首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The bacteriophage-derived Cre/loxP system is a valuable tool that has revolutionised genetic and cell biological research in many organisms. We implemented this system in the intestinal parasite Giardia lamblia, an evolutionarily diverged protozoan whose binucleate and tetraploid genome organisation severely limits the application of reverse genetic approaches. We show that Cre-recombinase is functionally expressed in G. lamblia and demonstrate “recycling” of selectable markers. Providing the means for more complex and versatile genetic modifications, this technique massively increases the scope of functional investigations in G. lamblia and other protozoa with similar limitations with respect to genetic manipulation.  相似文献   

2.
Giardia lamblia is a protozoan pathogen with distinct cytoskeletal structures, including median bodies and eight flagella. In this study, we examined components comprising G. lamblia flagella. Crude flagellar extracts were prepared from G. lamblia trophozoites, and analyzed by two-dimensional (2-D) gel electrophoresis. The 19 protein spots were analyzed by MALDI–TOF mass spectrometry, identifying ten metabolic enzymes, six distinct giardins, Giardia trophozoite antigen 1, translational initiation factor eIF-4A, and an extracellular signal-regulated kinase 2. Among the identified proteins, we studied α-11 giardin which belongs to a group of cytoskeletal proteins specific to Giardia. Western blot analysis and real-time PCR indicated that expression of α-11 giardin is not significantly increased during encystation of G. lamblia. Immunofluorescence assays using anti-α-11 giardin antibodies revealed that α-11 giardin protein mainly localized to the plasma membranes and basal bodies of the anterior flagella of G. lamblia trophozoites, suggesting that α-11 giardin is a genuine component of the G. lamblia cytoskeleton.  相似文献   

3.
Giardia lamblia is a unicellular, early branching eukaryote causing giardiasis, one of the most common human enteric diseases. Giardia, a microaerophilic protozoan parasite has to build up mechanisms to protect themselves against oxidative stress within the human gut (oxygen concentration 60 μM) to establish its pathogenesis. G. lamblia is devoid of the conventional mechanisms of the oxidative stress management system, including superoxide dismutase, catalase, peroxidase, and glutathione cycling, which are present in most eukaryotes. NADH oxidase is a major component of the electron transport chain of G. lamblia, which in concurrence with disulfide reductase, protects oxygen-labile proteins such as pyruvate: ferredoxin oxidoreductase against oxidative stress by sustaining a reduced intracellular environment. It also contains the arginine dihydrolase pathway, which occurs in a number of anaerobic prokaryotes, includes substrate level phosphorylation and adequately active to make a major contribution to ATP production.  相似文献   

4.
5.
This study aimed to develop a multiplex-touchdown PCR method to simultaneously detect 3 species of protozoan parasites, i.e., Cryptosporidium parvum, Giardia lamblia, and Cyclospora cayetanensis, the major causes of traveler’s diarrhea and are resistant to standard antimicrobial treatments. The target genes included the Cryptosporidium oocyst wall protein for C. parvum, Glutamate dehydrogenase for G. lamblia, and 18S ribosomal RNA (18S rRNA) for C. cayetanensis. The sizes of the amplified fragments were 555, 188, and 400 bps, respectively. The multiplex-touchdown PCR protocol using a primer mixture simultaneously detected protozoa in human stools, and the amplified gene was detected in >1×103 oocysts for C. parvum, >1×104 cysts for G. lamblia, and >1 copy of the 18S rRNA gene for C. cayetanensis. Taken together, our protocol convincingly demonstrated the ability to simultaneously detect C. parvum, G. lamblia, and C. cayetanenesis in stool samples.  相似文献   

6.
Giardia lamblia is a protozoan parasite with many characteristics common among eukaryotic cells, but lacking other features found in most eukaryotes. Cardiolipin is a phospholipid located exclusively in energy transducing membranes and it was identified in mitochondria, bacteria, hydrogenosomes and chloroplasts. In eukaryotes, cardiolipin is the only lipid that is synthesized in the mitochondria. Biochemical procedures (TLC, HPLC) and fluorescent tools (NAO) were applied in order to search for cardiolipin in G. lamblia. In addition, BLAST searches were used to find homologs of enzymes that participate in the cardiolipin synthesis. Cardiolipin synthase was searched in the Giardia genome, using Saccharomyces cerevisiae and Mycoplasma penetrans sequences as bait. However, a good match to G. lamblia related proteins was not found. Here we show that mitosomes of G. lamblia apparently do not contain cardiolipin, which raises the discussion for its endosymbiotic origin and for the previous proposal that Giardia mitosomes are modified mitochondria.  相似文献   

