首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
YAP and TAZ are key downstream regulators of the Hippo pathway, regulating cell proliferation and differentiation. YAP and TAZ activation has been reported in different cancer types. However, it remains unclear whether they are required for the initiation of major skin malignancies like basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). Here, we analyze the expression of YAP and TAZ in these skin cancers and evaluate cancer initiation in knockout mouse models. We show that YAP and TAZ are nuclear and highly expressed in different BCC types in both human and mice. Further, we find that cells with nuclear YAP and TAZ localize to the invasive front in well‐differentiated SCC, whereas nuclear YAP is homogeneously expressed in spindle cell carcinoma undergoing EMT. We also show that mouse BCC and SCC are enriched for YAP gene signatures. Finally, we find that the conditional deletion of YAP and TAZ in mouse models of BCC and SCC prevents tumor formation. Thus, YAP and TAZ are key determinants of skin cancer initiation, suggesting that targeting the YAP and TAZ signaling pathway might be beneficial for the treatment of skin cancers.  相似文献   

2.
Esophageal cancer is one of the most common cancers worldwide with a poor prognosis. MicroRNAs(miRNAs) are a class of naturally occurring small noncoding RNAs and play an important role in cancer initiation and development. In this study, we demonstrate that the expression levels of miR-143 and miR-145 were significantly decreased in ESCC tissues in comparison with adjacent normal esophageal squamous tissues(NESTs). Furthermore, an inverse correlation between miR-143 and tumor invasion depth and lymph node metastasis was observed. The enforced expression of miR-143 induced growth suppression and apoptosis of ESCC cells. Rescue of miR-143 significantly suppressed the ESCC cells migration and invasion capabilities. Moreover, we show that functions of miR-143 in ESCC are mediated at least in part by the inhibition of extracellular signal regulated kinase-5(ERK-5) activity. These results prove that miR-143 may act as a tumor suppressor in ESCC.  相似文献   

3.
Glyceraldehyde‐3‐phosphate dehydrogenase, is one of the most investigated housekeeping genes and widely used as an internal control in analysis of gene expression levels. The present study was designed to assess whether GAPDH is associated with cancer cell growth and progression and, therefore may not be a good internal control in cancer research. Our results from clinical tissue studies showed that the levels of GAPDH protein were significantly up‐regulated in lung squamous cell carcinoma tissues, compared with the adjacent normal lung tissues, and this was confirmed by western blotting and immunohistochemistry. GAPDH knockdown by siRNA resulted in significant reductions in proliferation, migration, and invasion of lung squamous carcinoma cells in vitro. In a nude mouse cancer xenograft model, GAPDH knockdown significantly inhibited the cell proliferation and migration/invasion in vivo. In summary, GAPDH may not be an appropriate internal control for gene expression studies, especially in cancer research. The role of GAPDH in cancer development and progression should be further examined in pre‐clinical and clinical studies.  相似文献   

4.
Air-liquid interface (ALI) is a microenvironment of aerodigestive tract. In our previous study, ALI promoted invasive growth of laryngeal squamous cell carcinoma (SCC); but its mechanism was unclear. Hypoxia is also related to cancer spread. Here we show that ALI with or without hypoxia accelerated invasive growth of laryngeal SCC cells, using collagen gel invasion assay. Submerged condition (SMC) without ALI did not induce the invasion with or without hypoxia. ALI enhanced expression of the following growth-, invasion-, and motility-related molecules in the cells with or without hypoxia more greatly than SMC: c-Met, Ras, mitogen-activated protein kinase cascade proteins (Raf-1, MEK-1, and ERK-1/2), matrix metalloproteinase-1, and filamin A. The data indicate that ALI promotes invasive growth of SCC cells by enhancement of the invasive growth-related molecules above, through mechanisms that differ from hypoxia, suggesting that ALI microenvironment should be taken into account for the study of cancer biology.  相似文献   

