首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mature gametocytes, the sexual stage of Plasmodium falciparum, ensure the continued transmission of malaria from the human host to the mosquito vector. Even if gametocytes are not implicated in the malaria physiopathology it is crucial to the spread of malaria. Gametocytes are to be a key target for drugs used against Plasmodium in public health. The expression levels of 4 sexual-stage specific genes, Pfs 16, Pfs 25, Pfg 27and S 18S rRNA, during gametocytogenesis of various P. falciparum strains were analyzed by a real time PCR assay. The strains showed different capacities to produce mature gametocytes and in parallel different patterns of sexual gene expression. There was a correlation only between Pfs 16 cDNA overexpression in the first 48 h of the culture and the production of mature gametocytes. Pfs 16 is an early marker of the development of mature gametocytes in cultures and is therefore a potential target for new antimalarial drugs.  相似文献   

2.
3.
4.
Generation of phosphocholine by choline kinase is important for phosphatidylcholine biosynthesis via Kennedy pathway and phosphatidylcholine biosynthesis is essential for intraerythrocytic growth of malaria parasite. A putative gene (Gene ID PF14_0020) in chromosome 14, having highest sequence homology with choline kinase, has been identified by BLAST searches from P. falciparum genome sequence database. This gene has been PCR amplified, cloned, over-expressed and characterized. Choline kinase activity of the recombinant protein (PfCK) was validated as it catalyzed the formation of phosphocholine from choline in presence of ATP. The Km values for choline and ATP are found to be 145 ± 20 μM and 2.5 ± 0.3 mM, respectively. PfCK can phosphorylate choline efficiently but not ethanolamine. Southern blotting indicates that PfCK is a single copy gene and it is a cytosolic protein as evidenced by Western immunoblotting and confocal microscopy. A model structure of PfCK was constructed based on the crystal structure of choline kinase of C. elegans to search the structural homology. Consistent with the homology modeling predictions, CD analysis indicates that the α and β content of PfCK are 33% and 14%, respectively. Since choline kinase plays a vital role for growth and multiplication of P. falciparum during intraerythrocytic stages, we can suggest that this well characterized PfCK may be exploited in the screening of new choline kinase inhibitors to evaluate their antimalarial activity.  相似文献   

5.
Malaria is a parasitic infection caused by Plasmodium species. Most of the imported malaria in Korea are due to Plasmodium vivax and Plasmodium falciparum, and Plasmodium ovale infections are very rare. Here, we report a case of a 24-year-old American woman who acquired P. ovale while staying in Ghana, West Africa for 5 months in 2010. The patient was diagnosed with P. ovale malaria based on a Wright-Giemsa stained peripheral blood smear, Plasmodium genus-specific real-time PCR, Plasmodium species-specific nested PCR, and sequencing targeting 18S rRNA gene. The strain identified had a very long incubation period of 19-24 months. Blood donors who have malaria with a very long incubation period could be a potential danger for propagating malaria. Therefore, we should identify imported P. ovale infections not only by morphological findings but also by molecular methods for preventing propagation and appropriate treatment.  相似文献   

6.
7.
Nearly 60% of Plasmodium falciparum proteins are still uncharacterized and their functions are unknown. In this report, we carried out the functional characterization of a 45 kDa protein (PF3D7_1459400) and showed its potential as a target for blood stage malaria vaccine development. Analysis of protein subcellular localization, native protein expression profile, and erythrocyte invasion inhibition of both clinical and laboratory parasite strains by peptide antibodies suggest a functional role of PF3D7_1459400 protein during erythrocyte invasion. Also, immunoreactivity screens using synthetic peptides of the protein showed that adults resident in malaria endemic regions in Ghana have naturally acquired plasma antibodies against PF3D7_1459400 protein. Altogether, this study presents PF3D7_1459400 protein as a potential target for the development of peptide-based vaccine for blood-stage malaria.Impact statementPlasmodium falciparum malaria is a global health problem. Erythrocyte invasion by P. falciparum merozoites appears to be a promising target to curb malaria. We have identified and characterized a novel protein that is involved in erythrocyte invasion. Our data on protein subcellular localization, stage-specific protein expression pattern, and merozoite invasion inhibition by α-peptide antibodies suggest a role for PF3D7_1459400 protein during P. falciparum erythrocyte invasion. Even more, the human immunoepidemiology data present PF3D7_1459400 protein as an immunogenic antigen which could be further exploited for the development of new anti-infective therapy against malaria.  相似文献   

