首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 570 毫秒
1.
Abstract

The deposition and degradation of starch in plants is subject to extensive post-translational regulation. To permit degradation of B-type crystallites present in tuberous and leaf starch these starch types are phosphorylated by glucan, water dikinase (GWD). At the level of post-translational redox regulation, ADPglucose pyrophosphorylase, β-amylase (BAM1), limit dextrinase (LD), the starch phosphorylator GWD and the glucan phosphatase dual-specificity phosphatase 4 (DSP4), also named starch excess 4 (SEX4), are reductively activated in vitro. Redox screens now suggest the presence of a substantially more extensive and coordinated redox regulation involving a larger number of enzymes. Noticeably several of these enzymes contain a new type of low-affinity carbohydrate-binding module that we term a low-affinity starch-binding domain or LA-SBD. These are present in the CBM20, CBM45 and CBM53 families and can enable diurnal dynamics of starch–enzyme recognition. Such diurnal changes in starch binding have been indicated for the redox-regulated GWD and SEX4.  相似文献   

2.
Degradation of storage starch in turions, survival organs of Spirodela polyrhiza, is induced by light. Starch granules isolated from irradiated (24 h red light) or dark-stored turions were used as an in vitro test system to study initial events of starch degradation. The starch-associated pool of glucan water dikinase (GWD) was investigated by two-dimensional gel electrophoresis and by western blotting using antibodies raised against GWD. Application of this technique allowed us to detect spots of GWD, which are light induced and absent on immunoblots prepared from dark-adapted plants. These spots, showing increased signal intensity following incubation of the starch granules with ATP, became labeled by randomized [betagamma-33P]ATP but not by [gamma-33P]ATP and were removed by acid phosphatase treatment. This strongly suggests that they represent a phosphorylated form(s) of GWD. The same light signal that induces starch degradation was thus demonstrated for the first time to induce autophosphorylation of starch-associated GWD. The in vitro assay system has been used to study further effects of the light signal that induces autophosphorylation of GWD and starch degradation. In comparison with starch granules from dark-adapted plants, those from irradiated plants showed increase in (1) binding capacity of GWD by ATP treatment decreased after phosphatase treatment; (2) incorporation of the beta-phosphate group of ATP into starch granules; and (3) rate of degradation of isolated granules by starch-associated proteins, further enhanced by phosphorylation of starch. The presented results provide evidence that autophosphorylation of GWD precedes the initiation of starch degradation under physiological conditions.  相似文献   

3.
The phosphorylation of amylopectin by the glucan, water dikinase (GWD; EC 2.7.9.4) is an essential step within starch metabolism. This is indicated by the starch excess phenotype of GWD-deficient plants, such as the sex1-3 mutant of Arabidopsis (Arabidopsis thaliana). To identify starch-related enzymes that rely on glucan-bound phosphate, we studied the binding of proteins extracted from Arabidopsis wild-type leaves to either phosphorylated or nonphosphorylated starch granules. Granules prepared from the sex1-3 mutant were prephosphorylated in vitro using recombinant potato (Solanum tuberosum) GWD. As a control, the unmodified, phosphate free granules were used. An as-yet uncharacterized protein was identified that preferentially binds to the phosphorylated starch. The C-terminal part of this protein exhibits similarity to that of GWD. The novel protein phosphorylates starch granules, but only following prephosphorylation with GWD. The enzyme transfers the beta-P of ATP to the phosphoglucan, whereas the gamma-P is released as orthophosphate. Therefore, the novel protein is designated as phosphoglucan, water dikinase (PWD). Unlike GWD that phosphorylates preferentially the C6 position of the glucose units, PWD phosphorylates predominantly (or exclusively) the C3 position. Western-blot analysis of protoplast and chloroplast fractions from Arabidopsis leaves reveals a plastidic location of PWD. Binding of PWD to starch granules strongly increases during net starch breakdown. Transgenic Arabidopsis plants in which the expression of PWD was reduced by either RNAi or a T-DNA insertion exhibit a starch excess phenotype. Thus, in Arabidopsis leaves starch turnover requires a close collaboration of PWD and GWD.  相似文献   

4.
Starch phosphorylation by starch‐related dikinases glucan, water dikinase (GWD) and phosphoglucan, water dikinase (PWD) is a key step in starch degradation. Little information is known about the precise structure of the glucan substrate utilized by the dikinases and about the mechanisms by which these structures may be influenced. A 50‐kDa starch‐binding protein named EARLY STARVATION1 (ESV1) was analyzed regarding its impact on starch phosphorylation. In various in vitro assays, the influences of the recombinant protein ESV1 on the actions of GWD and PWD on the surfaces of native starch granules were analyzed. In addition, we included starches from various sources as well as truncated forms of GWD. ESV1 preferentially binds to highly ordered, α‐glucans, such as starch and crystalline maltodextrins. Furthermore, ESV1 specifically influences the action of GWD and PWD at the starch granule surface. Starch phosphorylation by GWD is decreased in the presence of ESV1, whereas the action of PWD increases in the presence of ESV1. The unique alterations observed in starch phosphorylation by the two dikinases are discussed in regard to altered glucan structures at the starch granule surface.  相似文献   

