首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytokinin oxidases/dehydrogenases (CKOs) mediate catabolic regulation of cytokinin levels in plants. Several substrate analogs containing an unsaturated side chain were studied for their possible inhibitory effect on maize CKO (ZmCKO1) by use of various bioanalytical methods. Two allenic derivatives, N6-(buta-2,3-dienyl)adenine (HA-8) and N6-(penta-2,3-dienyl)adenine (HA-1), were identified as strong mechanism-based inhibitors of the enzyme. Despite exhaustive dialysis, the enzyme remained inhibited. Conversely, substrate analogs with a triple bond in the side chain were much weaker inactivators. The crystal structures of recombinant ZmCKO1 complexed with HA-1 or HA-8 were solved to 1.95 Å resolution. Together with Raman spectra of the inactivated enzyme, it was revealed that reactive imine intermediates generated by oxidation of the allenic inhibitors covalently bind to the flavin adenine dinucleotide (FAD) cofactor. The binding occurs at the C4a atom of the isoalloxazine ring of FAD, the planarity of which is consequently disrupted. All the compounds under study were also analyzed for binding to the Arabidopsis cytokinin receptors AHK3 and AHK4 in a bacterial receptor assay and for cytokinin activity in the Amaranthus bioassay. HA-1 and HA-8 were found to be good receptor ligands with a significant cytokinin activity. Nevertheless, due to their ability to inactivate CKO in the desired time intervals or developmental stages, they both represent attractive compounds for physiological studies, as the inhibition mechanism of HA-1 and HA-8 is mainly FAD dependent.  相似文献   

2.
Free ADP-ribose is a putative second messenger and also a potentially toxic compound due to its non-enzymic reactivity towards protein side chains. ADP-ribose hydrolysis is catalysed by NDP-sugar/alcohol pyrophosphatases of differing specificity, including a highly specific, low-Km ADP-ribose pyrophosphatase. In humans, a submicromolar-Km ADP-ribose pyrophosphatase has been purified from placenta, while recombinant NUDT9 has been described as a similarly specific enzyme with a nudix motif, but with a 102–103 higher Km. Here, a comparative study of both proteins is presented showing that they are in fact enzymically indistinguishable; crucially, they both have submicromolar Km for ADP-ribose. This study firmly supports the view that the ADP-ribose pyrophosphatase present in human tissues is a product of the NUDT9 gene. In addition, this study reveals previously unknown properties of both enzyme forms. They display the same, differential properties in the presence of Mg2+ or Mn2+ as activating cations with respect to substrate specificity, ADP-ribose saturation kinetics, and inhibition by fluoride. Treatment with H2O2 alters the Mg2+/Mn2+ responses and increases the Km values for ADP-ribose, changes that are reversed by DTT. The results are discussed in relation to the proposed roles for ADP-ribose in oxidative/nitrosative stress and for ADP-ribose pyrophosphatase as a protective enzyme whose function is to limit the intracellular accumulation of ADP-ribose.  相似文献   

3.
NaF mimicked the activation by thyrotropin of iodide binding to proteins and of glucose C-I oxidation but not the accumulation of intracellular colloid droplets or the stimulation of secretion in dog thyroid slices in vitro. On the contrary, NaF inhibited the two latter thyrotropin effects. The inhibitory action of F was partially relieved by the addition of glucose to the medium; it was mimicked by sodium oxamate. These data suggest that NaF depresses the endocytosis of colloid and thyroid secretion by inhibiting aerobic glycolysis in the follicular cell. NaF inhibited the activation of colloid droplet accumulation and secretion by N6,O2′-dibutyryl-adenosine 3′,5′-monophosphate (dibutyryl cyclic AMP) and the accumulation of cyclic AMP in thyrotropin-stimulated slices. This suggests an inhibition at the level of both cyclic AMP accumulation and cyclic AMP action. The inhibition by NaF and sodium oxamate of colloid droplet formation and thyroid secretion but not of glucose C-I oxidation in stimulated slices further confirms our conclusion that the latter effect is not merely a consequence of the activation by thyrotropin of colloid endocytosis.  相似文献   