7.
Giardia lamblia is a common cause of both acute and chronic diarrheal disease in humans worldwide. It has been shown that mast cells, IL-6 and TNF-α are substantially involved in the early control of G. lamblia infection in mice. However, no studies have yet been reported concerning the interaction between mast cell and Giardia, as well as the mast cells mediators generated in response to Giardia infection. In this study we demonstrated the direct activation of mast cells by G. lamblia live trophozoites or trophozoite-derived antigens followed by an increase in tryptase expression and a significant release of the preformed mediator histamine. In addition, parasite derived antigens increased TNF-α and de novo synthesized cytokine IL-6, at the mRNA and protein level. These results strongly suggest that mast cells might be an important source not only of IL-6 but also of TNF-α during Giardia infection, playing an important role in the outcome of the infection.  相似文献   

8.
The humoral immune response plays an important role in the clearance of Giardia lamblia. However, our knowledge about the specific antigens of G. lamblia that induce a protective immune response is limited. The purpose of this study was to identify and characterise the immunogenic proteins of G. lamblia in a mouse model. We generated monoclonal antibodies (moAbs) specific to G. lamblia (1B10, 2C9.D11, 3C10.E5, 3D10, 5G8.B5, 5F4, 4C7, 3C5 and 3C6) by fusing splenocytes derived from infected mice. Most of these moAbs recognised a band of ± 71 kDa (5G8 protein) and this protein was also recognised by serum from the infected mice. We found that the moAbs recognised conformational epitopes of the 5G8 protein and that this antigen is expressed on the cell surface and inside trophozoites. Additionally, antibodies specific to the 5G8 protein induced strong agglutination (> 70-90%) of trophozoites. We have thus identified a highly immunogenic antigen of G. lamblia that is recognised by the immune system of infected mice. In summary, this study describes the identification and partial characterisation of an immunogenic protein of G. lamblia. Additionally, we generated a panel of moAbs specific for this protein that will be useful for the biochemical and immunological characterisation of this immunologically interesting Giardia molecule.  相似文献   

9.
Giardia lamblia is a pathogenic protist that infects the small intestine of mammals. As a facultative anaerobe, Giardia obtains all of its energy by substrate-level phosphorylation, lacks a functioning respiratory chain, and is not thought to require heme. However, sequencing of the G. lamblia genome has identified several putative heme proteins, one of which shares high sequence similarity to flavohemoglobins found in bacteria and some single-celled eukaryotes. We have cloned and characterized the functional properties of the G. lamblia flavohemoglobin. The protein is monomeric, binds heme and flavin adenine dinucleotide, and exhibits similar behavior to known flavohemoglobins, including NADH and NADPH oxidase activity, which is stimulated by addition of the nitric oxide donor DEA/NO. Based on its structural and functional properties, the likely role of this protein is to protect Giardia against oxygen, nitric oxide, or both. The presence of a Giardia gene encoding a functional heme protein raises questions on how this organism acquires the heme cofactor, which hitherto have been unexplored.  相似文献   

10.
Malaria parasite-infected erythrocytes exhibit enhanced glucose utilisation and 6-phospho-1-fructokinase (PFK) is a key enzyme in glycolysis. Here we present the characterisation of PFK from the human malaria parasite Plasmodium falciparum. Of the two putative PFK genes on chromosome 9 (PfPFK9) and 11 (PfPFK11), only the PfPFK9 gene appeared to possess all the catalytic features appropriate for PFK activity. The deduced PfPFK proteins contain domains homologous to the plant-like pyrophosphate (PPi)-dependent PFK β and α subunits, which are quite different from the human erythrocyte PFK protein. The PfPFK9 gene β and α regions were cloned and expressed as His6- and GST-tagged proteins in Escherichia coli. Complementation of PFK-deficient E. coli and activity analysis of purified recombinant proteins confirmed that PfPFK9β possessed catalytic activity. Monoclonal antibodies against the recombinant β protein confirmed that the PfPFK9 protein has β and α domains fused into a 200 kDa protein, as opposed to the independent subunits found in plants. Despite an overall structural similarity to plant PPi-PFKs, the recombinant protein and the parasite extract exhibited only ATP-dependent enzyme activity, and none with PPi. Unlike host PFK, the Plasmodium PFK was insensitive to fructose-2,6-bisphosphate (F-2,6-bP), phosphoenolpyruvate (PEP) and citrate. A comparison of the deduced PFK proteins from several protozoan PFK genome databases implicates a unique class of ATP-dependent PFK present amongst the apicomplexan protozoans.  相似文献   

