In full, these findings suggest that nerve repulsion from the lens and cornea during nerve ring formation is mediated by Robo-Slit signaling. Later, a shift in nerve guidance behavior occurs, in part due to molecular changes in trigeminal neurons, including Robo1 downregulation, thus allowing nerves to find the Slit-expressing cornea permissive for growth cones.  相似文献   

15.
Epithelial-mesenchymal transition (EMT) refers to plastic changes in epithelial tissue architecture. Breast cancer stromal cells provide secreted molecules, such as transforming growth factor β (TGFβ), that promote EMT on tumor cells to facilitate breast cancer cell invasion, stemness and metastasis. TGFβ signaling is considered to be abnormal in the context of cancer development; however, TGFβ acting on breast cancer EMT resembles physiological signaling during embryonic development, when EMT generates or patterns new tissues. Interestingly, while EMT promotes metastatic fate, successful metastatic colonization seems to require the inverse process of mesenchymal-epithelial transition (MET). EMT and MET are interconnected in a time-dependent and tissue context-dependent manner and are coordinated by TGFβ, other extracellular proteins, intracellular signaling cascades, non-coding RNAs and chromatin-based molecular alterations. Research on breast cancer EMT/MET aims at delivering biomolecules that can be used diagnostically in cancer pathology and possibly provide ideas for how to improve breast cancer therapy.  相似文献   

16.
Progress in tissue engineering is now impacting beyond the field of regenerative medicine. Engineered tissues are now used as tools to evaluate the toxicity of compounds or even to enable the modelling of disease. While many of the materials that are used to facilitate tissue growth are designed to enable cell attachment, many researchers consider that the contraction and modification of these matrices by attached cells is not desirable and take measures to prevent this from occurring. Where substantial alignment of the molecules within tissues, however, is a feature of structure the process of contraction can be exploited to guide new matrix deposition. In this paper, we will demonstrate how we have used the cell contraction process to generate tissues with high levels of organization. The tissues that have been grown in the laboratory have been characterized using a suite of analytical techniques to demonstrate significant levels of matrix organization and mechanical behaviour analogous to natural tissues. This paper provides an overview of research that has been undertaken to determine how tissues have been grown in vitro with structuring from the molecular, right through to the macroscopic level.  相似文献   

17.
As tumors progress to increased malignancy, cells within them develop the ability to invade into surrounding normal tissues and through tissue boundaries to form new growths (metastases) at sites distinct from the primary tumor. The molecular mechanisms involved in this process are incompletely understood but those associated with cell-cell and cell-matrix adhesion, with the degradation of extracellular matrix, and with the initiation and maintenance of early growth at the new site are generally accepted to be critical. This article discusses current knowledge of molecular events involved in these various processes. The potential role of adhesion molecules (eg. integrins and cadherins) has undergone a major transition over the last ten years, as it has become apparent that such molecules play a major role in signaling from outside to inside a cell, thereby controlling how a cell is able (or not) to sense and interact with its local environment. Similarly the roles of proteolytic enzymes and their inhibitors (eg. matrix metalloproteinases and TIMPs) have also expanded as it has become apparent that they not only have the abilities to break down the components of the extracellular matrix but also are involved in the release of factors which can affect the growth of the tumor cells positively or negatively. Recent work has highlighted the importance of the later, post-extravasational stages of metastasis, where adhesion and proteolysis are now known to play a role along with other processes such as apoptosis, dormancy, growth factor-receptor interactions and signal transduction. Recent work has also demonstrated that not only the immediate cellular microenvironment, in terms of specific cell-cell and cell-matrix interactions, but also the extended cellular microenvironment, in terms of vascular insufficiency and hypoxia in the primary tumor, can modify cellular gene expression and enhance metastasis. Mechanisms of metastasis appear to involve a complex array of genetic and epigenetic changes many of which appear to be specific both for different types of tumors and for different sites of metastasis. Our improved understanding of the expanded roles of the individual molecules involved has resulted in a mechanistic blurring of the previously described discrete stages of the metastatic process.  相似文献   