4.
Previous studies have shown that the carcinogen N-hydroxy-2-acetylaminofluorene is converted by one-electron oxidants to a free nitroxide radical which dismutates to N-acetoxy-2-acetylaminofluorene and 2-nitrosofluorene. The present study shows that the same oxidation can be achieved with horseradish peroxidase and H2O2. The free radical intermediate was detected by its ESR signal, and the yields of N-acetoxy-2-acetylaminofluorene and of 2-nitrosofluorene were determined under a number of conditions. Addition of tRNA to the reaction mixture containing N-acetoxy-N-2-acetyl[2′-3H]aminofluorene yielded tRNA-bound radioactivity; addition of guanosine yielded a reaction product which appears to be N-guanosin-8-yl)-2-acetylaminofluorene. The latter compound has previously been identified as a reaction product of N-acetoxy-2-acetylaminofluorene and guanosine. Preliminary attempts to demonstrate the formation of a nitroxide free radical or its dismutation products with rat liver mixed function oxidase systems were not successful.  相似文献   

5.
A new method was developed to separate mono- and oligo-(ADP-ribose) with chain lengths below 11 ADP-ribose units by size difference of one ADP-ribose residue. The separation was performed on a DEAE-cellulose column by elution with a NaCl gradient (0–0.3 M) in the presence of 7 M urea at pH 7.6. Using this method, the chain length distribution of oligo(ADP-ribose) molecules attached to histones by incubation of isolated nuclei with radioactive NAD was determined. The average chain length estimated from this distribution coincided exactly with the value obtained by the phosphodiesterase digestion method, suggesting that the oligomers were synthesized directly on histones and not elongated from pre-existing ADP-ribose.  相似文献   

6.
ADP-ribose pyrophosphatase (ADPRase) hydrolyzes ADP-ribose to ribose-5-phosphate and AMP. The ADPRase activity have been assessed by coupling the reaction to alkaline phosphatase and colorimetrically measuring the amount of inorganic phosphate released from AMP that is one of the products of ADPRase. Another but less sensitive colorimetric method has been employed: the reaction mixture was treated with charcoal to adsorb the adenine-containing compounds such as AMP and ADPR and subsequently remaining ribose-5-phosphate was measured colorimetrically. However, the measurement of inorganic phosphate cannot be feasible to assay ADPRase in phosphate-containing samples and the determination of ribose-5-phosphate also is less sensitive. Here we develop a fluorescent assay for ADPRase that utilizes 1, N(6)-etheno ADP-ribose, a fluorescent analogue of ADP-ribose. This method measures fluorescent 1, N(6)-etheno adenosine that is produced by coupling the hydrolysis of 1, N(6)-etheno ADP-ribose to dephosphorylation with alkaline phosphatase. The fluorometric assay is comparable in sensitivity and useful for ADPRase assay in phosphate-containing samples.  相似文献   

7.
Calcium signaling by cyclic ADP-ribose and NAADP   总被引:4,自引:0,他引:4  
Ca2+ mobilization as a signaling mechanism has been placed on center stage with the discovery of the first Ca2+ messenger, inositol trisphosphate (IP3). This article focuses on two new Ca2+ release activators, which mobilize internal Ca2+ stores via mechanisms totally independent of IP3. They are cyclic ADP-ribose (cADPR) and nicotinic acid dinucleotide phosphate (NAADP), metabolites derived respectively from NAD and NADP. Major advances in the past decade in the understanding of these two novel signaling mechanisms are chronologically summarized.  相似文献   

8.
The (β/α)8-barrel is one of the most common folds functioning as enzymes. The emergence of two (β/α)8-barrel enzymes involved in histidine biosynthesis, each of which has a twofold symmetric structure, has been proposed to be a consequence of tandem duplication and fusion of a (β/α)4-half-barrel. However, little evidence has been found for the existence of an ancestral half-barrel in the evolution of other (β/α)8-barrel proteins. In order to detect remnants of an ancestral half-barrel in the (β/α)8-barrel structure of Escherichia coli N-(5′-phosphoribosyl)anthranilate isomerase, we engineered three potential half-barrel units, (β/α)1-4, (β/α)3-6, and (β/α)5-8. Among these three arrangements, only (β/α)3-6 is stable; it exists in equilibrium between monomeric and dimeric forms. Thus, the central segment of N-(5′-phosphoribosyl)anthranilate isomerase from E. coli can serve as a half-barrel precursor. A tandem duplication of (β/α)3-6 yielded predominantly monomeric structures that were quite stable. This result exemplified that the structural characteristics of noncovalently assembled half-barrels could be improved by duplication and fusion. Moreover, our results may provide information regarding the local structural units that encompass interactions important for the early folding events of this ubiquitous protein conformation.  相似文献   