5.
Lichens produce various unique chemicals that can be used for pharmaceutical purposes. To screen for novel lichen secondary metabolites showing inhibitory activity against lung cancer cell motility, we tested acetone extracts of 13 lichen samples collected in Chile. Physciosporin, isolated from Pseudocyphellaria coriacea (Hook f. & Taylor) D.J. Galloway & P. James, was identified as an effective compound and showed significant inhibitory activity in migration and invasion assays against human lung cancer cells. Physciosporin treatment reduced both protein and mRNA levels of N-cadherin with concomitant decreases in the levels of epithelial-mesenchymal transition markers such as snail and twist. Physciosporin also suppressed KITENIN (KAI1 C-terminal interacting tetraspanin)-mediated AP-1 activity in both the absence and presence of epidermal growth factor stimulation. Quantitative real-time PCR analysis showed that the expression of the metastasis suppressor gene, KAI1, was increased while that of the metastasis enhancer gene, KITENIN, was dramatically decreased by physciosporin. Particularly, the activity of 3’-untranslated region of KITENIN was decreased by physciosporin. Moreover, Cdc42 and Rac1 activities were decreased by physciosporin. These results demonstrated that the lichen secondary metabolite, physciosporin, inhibits lung cancer cell motility through novel mechanisms of action.  相似文献   

6.
采用免疫组化检测160例口腔鳞癌组织及相应正常组织的ANO1表达,并进行多项体外买验,以明确ANO1对SCC-25细胞迁移的影响。结果显示,正常组织中的ANO1阳性表达明显低于口腔鳞癌组织;有淋巴结转移的口腔鳞癌组织的ANO1阳性表达显著高于无转移的口腔鳞癌组织;多项体外实验表明,ANO1过表达有利于SCC-25细胞的迁移;尼氟灭酸能减缓细胞的迁移速度。综上所述,ANO1促进了口腔鳞癌患者体内的肿瘤转移,并增加了SCC-25细胞的体外移动、侵袭、伸展、剥脱能力,有望成为治疗口腔鳞癌的新的靶点。  相似文献   

7.
Ubiquitin-specific protease 14, a deubiquitinating enzyme, has been implicated in the tumorigenesis and progression of several cancers, but its role in oral squamous cell carcinoma remains to be elucidated. The aim of this study was to explore the expression pattern and roles of Ubiquitin-specific protease 14 in the occurrence and development of oral squamous cell carcinoma. Interestingly, Ubiquitin-specific protease 14 was overexpressed in oral cancer tissues and cell lines at both mRNA and protein levels. b-AP15, a specific inhibitor of Ubiquitin-specific protease 14, significantly inhibited the growth of cancer cells and increased cell apoptosis in a dose-dependent manner. Moreover, knockdown of Ubiquitin-specific protease 14 by shRNA significantly inhibited the proliferation and migration of cancer cells in vitro. Finally, using a xenograft mouse model of oral squamous cell carcinoma, knockdown of Ubiquitin-specific protease 14 markedly inhibited tumor growth and triggered the cancer cell apoptosis in vivo, supporting previous results. In conclusion, for the first time we have demonstrated the expression pattern of Ubiquitin-specific protease 14 in oral squamous cell carcinoma and verified a relationship with tumor growth and metastasis. These results may highlight new therapeutic strategies for tumor treatment, application of Ubiquitin-specific protease 14 selective inhibitor, such as b-AP15, or knockdown by shRNA. Collectively, Ubiquitin-specific protease 14 could be a potential therapeutic target for oral squamous cell carcinoma patients.  相似文献   