18.
目的:利用MMTV-erbB-2转基因小鼠,探讨食物中大豆异黄酮对MMTV-erbB-2转基因小鼠乳腺肿瘤发生发展的影响。方法:选择健康雌性MMTV-erbB-2转基因小鼠60只,随机分为实验组(自鼠龄四周起喂养含有大豆异黄酮的豆饲料和对照组(喂养不含大豆异黄酮的普通饲料)。观察两组小鼠生长情况,观察各组小鼠乳腺肿瘤的发病率和潜伏期、记录肿瘤生长情况,并通过HE染色观察其病理类型,免疫组织化学染色SP法检测各组小鼠乳腺癌组织及正常乳腺组织中MMP-2和TIMP-2的表达并分析其关系。结果:豆饲料干预组,普通饲料干预组小鼠乳腺肿瘤的发瘤率分别为36.7%,66.7%,豆饲料干预组小鼠乳腺肿瘤发瘤率与对照饲料干预组相比明显降低,差异有统计学意义(P<0.05)。小鼠肿瘤多生长在第2-3对乳腺上,两组小鼠乳腺肿瘤最大平均直径及潜伏期相比较差异无统计学意义。两实验组小鼠乳腺肿瘤组织经HE染色后全部确定为乳腺癌组织。两实验组小鼠乳腺肿瘤组织中MMP-2和TIMP-2表达均高于正常乳腺组织,差异有统计学意义(P<0.05),MMP-2和TIMP-2在乳腺肿瘤组织中表达呈负相关,在正常乳腺组织中表达无相关性。MMP-2在豆饲料干预组,普通饲料干预组小鼠乳腺肿瘤组织中的阳性率分别为83.3%,73.9%,各实验组阳性率相比较差异无统计学意义(P=0.888);TIMP-2在豆饲料干预组,普通饲料干预组小鼠乳腺肿瘤组织中的阳性率分别为33.3%,43.5%,各实验组阳性率相比较差异无统计学意义。结论:大豆异黄酮能抑制MMTV-erbB-2转基因小鼠乳腺肿瘤的发生,但其对小鼠乳腺肿瘤的作用与MMP-2及TIMP-2的表达无明显相关,具体机制尚待进一步研究。  相似文献   

19.
In the last few years, new approaches and developments in patient-tailored cancer therapies have raised the need to select, more precisely, those patients who will respond to personalized treatments. Therefore, the most efficient way for optimal therapy and patient selection is to provide a tumour-specific protein network portrait prior to treatment. The aim of our study was to monitor protein networks in formalin-fixed and paraffin-embedded (FFPE) breast cancer tissues, with special emphasis on epidermal growth factor receptor 2 (HER2)-mediated signalling pathways, to identify and validate new disease markers. For this purpose we used a recently developed technology to extract full-length proteins from FFPE tissues and analysed 23 molecules involved in HER2-related signalling by reverse phase protein microarray (RPPA) in a series of 106 FFPE breast cancer tissue samples. We found a significant correlation of HER2 with human epidermal growth factor receptor 3 (HER3/erbB3), epidermal growth factor receptor 1 (EGFR/HER1/erbB1) and urokinase plasminogen receptor (uPAR) in routinely used FFPE breast cancer tissues. Thus, targeting HER2, EGFR, HER3 and uPAR together may offer a more efficient treatment option for patients with breast cancer.  相似文献   

20.
Polyamines are known to be involved in cell growth regulation in breast cancer. To evaluate the efficacy of bis(ethyl)polyamine analogs for breast cancer therapy and to understand their mechanism of action we measured the effects of a series of polyamine analogs on cell growth, activities of enzymes involved in polyamine metabolism, intracellular polyamine levels, and the uptake of putrescine and spermidine using MCF-7 breast cancer cells. The IC50 values for cell growth inhibition of three of the compounds, N1,N12-bis(ethyl)spermine, N1,N11-bis(ethyl)norspermine, and N1,N14-bis(ethyl)homospermine, were in the range of 1-2 microM. Another group of three compounds showed antiproliferative activity at about 5 microM level. These compounds are also capable of suppressing colony formation in soft agar assay and inducing apoptosis of MCF-7 cells. The highly effective growth inhibitory agents altered the activity of polyamine biosynthetic and catabolic enzymes and down-regulated the transport of natural polyamines, although each compound produced a unique pattern of alterations in these parameters. HPLC analysis showed that cellular uptake of bis(ethyl)polyamines was highest for bis(ethyl)spermine. We also analyzed polyamine analog conformations and their binding to DNA minor or major grooves by molecular modelling and molecular dynamics simulations. Results of these analyses indicate that tetramine analogs fit well in the minor groove of DNA whereas, larger compounds extend out of the minor groove. Although major groove binding was also possible for the short tetramine analogs, this interaction led to a predominantly bent conformation. Our studies show growth inhibitory activities of several potentially important analogs on breast cancer cells and indicate that multiple sites are involved in the mechanism of action of these analogs. While the activity of an analog may depend on the sum of these different effects, molecular modelling studies indicate a correlation between antiproliferative activity and stable interactions of the analogs with major or minor grooves of DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号