9.
N-Hydroxylated nucleobases and nucleosides as N-hydroxylaminopurine (HAP) or N-hydroxyadenosine (HAPR) may be generated endogenously in the course of cell metabolism by cytochrome P450, by oxidative stress or by a deviating nucleotide biosynthesis. These compounds have shown to be toxic and mutagenic for procaryotic and eucaryotic cells. For DNA replication fidelity it is therefore of great importance that organisms exhibit effective mechanisms to remove such non-canonical base analogs from DNA precursor pools. In vitro, the molybdoenzymes mitochondrial amidoxime reducing component 1 and 2 (mARC1 and mARC2) have shown to be capable of reducing N-hydroxylated base analogs and nucleoside analogs to the corresponding canonical nucleobases and nucleosides upon reconstitution with the electron transport proteins cytochrome b5 and NADH-cytochrome b5 reductase. By RNAi-mediated down-regulation of mARC in human cell lines the mARC-dependent N-reductive detoxication of HAP in cell metabolism could be demonstrated. For HAPR, on the other hand, the reduction to adenosine seems to be of less significance in the detoxication pathway of human cells as HAPR is primarily metabolized to inosine by direct dehydroxylamination catalyzed by adenosine deaminase. Furthermore, the effect of mARC knockdown on sensitivity of human cells to HAP was examined by flow cytometric quantification of apoptotic cell death and detection of poly (ADP-ribose) polymerase (PARP) cleavage. mARC2 was shown to protect HeLa cells against the apoptotic effects of the base analog, whereas the involvement of mARC1 in reductive detoxication of HAP does not seem to be pivotal.  相似文献   

10.
Poly(ADP-ribose) polymerase and poly(ADP-ribose) glycohydrolase activities were both investigated in chicken erythroblasts transformed by Avian Erythroblastosis Virus. Respectively 21% and 58% of these activities were found to be present in the post-mitochondrial supernatant (PMS). Fractionation of the PMS on sucrose gradients and poly(A+) mRNA detection by hybridization to [3H] poly(U) show that cytoplasmic poly(ADP-ribose) polymerase is exclusively localized in free mRNP. The glycohydrolase activity sedimented mostly in the 6 S region but 1/3 of the activity was in the free mRNP zone. Seven poly(ADP-ribose) protein acceptors were identified in the PMS in the Mr 21000–120000 range. The Mr 120000 protein corresponds to automodified poly(ADP-ribose) polymerase. A Mr 21000 protein acceptor is abundant in PMS and a Mr 34000 is exclusively associated with ribosomes and ribosomal subunits. The existence of both poly(ADP-ribose) polymerase and glycohydrolase activities in free mRNP argues in favour of a role of poly(ADP-ribosylation) in mRNP metabolism. A possible involvement of this post translational modification in the mechanisms of repression-derepression of mRNA is discussed.Abbreviations ADP-ribose adenosine (5) diphospho(5)--D ribose - poly(ADP-ribose) polymer of ADP-ribose - mRNP messenger ribonucleoprotein particles - PMSF phenylmethylsulfonyl fluoride - LDS lithium dodecyl sulfate - TCA trichloroacetic acid  相似文献   

11.
Bovine thymus poly(ADP-ribose) polymerase with a purity of 99% on a SDS-poly-acrylamide gel electrophoresis was able to initiate poly(ADP-ribose) synthesis without adding any exogenous acceptor protein to the reaction system. Analyses of the early reaction product synthesized without exogenous acceptor protein revealed that the product was oligo(ADP-ribose) with a mean chain length of 2.6 and was bound tightly to the enzyme protein. When the radioactive early reaction product was chased by incubating further with cold NAD+, ADP-ribose unit was found to be added to the terminal AMP-residue of the oligo(ADP-ribose) attached to the enzyme. The stability of the early reaction product in high concentration of salt, strong acid, sodium dodecyl sulfate, and urea strongly suggests a covalent nature of the binding of oligo(ADP-ribose) to the enzyme.  相似文献   