8.
Cancer-associated fibroblasts (CAFs) have important roles in promoting cancer development and progression. We previously reported that high expression of sex-determining region Y (SRY)-box9 (SOX9) in oral squamous cell carcinoma (OSCC) cells was positively correlated with poor prognosis. This study developed three-dimensional (3D) in vitro models co-cultured with OSCC cells and CAFs to examine CAF-mediated cancer migration and invasion in vitro and in vivo. Moreover, we performed an immunohistochemical analysis of alpha-smooth muscle actin and SOX9 expression in surgical specimens from 65 OSCC patients. The results indicated that CAFs promote cancer migration and invasion in migration assays and 3D in vitro models. The invading OSCC cells exhibited significant SOX9 expression and changes in the expression of epithelial–mesenchymal transition (EMT) markers, suggesting that SOX9 promotes EMT. TGF-β1 signalling inhibition reduced SOX9 expression and cancer invasion in vitro and in vivo, indicating that TGF-β1-mediated invasion is dependent on SOX9. In surgical specimens, the presence of CAFs was correlated with SOX9 expression in the invasive cancer nests and had a significant impact on regional recurrence. These findings demonstrate that CAFs promote cancer migration and invasion via the TGF-β/SOX9 axis.  相似文献   

9.
10.
MicroRNA-32 (miR-32) functioned as a tumor oncogene in some cancer, which control genes involved in important biological and pathological functions and facilitate the tumor growth and metastasis. However, the role of miR-32 modulates esophageal squamous cell carcinoma (ESCC) malignant transformation has not been clarified. Here, we focused on the function and the underlying molecular mechanism of miR-32 in ESCC. Results discovered a significant increased expression of miR-32 in ESCC tissues and cells. Downregulation of miR-32 inhibited the migration, invasion, adhesion of ESCC cell lines (EC9706 and KYSE450), and the levels of EMT protein in vitro. In vivo, miR-32 inhibitors decrease tumor size, tumor weight, and the number of metastatic nodules. Hematoxylin and eosin (H&E) results revealed that inhibition of miR-32 attenuate lung metastasis. Immunohistochemistry and immunofluorescence assay showed increased level of E-cadherin and decreased level of N-cadherin and Vimentin with treatment of miR-32 inhibitors. Furthermore, miR-32 targeted the 3′-untranslated region (3′-UTR) of CXXC5, and inhibited the level of mRNA and protein of CXXC5. There is a negative correlation between the expressions of CXXC5 and miR-32. Then, after EC9706 and KYSE450 cells cotransfected with si-CXXC5 and miR-32 inhibitors, the ability of cell migration, invasion, and adhesion was significantly reduced. In addition, the protein expression of EMT and TGF-β signaling was also depressed. Collectively, these data supply an insight into the positive role of miR-32 in ESCC progression and metastasis, and its biological effects may attribute the inhibition of TGF-β signaling mediated by CXXC5.  相似文献   

11.
BackgroundEzrin, links the plasma membrane to the actin cytoskeleton, and plays an important role in the development and progression of human esophageal squamous cell carcinoma (ESCC). However, the roles of ezrin S66 phosphorylation in tumorigenesis of ESCC remain unclear.MethodsDistribution of ezrin in membrane and cytosol fractions was examined by analysis of detergent-soluble/-insoluble fractions and cytosol/membrane fractionation. Both immunofluorescence and live imaging were used to explore the role of ezrin S66 phosphorylation in the behavior of ezrin and actin in cell filopodia. Cell proliferation, migration and invasion of ESCC cells were investigated by proliferation and migration assays, respectively. Tumorigenesis, local invasion and metastasis were assessed in a nude mouse model of regional lymph node metastasis.ResultsEzrin S66 phosphorylation enhanced the recruitment of ezrin to the membrane in ESCC cells. Additionally, non-phosphorylatable ezrin (S66A) significantly prevented filopodia formation, as well as caused a reduction in the number, length and lifetime of filopodia. Moreover, functional experiments revealed that expression of non-phosphorylatable ezrin (S66A) markedly suppressed migration and invasion but not proliferation of ESCC cells in vitro, and attenuated local invasion and regional lymph node metastasis, but not primary tumor growth of ESCC cells in vivo.ConclusionEzrin S66 phosphorylation enhances filopodia formation, contributing to the regulation of invasion and metastasis of esophageal squamous cell carcinoma cells.  相似文献   