8.
Understanding malaria transmission in Papua New Guinea (PNG) requires exact knowledge of which Anopheles species are transmitting malaria and is complicated by the cryptic species status of many of these mosquitoes. To identify the malaria vectors in PNG we studied Anopheles specimens from 232 collection localities around human habitation throughout PNG (using CO2 baited light traps and human bait collections). A total of 22,970 mosquitoes were individually assessed using a Plasmodium sporozoite enzyme-linked immunosorbent assay to identify Plasmodiumfalciparum, Plasmodiumvivax and Plasmodiummalariae circumsporozoite proteins. All mosquitoes were identified to species by morphology and/or PCR. Based on distribution, abundance and their ability to develop sporozoites, we identified five species as major vectors of malaria in PNG. These included: Anophelesfarauti, Anopheleshinesorum (incriminated here, to our knowledge, for the first time), Anophelesfarauti 4, Anopheleskoliensis and Anophelespunctulatus. Anopheleslongirostris and Anophelesbancroftii were also incriminated in this study. Surprisingly, An. longirostris showed a high incidence of infections in some areas. A newly identified taxon within the Punctulatus Group, tentatively called An. farauti 8, was also found positive for circumsporozoite protein. These latter three species, together with Anopheleskarwari and Anophelessubpictus, incriminated in other studies, appear to be only minor vectors, while Anophelesfarauti 6 appears to be the major vector in the highland river valleys (>1500 m above sea level). The nine remaining Anopheles species found in PNG have been little studied and their bionomics are unknown; most appear to be uncommon with limited distribution and their possible role in malaria transmission has yet to be determined.  相似文献   

9.
Currently, there is a strong trend towards increasing insecticide-based vector control coverage in malaria endemic countries. The ecological consequence of insecticide applications has been mainly studied regarding the selection of resistance mechanisms; however, little is known about their impact on vector competence in mosquitoes responsible for malaria transmission. As they have limited toxicity to mosquitoes owing to the selection of resistance mechanisms, insecticides may also interact with pathogens developing in mosquitoes. In this study, we explored the impact of insecticide exposure on Plasmodium falciparum development in insecticide-resistant colonies of Anopheles gambiae s.s., homozygous for the ace-1 G119S mutation (Acerkis) or the kdr L1014F mutation (Kdrkis). Exposure to bendiocarb insecticide reduced the prevalence and intensity of P. falciparum oocysts developing in the infected midgut of the Acerkis strain, whereas exposure to dichlorodiphenyltrichloroethane reduced only the prevalence of P. falciparum infection in the Kdrkis strain. Thus, insecticide resistance leads to a selective pressure of insecticides on Plasmodium parasites, providing, to our knowledge, the first evidence of genotype by environment interactions on vector competence in a natural Anopheles–Plasmodium combination. Insecticide applications would affect the transmission of malaria in spite of resistance and would reduce to some degree the impact of insecticide resistance on malaria control interventions.  相似文献   

10.
11.
Ken Okada 《FEBS letters》2009,583(2):313-319
The metabolic pathways in apicoplasts of human malaria parasites are promising drug targets. The apicomplexan parasites exhibit delayed cell death when their apicoplast is impaired, but the metabolic pathways within apicoplasts are poorly understood. A nuclear-encoded heme oxygenase (HO)-like protein with an apicoplast-targeted bipartite transit peptide was identified in the Plasmodiumfalciparum genome. Purified mature recombinant PfHO protein converted heme into bilirubin IXα as confirmed by high-performance liquid chromatography. In addition, PfHO required an iron chelator such as deferoxamine for complete activity. These observations lead to the conclusion that a novel enzymatic heme degradation system is present in human malaria parasites.  相似文献   

12.
Microscopy is considered as the gold standard for malaria diagnosis although its wide application is limited by the requirement of highly experienced microscopists. PCR and serological tests provide efficient diagnostic performance and have been applied for malaria diagnosis and research. The aim of this study was to investigate the diagnostic performance of nested PCR and a recently developed an ELISA-based new rapid diagnosis test (RDT), NovaLisa test kit, for diagnosis of malaria infection, using microscopic method as the gold standard. The performance of nested-PCR as a malaria diagnostic tool is excellent with respect to its high accuracy, sensitivity, specificity, and ability to discriminate Plasmodium species. The sensitivity and specificity of nested-PCR compared with the microscopic method for detection of Plasmodium falciparum, Plasmodium vivax, and P. falciparum/P. vivax mixed infection were 71.4 vs 100%, 100 vs 98.7%, and 100 vs 95.0%, respectively. The sensitivity and specificity of the ELISA-based NovaLisa test kit compared with the microscopic method for detection of Plasmodium genus were 89.0 vs 91.6%, respectively. NovaLisa test kit provided comparable diagnostic performance. Its relatively low cost, simplicity, and rapidity enables large scale field application.  相似文献   