12.
Among metallo-dependent phosphatases, ADP-ribose/CDP-alcohol diphosphatases form a protein family (ADPRibase-Mn-like) mainly restricted, in eukaryotes, to vertebrates and plants, with preferential expression, at least in rodents, in immune cells. Rat and zebrafish ADPRibase-Mn, the only biochemically studied, are phosphohydrolases of ADP-ribose and, somewhat less efficiently, of CDP-alcohols and 2´,3´-cAMP. Furthermore, the rat but not the zebrafish enzyme displays a unique phosphohydrolytic activity on cyclic ADP-ribose. The molecular basis of such specificity is unknown. Human ADPRibase-Mn showed similar activities, including cyclic ADP-ribose phosphohydrolase, which seems thus common to mammalian ADPRibase-Mn. Substrate docking on a homology model of human ADPRibase-Mn suggested possible interactions of ADP-ribose with seven residues located, with one exception (Cys253), either within the metallo-dependent phosphatases signature (Gln27, Asn110, His111), or in unique structural regions of the ADPRibase-Mn family: s2s3 (Phe37 and Arg43) and h7h8 (Phe210), around the active site entrance. Mutants were constructed, and kinetic parameters for ADP-ribose, CDP-choline, 2´,3´-cAMP and cyclic ADP-ribose were determined. Phe37 was needed for ADP-ribose preference without catalytic effect, as indicated by the increased ADP-ribose Km and unchanged kcat of F37A-ADPRibase-Mn, while the Km values for the other substrates were little affected. Arg43 was essential for catalysis as indicated by the drastic efficiency loss shown by R43A-ADPRibase-Mn. Unexpectedly, Cys253 was hindering for cADPR phosphohydrolase, as indicated by the specific tenfold gain of efficiency of C253A-ADPRibase-Mn with cyclic ADP-ribose. This allowed the design of a triple mutant (F37A+L196F+C253A) for which cyclic ADP-ribose was the best substrate, with a catalytic efficiency of 3.5´104 M-1s-1 versus 4´103 M-1s-1 of the wild type.  相似文献   

13.
X-ray structures are presented of three new cobalt complexes prepared from Co(III) and N,N-1,10-phenanthroline-5,6-dione. The cis-aqua-chloro-bis(N,N-1,10-phenanthroline-5,6-dione)cobalt(II) nitrate trihydrate (3) and the cis-aqua-bromo-bis(N,N-1,10-phenanthroline-5,6-dione)cobalt(II) trifluoro-methanesulfonate tetrahydrate (4), crystalize in the same space group with a similar arrangement of the complex ions. However, on the molecular scale there are important differences. The cobalt complex in 3 has a typical high-spin geometry whereas in 4 the cobalt complex displays a Jahn-Teller distortion characteristic for low-spin compounds. The third structure is di(N,N-1,10-phenanthroline-5,6-diol)(N,N-1,10-phenanthroline-5,6-dione)cobalt(III) bromide hexahydrate (5). NMR studies of the hydration of the Co(III)(1,10-phenanthroline-5,6-dione)3 3+ ion in water and DMSO are also presented. The various possible transformations of the N,N-1,10-phenanthroline-5,6-dione ligand are discussed.  相似文献   

14.
Human NUDT5 (hNUDT5) is an ADP-ribose (ADPR) pyrophosphatase (ADPRase) that plays important roles in controlling the intracellular levels of ADPR and preventing non-enzymatic ADP-ribosylation of proteins by hydrolyzing ADPR to AMP and ribose 5′-phosphate. We report the crystal structure of hNUDT5 in complex with a non-hydrolyzable ADPR analogue, α,β-methyleneadenosine diphosphoribose, and three Mg2 + ions representing the transition state of the enzyme during catalysis. Analysis of this structure and comparison with previously reported hNUDT5 structures identify key residues involved in substrate binding and catalysis. In the transition-state structure, three metal ions are bound at the active site and are coordinated by surrounding residues and water molecules. A conserved water molecule is at an ideal position for nucleophilic attack on the α-phosphate of ADPR. The side chain of Glu166 on loop L9 changes its conformation to interact with the conserved water molecule compared with that in the substrate-bound structure and appears to function as a catalytic base. Mutagenesis and kinetic studies show that Trp28 and Trp46 are important for the substrate binding; Arg51 is involved in both the substrate binding and the catalysis; and Glu112 and Glu116 of the Nudix motif, Glu166 on loop L9, and Arg111 are critical for the catalysis. The structural and biochemical data together reveal the molecular basis of the catalytic mechanism of ADPR hydrolysis by hNUDT5. Specifically, Glu166 functions as a catalytic base to deprotonate a conserved water molecule that acts as a nucleophile to attack the α-phosphate of ADPR, and three Mg2 + ions are involved in the activation of the nucleophile and the binding of the substrate. Structural comparison of different ADPRases also suggests that most dimeric ADPRases may share a similar catalytic mechanism of ADPR hydrolysis.  相似文献   