12.
The suppressor of zest 12 (SUZ12), one of the core polycomb repressive complex 2 (PRC2) components, has increasingly appreciated as a key mediator during human tumorigenesis. However, its expression pattern and oncogenic roles in head and neck squamous cell carcinoma (HNSCC) remain largely unexplored yet. Here, we sought to determine its expression pattern, clinicopathological significance and biological roles in HNSCC. Through data mining and interrogation from multiple publicly available databases, our bioinformatics analyses revealed that SUZ12 mRNA was significantly overexpressed in multiple HNSCC patient cohorts. Moreover, SUZ12 protein was markedly up‐regulated in primary HNSCC samples from our patient cohort as assessed by immunohistochemical staining and its overexpression significantly associated with cervical node metastasis and reduced overall and disease‐free survival. In the 4‐nitroquinoline 1‐oxide (4NQO)‐induced HNSCC mouse model, increased SUZ12 immunostaining was observed along with disease progression from epithelial hyperplasia to squamous cell carcinoma in tongue. Furthermore, shRNA‐mediated SUZ12 knock‐down significantly inhibited cell proliferation, migration and invasion in HNSCC cells, and resulted in compromised tumour growth in vivo. Collectively, our data reveal that SUZ12 might serve as a putative oncogene by promoting cell proliferation, migration and invasion, and also a novel biomarker with diagnostic and prognostic significance for HNSCC.  相似文献   

13.
CD147/basigin (BSG) is highly upregulated in many types of cancer, our previous study has found that CD147/BSG is highly expressed in head and neck squamous cell carcinoma (HNSCC) stem cells, but its role in HNSCC and the underlying mechanism is still unknown. In this study, we investigated the role of CD147 in the progression of HNSCC. Real‐time PCR, western blot and immunohistochemistry were used to detect the expression of CD147 in total 189 HNSCC tissues in compared with normal tissues. In addition, we used proliferation, colony formation, cell cycle and apoptosis, migration and invasion as well as wound‐healing assay to determine the biological roles of CD147 in HNSCC. Then, a xenograft model was performed to evaluate tumor‐promoting and metastasis‐promoting role of CD147 in HNSCC. The results showed that upregulated CD147 expression was associated with aggressive clinicopathologic features in HNSCC. In addition, CD147 promoted proliferation, migration and reduced the apoptosis phenotype of HNSCC cells in vitro as well as tumor initiation and progression in vivo. Furthermore, we demonstrated that CD147 promoted HNSCC progression through nuclear factor kappa B signaling. Therefore, we concluded that CD147 promoted tumor progression in HNSCC and might be a potential prognostic and treatment biomarker for HNSCC.  相似文献   

14.
Tumor resistance remains an obstacle to successfully treating oral squamous cell carcinoma (OSCC). Cisplatin is widely used as a cytotoxic drug to treat solid tumors, including advanced OSCC, but with low efficacy due to chemoresistance. Therefore, identifying the pathways that contribute to chemoresistance may show new possibilities for improving the treatment. This work explored the role of the tumor necrosis factor-alpha (TNF-alpha)/NFkB signaling in driving the cisplatin resistance of OSCC and its potential as a pharmacological target to overcome chemoresistance. Differential accessibility analysis demonstrated the enrichment of opened chromatin regions in members of the TNF-alpha/NFkB signaling pathway, and RNA-Seq confirmed the upregulation of TNF-alpha/NFkB signaling in cisplatin-resistant cell lines. NFkB was accumulated in cisplatin-resistant cell lines and in cancer stem cells (CSC), and the administration of TNF-alpha increased the CSC, suggesting that TNF-alpha/NFkB signaling is involved in the accumulation of CSC. TNF-alpha stimulation also increased the histone deacetylases HDAC1 and SIRT1. Cisplatin-resistant cell lines were sensitive to the pharmacological inhibition of NFkB, and low doses of the NFkB inhibitors, CBL0137, and emetine, efficiently reduced the CSC and the levels of SIRT1, increasing histone acetylation. The NFkB inhibitors decreased stemness potential, clonogenicity, migration, and invasion of cisplatin-resistant cell lines. The administration of the emetine significantly reduced the tumor growth of cisplatin-resistant xenograft models, decreasing NFkB and SIRT1, increasing histone acetylation, and decreasing CSC. TNF-alpha/NFkB/SIRT1 signaling regulates the epigenetic machinery by modulating histone acetylation, CSC, and aggressiveness of cisplatin-resistant OSCC and the NFkB inhibition is a potential strategy to treat chemoresistant OSCC.  相似文献   