11.
Giardia lamblia is a protozoan parasite that causes widespread gastrointestinal illness. Drugs to treat giardiasis are limited, but efforts to discover new anti-giardial compounds are constrained by the lack of a facile system for cell culture and inhibitor testing. We achieved robust and reproducible growth of G. lamblia in 384-well tissue culture plates in a modified TYI-S-33 medium. A high throughput assay for the screening of potential anti-giardial compounds was developed utilizing the WB strain of G. lamblia and automated optical detection of parasites after growth with tested inhibitors. We screened a library of 1600 known bioactive molecules and identified 12 compounds that inhibited growth of G. lamblia at low- or sub-micromolar concentrations. Our high throughput assay should facilitate evaluation of available chemical libraries for novel drugs to treat giardiasis.  相似文献   

12.
13.
14.
Giardia lamblia differentiates into infectious cysts to survive outside of the host. It is of interest to identify factors involved in up-regulation of cyst wall proteins (CWPs) during this differentiation. Pax proteins are important regulators of development and cell differentiation in Drosophila and vertebrates. No member of this gene family has been reported to date in yeast, plants, or protozoan parasites. We have identified a pax-like gene (pax1) encoding a putative paired domain in the G. lamblia genome. Epitope-tagged Pax1 localized to nuclei during both vegetative growth and encystation. Recombinant Pax1 specifically bound to the AT-rich initiator elements of the encystation-induced cwp1 to -3 and myb2 genes. Interestingly, overexpression of Pax1 increased cwp1 to -3 and myb2 gene expression and cyst formation. Deletion of the C-terminal paired domain or mutation of the basic amino acids of the paired domain resulted in a decrease of the transactivation function of Pax1. Our results indicate that the Pax family has been conserved during evolution, and Pax1 could up-regulate the key encystation-induced genes to regulate differentiation of the protozoan eukaryote, G. lamblia.  相似文献   

15.
N-Myristoyltransferase (NMT) catalyses the attachment of the 14-carbon saturated fatty acid, myristate, to the amino-terminal glycine residue of a subset of eukaryotic proteins that function in multiple cellular processes, including vesicular protein trafficking and signal transduction. In these pathways, N-myristoylation facilitates association of substrate proteins with membranes or the hydrophobic domains of other partner peptides. NMT function is essential for viability in all cell types tested to date, demonstrating that this enzyme has potential as a target for drug development. Here, we provide genetic evidence that NMT is likely to be essential for viability in insect stages of the pathogenic protozoan parasite, Leishmania donovani, causative agent of the tropical infectious disease, visceral leishmaniasis. The open reading frame of L. donovaniNMT has been amplified and used to overproduce active recombinant enzyme in Escherichia coli, as demonstrated by gel mobility shift assays of ligand binding and peptide-myristoylation activity in scintillation proximity assays. The purified protein has been crystallized in complex with the non-hydrolysable substrate analogue S-(2-oxo)pentadecyl-CoA, and its structure was solved by molecular replacement at 1.4 Å resolution. The structure has as its defining feature a 14-stranded twisted β-sheet on which helices are packed so as to form an extended and curved substrate-binding groove running across two protein lobes. The fatty acyl-CoA is largely buried in the N-terminal lobe, its binding leading to the loosening of a flap, which in unliganded NMT structures, occludes the protein substrate binding site in the carboxy-terminal lobe. These studies validate L. donovani NMT as a potential target for development of new therapeutic agents against visceral leishmaniasis.  相似文献   

16.
The parasitic protozoan, Leishmania, survives in harsh environments within its mammalian and sand fly hosts. Secreted proteins likely play critical roles in the parasite’s interactions with its environment. As a preliminary identification of the spectrum of potential excreted/secreted (ES) proteins of Leishmania infantum chagasi (Lic), a causative agent of visceral leishmaniasis, we used standard algorithms to screen the annotated L. infantum genome for genes whose predicted protein products have an N-terminal signal peptide and lack transmembrane domains and membrane anchors. A suite of 181 candidate ES proteins were identified. These included several that were documented in the literature to be released by other Leishmania spp. Six candidate ES proteins were selected for further validation of their expression and release by different parasite stages. We found both amastigote-specific and promastigote-specific released proteins. The ES proteins of Lic are candidates for future studies of parasite virulence determinants and host protective immunity.  相似文献   