15.
5′-R and 5′-S diastereoisomers of 8,5′-cyclo-2′-deoxyadenosine (cdA) and 8,5′-cyclo-2′-deoxyguanosine (cdG) containing a base-sugar covalent bond are formed by hydroxyl radicals. R-cdA and S-cdA are repaired by nucleotide excision repair (NER) in mammalian cellular extracts. Here, we have examined seven purified base excision repair enzymes for their ability to repair S-cdG or S-cdA. We could not detect either excision or binding of these enzymes on duplex oligonucleotide substrates containing these lesions. However, both lesions were repaired by HeLa cell extracts. Dual incisions by human NER on a 136-mer duplex generated 24–32 bp fragments. The time course of dual incisions were measured in comparison to cis-anti-B[a]P-N2-dG, an excellent substrate for human NER, which showed that cis-anti-B[a]P-N2-dG was repaired more efficiently than S-cdG, which, in turn, was repaired more efficiently than S-cdA. When NER efficiency of S-cdG with different complementary bases was investigated, the wobble pair S-cdG·dT was excised more efficiently than the S-cdG·dC pair that maintains nearly normal Watson-Crick base pairing. But S-cdG·dA mispair with no hydrogen bonds was excised less efficiently than the S-cdG·dC pair. Similar pattern was noted for S-cdA. The S-cdA·dC mispair was excised much more efficiently than the S-cdA·dT pair, whereas the S-cdA·dA pair was excised less efficiently. This result adds to complexity of human NER, which discriminates the damaged base pairs on the basis of multiple criteria.  相似文献   

16.
Drosophila Hrp38, a homolog of human hnRNP A1, has been shown to regulate splicing, but its function can be modified by poly(ADP-ribosyl)ation. Notwithstanding such findings, our understanding of the roles of poly(ADP-ribosyl)ated Hrp38 on development is limited. Here, we have demonstrated that Hrp38 is essential for fly eye development based on a rough-eye phenotype with disorganized ommatidia observed in adult escapers of the hrp38 mutant. We also observed that poly(ADP-ribose) glycohydrolase (Parg) loss-of-function, which caused increased Hrp38 poly(ADP-ribosyl)ation, also resulted in the rough-eye phenotype with disrupted ommatidial lattice and reduced number of photoreceptor cells. In addition, ectopic expression of DE-cadherin, which is required for retinal morphogenesis, fully rescued the rough-eye phenotype of the hrp38 mutant. Similarly, Parg mutant eye clones had decreased expression level of DE-cadherin with orientation defects, which is reminiscent of DE-cadherin mutant eye phenotype. Therefore, our results suggest that Hrp38 poly(ADP-ribosyl)ation controls eye pattern formation via regulation of DE-cadherin expression, a finding which has implications for understanding the pathogenic mechanisms of Hrp38-related Fragile X syndrome and PARP1-related retinal degeneration diseases.  相似文献   

17.
Pyrrolysyl-tRNA synthetase (PylRS), an aminoacyl-tRNA synthetase (aaRS) recently found in some methanogenic archaea and bacteria, recognizes an unusually large lysine derivative, l-pyrrolysine, as the substrate, and attaches it to the cognate tRNA (tRNAPyl). The PylRS-tRNAPyl pair interacts with none of the endogenous aaRS-tRNA pairs in Escherichia coli, and thus can be used as a novel aaRS-tRNA pair for genetic code expansion. The crystal structures of the Methanosarcina mazei PylRS revealed that it has a unique, large pocket for amino acid binding, and the wild type M. mazei PylRS recognizes the natural lysine derivative as well as many lysine analogs, including N?-(tert-butoxycarbonyl)-l-lysine (Boc-lysine), with diverse side chain sizes and structures. Moreover, the PylRS only loosely recognizes the α-amino group of the substrate, whereas most aaRSs, including the structurally and genetically related phenylalanyl-tRNA synthetase (PheRS), strictly recognize the main chain groups of the substrate. We report here that wild type PylRS can recognize substrates with a variety of main-chain α-groups: α-hydroxyacid, non-α-amino-carboxylic acid, Nα-methyl-amino acid, and d-amino acid, each with the same side chain as that of Boc-lysine. In contrast, PheRS recognizes none of these amino acid analogs. By expressing the wild type PylRS and its cognate tRNAPyl in E. coli in the presence of the α-hydroxyacid analog of Boc-lysine (Boc-LysOH), the amber codon (UAG) was recoded successfully as Boc-LysOH, and thus an ester bond was site-specifically incorporated into a protein molecule. This PylRS-tRNAPyl pair is expected to expand the backbone diversity of protein molecules produced by both in vivo and in vitro ribosomal translation.  相似文献   