15.
Aberrant microRNAs (miRNAs) expressions could contribute to the progression of numerous cancers, including esophageal squamous cell carcinoma, while miR-10a participates in multiple biological processes on cancers. However, the molecular mechanism of miR-10a in esophageal squamous cell carcinoma (ESCC) has not been investigated. Herein, miR-10a was significantly reduced in ESCC clinical tissues and ESCC cell lines (EC109 and TE-3). In addition, immunohistochemistry indicated that the expressions of α-SMA, Ki-67, and PCNA in tumor tissues were higher than that of controls. In vitro, overexpression of miR-10a dramatically suppressed cell proliferation and enhanced cell apoptosis, while the decrease of miR-10a expressed the opposite outcome. Specially, overexpression of miR-10a caused a G0/G1 peak accumulation. Moreover, miR-10a also negatively regulated ESCC cell migration and invasion. Furthermore, targetscan bioinformatics predictions and the dual-luciferase assay confirmed that Tiam1 was a direct target gene of miR-10a. The statistical analysis showed Tiam1 was negatively in correlation with miR-10a in ESCC patient samples. And silencing Tiam1 could lead to a decline on cell growth, invasion, and migration in ESCC cell lines, while it could enhance cell apoptosis and cause a G0/G1 peak accumulation. In vivo, it revealed that miR-10a notably decreased the tumor growth and metastasis in xenograft model and pulmonary metastasis model. And it showed a lower expressions of Tiam1 in the miR-10a mimics group by immunohistochemistry. Taken together the results, they indicated that miR-10a might function as a novel tumor suppressor in vitro and in vivo via targeting Tiam1, suggesting miR-10a to be a candidate biomarker for the ESCC therapy.  相似文献   

16.
Tumor invasion into blood and/or lymphatic channels is an important component of cancer staging and prognosis. Standard pathological methods do not provide sufficient contrast to discriminate between invasion into each type of vessel and are complicated by tissue retraction artifacts. We evaluated the ability of a triple-stain immunohistochemical method, combining cytokeratin, CD34, and podoplanin stains in a single section, to distinguish blood from lymphatic vascular invasion in oral squamous cell carcinoma and confirmed its results using multispectral analysis. The triple-stain method was significantly more sensitive in detecting invasive events than the standard hematoxylin and eosin staining method and easily discriminated between blood and lymphatic vessel invasion. Invasive events were present in blood and/or lymphatic vessels in the majority of patients with and without presentation of lymph node metastasis, indicating that vessel invasion in this cancer model is common and is not a rate-limiting step for lymph node metastasis.  相似文献   