17.
End-binding 1 (EB1) proteins are evolutionarily conserved components of microtubule (MT) plus-end tracking protein that regulate MT dynamics. Giardia lamblia, with two nuclei and cytoskeletal structures, requires accurate MT distribution for division. In this study, we show that a single EB1 homolog gene of G. lamblia regulates MT dynamics in mitosis. The haemagglutinin-tagged G. lamblia EB1 (GlEB1) localizes to the nuclear envelopes and median bodies, and is transiently present in mitotic spindles of dividing cells. Knockdown of GlEB1 expression using the morpholinos-based anti-EB1 oligonucleotides, resulted in a significant defect in mitosis of Giardia trophozoites. The MT-binding assays using recombinant GlEB1 (rGlEB1) proteins demonstrated that rGlEB1102–238, but not rGlEB11–184, maintains an MT-binding ability comparable with that of the full length protein, rGlEB11–238. Size exclusion chromatography showed that rGlEB1 is present as a dimer formed by its C-terminal domain and a disulfide bond. In vitro-mutagenesis of GlEB1 indicated that an intermolecular disulfide bond is made between cysteine #13 of the two monomers. Complementation assay using the BIM1 knockout mutant yeast, the yeast homolog of mammalian EB1, indicated that expression of the C13S mutant GlEB1 protein cannot rescue the mitotic defect of the BIM1 mutant yeast. These results suggest that dimerization of GlEB1 via the 13th cysteine residues plays a role during mitosis in Giardia.  相似文献   

18.
The α/β-tubulin heterodimer is the basic subunit of microtubules in eukaryotes. Polyclonal antibodies specific to recombinant α-tubulin of Giardia lamblia were made, and found effective as a probe to specifically detect G. lamblia by immunofluorescence assays. Nucleotide sequences of α-tubulin genes were compared between G. lamblia WB and GS strains, prototypes of assemblage A and assemblage B, respectively. A set of primers was designed and used to amplify a portion of the α-tubulin gene from G. lamblia. PCR-RFLP analysis of this α-tubulin PCR product successfully differentiated G. lamblia into 2 distinct groups, assemblages A and B. The results indicate that α-tubulin can be used as a molecular probe to detect G. lamblia.  相似文献   

19.
Giardia intestinalis (syn. G. lamblia, G. duodenalis) is a flagellated unicellular eukaryotic microorganism that commonly causes diarrheal disease throughout the world. In humans, the clinical effects of Giardia infection range from the asymptomatic carrier state to a severe malabsorption syndrome possibly due to different virulence of the Giardia strain, the number of cysts ingested, the age of the host, and the state of the host immune system at the time of infection.The question about how G. intestinalis is controlled by the organism remains unanswered. Here, we investigated the role of the complement system and in particular, the lectin pathway during Giardia infections. We present the first evidence that G. intestinalis activate the complement lectin pathway and in doing so participate in eradication of the parasite. We detected rapid binding of mannan-binding lectin, H-ficolin and L-ficolin to the surface of G. intestinalis trophozoites and normal human serum depleted of these molecules failed to kill the parasites. Our finding provides insight into the role of lectin pathway in the control of G. intestinalis and about the nature of surface components of parasite.  相似文献   

20.
The protozoan parasite Giardia lamblia is an important causative agent of acute or chronic diarrhoea in humans and various animals. During infection, the parasite survives the hosts reactions by undergoing continuous antigenic variation of its major surface antigen, named VSP (variant surface protein). The VSPs form a unique family of cysteine-rich proteins that are extremely heterogeneous in size. The relevance of antigenic variation for the survival in the host has been most successfully studied by performing experimental infections in a combined mother/offspring mouse system and by using the G. lamblia clone GS/M-83-H7 (human isolate) as model parasite. In-vivo antigenic variation of G. lamblia clone GS/M-83-H7 is characterised by a diversification of the intestinal parasite population into a complex mixture of different variant antigen types. It could be shown that maternally transferred lactogenic anti-VSP IgA antibodies exhibit cytotoxic activity on the Giardia variant-specific trophozoites in suckling mice, and thus express a modulatory function on the proliferative parasite population characteristics. Complementarily, in-vitro as well as in-vivo experiments in adult animals indicated that non-immunological factors such as intestinal proteases may interfere into the process of antigen variation in that they favour proliferation of those variant antigen-type populations which resist the hostile physiological conditions within the intestine. These observations suggest that an interplay between immunological and physiological factors, rather than one of these two factor alone, modulates antigenic diversification of a G. lamblia population within an experimental murine host and thus influences the survival rate and strategy of the parasite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号