18.
We measured the nucleotide turnover rate of myosin in tarantula leg muscle fibers by observing single turnovers of the fluorescent nucleotide analog 2′-/3′-O-(N′-methylanthraniloyl)adenosine-5′-O-triphosphate, as monitored by the decrease in fluorescence when 2′-/3′-O-(N′-methylanthraniloyl)adenosine-5′-O-triphosphate (mantATP) is replaced by ATP in a chase experiment. We find a multiexponential process with approximately two-thirds of the myosin showing a very slow nucleotide turnover time constant (∼ 30 min). This slow-turnover state is termed the super-relaxed state (SRX). If fibers are incubated in 2′-/3′-O-(N′-methylanthraniloyl)adenosine-5′-O-diphosphate and chased with ADP, the SRX is not seen, indicating that trinucleotide-relaxed myosins are responsible for the SRX. Phosphorylation of the myosin regulatory light chain eliminates the fraction of myosin with a very long lifetime. The data imply that the very long-lived SRX in tarantula fibers is a highly novel adaptation for energy conservation in an animal that spends extremely long periods of time in a quiescent state employing a lie-in-wait hunting strategy. The presence of the SRX measured here correlates well with the binding of myosin heads to the core of the thick filament in a structure known as the “interacting-heads motif,” observed previously by electron microscopy. Both the structural array and the long-lived SRX require relaxed filaments or relaxed fibers, both are lost upon myosin phosphorylation, and both appear to be more stable in tarantula than in vertebrate skeletal or vertebrate cardiac preparations.  相似文献   

19.
Cdc42, a member of the Ras superfamily of small guanine nucleotide binding proteins, plays an important role in regulating the actin cytoskeleton, intracellular trafficking, and cell polarity. Its activation is controlled by guanine nucleotide exchange factors (GEFs), which stimulate the dissociation of bound guanosine-5′-diphosphate (GDP) to allow guanosine-5′-triphosphate (GTP) binding. Here, we investigate the exchange factor activity of the Dbl-homology domain containing constructs of the adaptor protein Intersectin1L (ITSN1L), which is a specific GEF for Cdc42. A detailed kinetic characterisation comparing ITSN1L-mediated nucleotide exchange on Cdc42 in its GTP- versus GDP-bound state reveals a kinetic discrimination for GEF-stimulated dissociation of GTP: The maximum acceleration of the intrinsic mGDP [2′/3′-O-(N-methyl-anthraniloyl)-GDP] release from Cdc42 by ITSN1L is accelerated at least 68,000-fold, whereas the exchange of mGTP [2′/3′-O-(N-methyl-anthraniloyl)-GTP] is stimulated only up to 6000-fold at the same GEF concentration. The selectivity in nucleotide exchange kinetics for GDP over GTP is even more pronounced when a Cdc42 mutant, F28L, is used, which is characterised by fast intrinsic dissociation of nucleotides. We furthermore show that both GTP and Mg2+ ions are required for the interaction with effectors. We suggest a novel model for selective nucleotide exchange residing on a conformational change of Cdc42 upon binding of GTP, which enables effector binding to the Cdc42 · GTP complex but, at the same time, excludes efficient modulation by the GEF. The higher exchange activity of ITSN1L towards the GDP-bound conformation of Cdc42 could represent an evolutionary adaptation of this GEF that ensures nucleotide exchange towards the formation of the signalling-active GTP-bound form of Cdc42 and avoids dissociation of the active complex.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号