17.
The excessive use of areca nut and/or tobacco may induce the production of free radicals and reactive oxygen species, which affect the lipid contents of the cell membrane and are possibly involved in tumorigenic processes in the oral cavity. The aim of this study was to investigate the therapeutic efficacy of fenofibrate (0.1% or 0.3%, w/w), a ligand of the peroxisome proliferator-activated receptor alpha (PPARα), in a 4-nitroquinoline 1-oxide (4-NQO)/arecoline-induced oral cancer mouse model. The carcinogen, 4-NQO/arecoline, was administrated to C57BL/6JNarl mice for 8 weeks followed by fenofibrate treatment for 12 or 20 weeks. After 28 weeks, changes in serum lipids, the multiplicity of tumor lesions, and tumor sizes were determined together with changes in the immunohistochemical expressions of PPARα, acetyl-coenzyme A carboxylase (ACC), the epidermal growth factor receptor (EGFR), and cyclooxygenase-2 (COX2). The results showed that when compared to the 4-NQO/arecoline only group, 0.3% fenofibrate treatment increased serum total cholesterol, low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) levels. 0.3% fenofibrate treatment suppressed the incidence rate of tongue lesions, reduced the multiplicity of squamous cell carcinoma (SCC), decreased the tumor size, and increased the immunoreactivity of EGFR and COX2 in oral dysplasia but decreased EGFR and COX2 expressions in SCC. These findings indicated that fenofibrate reduced the tumor incidence rate and suppressed the tumor progression into SCC and that these molecular events might be linked to the EGFR and COX2 regulatory pathways. We suggest that fenofibrate provides a new strategy for preventing oral tumor progression.  相似文献   

18.
To clear whether podoplanin-positive cancer stem cells in squamous cell carcinoma have higher invasion activity during a fibroblasts-dependent invasion. A collagen gel invasion assay was performed using fluorescent ubiquitination-based cell cycle indicator-labeled A431 cells. The total number and number of invading cells in S/G2/M phase were counted using time-lapse imaging cocultured with fibroblasts. There was no significant difference between the number of invading podoplanin-positive and negative A431 cells when fibroblasts did not exist. On the contrary, the number of invading podoplanin-positive cells was significantly higher when fibroblasts existed. The frequency of cells in S/G2/M phase among invasion was no difference. Knockdown of podoplanin decreased the number of invaded A431 cells significantly when fibroblasts existed. Podoplanin-positive A431 cells display higher invasion activity when fibroblasts exist, suggesting that some biological functions of cancer stem cells might become evident only within the fibrous tumor microenvironment.  相似文献   

19.
Patients with cervical cancer have abnormal cell proliferation and invasion after many years of latency. However, the precise mechanisms remain unclear. Mitogen- and stress-activated kinase 2 (MSK2) is a serine/threonine kinase which displays a phenotype that promotes tumor growth and metastasis in many different types of tumors. The aim of the present study was to determine the effects of MSK2 on the proliferation of cervical cancer cells and elucidate the signaling pathways through which MSK2 exerts its effects in the pathogenesis of squamous cell carcinoma (SCC). Our results confirmed that MSK2 expression was significantly upregulated in cervical cancer cells both in vivo and in vitro. We further found that the expression patterns of paired-box gene 8 (PAX8) and MSK2 were positively correlated in cervical cancer specimens. Moreover, MSK2 knockdown inhibited the phosphorylation of PAX8 and retinoblastoma protein (RB), and suppressed the sequential expressions of cell proliferation factors E2F1 and cyclin A2, resulting in the inhibition of SCC cell proliferation and tumor formation. Thus, this study demonstrates that MSK2 has oncogenic effects in the formation and development of SCC via the PAX8/RB-E2F1/cyclin A2 axis.  相似文献   

20.
The low-affinity nerve growth factor receptor p75 is a stratified epithelial stem/progenitor marker of human epithelia. We found OM-1, a human squamous cell carcinoma (SCC) cell line, showed distinct cells with p75 cluster, especially located at the center of a growing colony in a monolayer culture. A cell with p75 cluster was surrounded by cytokeratin 14- and cytokeratin 13-expressing cells that settled at the outer margin of the colony. OM-1 cells were also capable of forming tumor spheres in a cell suspension culture, an ability which was attenuated by the inhibition of p75-signaling. Intriguingly, we also found a p75-negative cell population from a growing culture of OM-1 that re-committed to become p75-clustering cells. These results indicated the possibility that SCC with epithelial multi-layering capacity can exploit the p75-dependent stratified epithelial progenitor property for the cancer stemness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号