13.
The Apicomplexan parasites Toxoplasma and Plasmodium, respectively, cause toxoplasmosis and malaria in humans and although they invade different host cells they share largely conserved invasion mechanisms. Plasmodium falciparum merozoite invasion of red blood cells results from a series of co-ordinated events that comprise attachment of the merozoite, its re-orientation, release of the contents of the invasion-related apical organelles (the rhoptries and micronemes) followed by active propulsion of the merozoite into the cell via an actin-myosin motor. During this process, a tight junction between the parasite and red blood cell plasma membranes is formed and recent studies have identified rhoptry neck proteins, including PfRON4, that are specifically associated with the tight junction during invasion. Here, we report the structure of the gene that encodes PfRON4 and its apparent limited diversity amongst geographically diverse P. falciparum isolates. We also report that PfRON4 protein sequences elicit immunogenic responses in natural human malaria infections.  相似文献   

14.
The parasite Plasmodium falciparum causes severe malaria and is the most dangerous to humans. However, it exhibits resistance to their drugs. Farnesyltransferase has been identified in pathogenic protozoa of the genera Plasmodium and the target of farnesyltransferase includes Ras family. Therefore, the inhibition of farnesyltransferase has been suggested as a new strategy for the treatment of malaria. However, the exact functional mechanism of this agent is still unknown. In addition, the effect of farnesyltransferase inhibitor (FTIs) on mitochondrial level of malaria parasites is not fully understood. In this study, therefore, the effect of a FTI R115777 on the function of mitochondria of P. falciparum was investigated experimentally. As a result, FTI R115777 was found to suppress the infection rate of malaria parasites under in vitro condition. It also reduces the copy number of mtDNA-encoded cytochrome c oxidase III. In addition, the mitochondrial membrane potential (ΔΨm) and the green fluorescence intensity of MitoTracker were decreased by FTI R115777. Chloroquine and atovaquone were measured by the mtDNA copy number as mitochondrial non-specific or specific inhibitor, respectively. Chloroquine did not affect the copy number of mtDNA-encoded cytochrome c oxidase III, while atovaquone induced to change the mtDNA copy number. These results suggest that FTI R115777 has strong influence on the mitochondrial function of P. falciparum. It may have therapeutic potential for malaria by targeting the mitochondria of parasites.  相似文献   

15.
16.
17.
18.
Malaria is a responsible for approximately 600 thousand deaths worldwide every year. Appropriate and timely treatment of malaria can prevent deaths but is dependent on accurate and rapid diagnosis of the infection. Currently, microscopic examination of the Giemsa stained blood smears is the method of choice for diagnosing malaria. Although it has limited sensitivity and specificity in field conditions, it still remains the gold standard for the diagnosis of malaria. Here, we report the development of a fluorescence in situ hybridization (FISH) based method for detecting malaria infection in blood smears and describe the use of an LED light source that makes the method suitable for use in resource-limited malaria endemic countries. The Plasmodium Genus (P-Genus) FISH assay has a Plasmodium genus specific probe that detects all five species of Plasmodium known to cause the disease in humans. The P. falciparum (PF) FISH assay and P. vivax (PV) FISH assay detect and differentiate between P. falciparum and P. vivax respectively from other Plasmodium species. The FISH assays are more sensitive than Giemsa. The sensitivities of P-Genus, PF and PV FISH assays were found to be 98.2%, 94.5% and 98.3%, respectively compared to 89.9%, 83.3% and 87.9% for the detection of Plasmodium, P. falciparum and P. vivax by Giemsa staining respectively.  相似文献   

19.
20.
The first interaction between the malaria merozoite and the red blood cell it will invade is mediated by molecules on the surface of the two cells. The Plasmodium falciparum merozoite surface protein (MSP)1 complex that contains MSP1 and two other parasite proteins, MSP6 and MSP7, is likely to be an important component in this process. This article reviews the role of the MSP1 complex in the biology of the host parasite interface with a focus on MSP7 and related proteins that are coded by gene families in each of the different Plasmodium spp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号