5.
Glucan phosphorylating enzymes are required for normal mobilization of starch in leaves of Arabidopsis (Arabidopsis thaliana) and potato (Solanum tuberosum), but mechanisms underlying this dependency are unknown. Using two different activity assays, we aimed to identify starch degrading enzymes from Arabidopsis, whose activity is affected by glucan phosphorylation. Breakdown of granular starch by a protein fraction purified from leaf extracts increased approximately 2-fold if the granules were simultaneously phosphorylated by recombinant potato glucan, water dikinase (GWD). Using matrix-assisted laser-desorption ionization mass spectrometry several putative starch-related enzymes were identified in this fraction, among them beta-AMYLASE1 (BAM1; At3g23920) and ISOAMYLASE3 (ISA3; At4g09020). Experiments using purified recombinant enzymes showed that BAM1 activity with granules similarly increased under conditions of simultaneous starch phosphorylation. Purified recombinant potato ISA3 (StISA3) did not attack the granular starch significantly with or without glucan phosphorylation. However, starch breakdown by a mixture of BAM1 and StISA3 was 2 times higher than that by BAM1 alone and was further enhanced in the presence of GWD and ATP. Similar to BAM1, maltose release from granular starch by purified recombinant BAM3 (At4g17090), another plastid-localized beta-amylase isoform, increased 2- to 3-fold if the granules were simultaneously phosphorylated by GWD. BAM activity in turn strongly stimulated the GWD-catalyzed phosphorylation. The interdependence between the activities of GWD and BAMs offers an explanation for the severe starch excess phenotype of GWD-deficient mutants.  相似文献   

6.
The domestication of starch crops underpinned the development of human civilisation, yet we still do not fully understand how plants make starch. Starch is composed of glucose polymers that are branched (amylopectin) or linear (amylose). The amount of amylose strongly influences the physico-chemical behaviour of starchy foods during cooking and of starch mixtures in non-food manufacturing processes. The GRANULE-BOUND STARCH SYNTHASE (GBSS) is the glucosyltransferase specifically responsible for elongating amylose polymers and was the only protein known to be required for its biosynthesis. Here, we demonstrate that PROTEIN TARGETING TO STARCH (PTST) is also specifically required for amylose synthesis in Arabidopsis. PTST is a plastidial protein possessing an N-terminal coiled coil domain and a C-terminal carbohydrate binding module (CBM). We discovered that Arabidopsis ptst mutants synthesise amylose-free starch and are phenotypically similar to mutants lacking GBSS. Analysis of granule-bound proteins showed a dramatic reduction of GBSS protein in ptst mutant starch granules. Pull-down assays with recombinant proteins in vitro, as well as immunoprecipitation assays in planta, revealed that GBSS physically interacts with PTST via a coiled coil. Furthermore, we show that the CBM domain of PTST, which mediates its interaction with starch granules, is also required for correct GBSS localisation. Fluorescently tagged Arabidopsis GBSS, expressed either in tobacco or Arabidopsis leaves, required the presence of Arabidopsis PTST to localise to starch granules. Mutation of the CBM of PTST caused GBSS to remain in the plastid stroma. PTST fulfils a previously unknown function in targeting GBSS to starch. This sheds new light on the importance of targeting biosynthetic enzymes to sub-cellular sites where their action is required. Importantly, PTST represents a promising new gene target for the biotechnological modification of starch composition, as it is exclusively involved in amylose synthesis.  相似文献   

7.
α-Amylases (EC 3.2.1.1) hydrolyze internal α-1,4-glucosidic linkages of starch and related glucans. Bacillus sp. AAH-31 produces an alkalophilic thermophilic α-amylase (AmyL) of higher molecular mass, 91 kDa, than typical bacterial α-amylases. In this study, the AmyL gene was cloned to determine its primary structure, and the recombinant enzyme, produced in Escherichia coli, was characterized. AmyL shows no hydrolytic activity towards pullulan, but the central region of AmyL (Gly395-Asp684) was similar to neopullulanase-like α-amylases. In contrast to known neopullulanase-like α-amylases, the N-terminal region (Gln29-Phe102) of AmyL was similar to carbohydrate-binding module family 20 (CBM20), which is involved in the binding of enzymes to starch granules. Recombinant AmyL showed more than 95% of its maximum activity in a pH range of 8.2–10.5, and was stable below 65 °C and from pH 6.4 to 11.9. The k cat values for soluble starch, γ-cyclodextrin, and maltotriose were 103 s?1, 67.6 s?1, and 5.33 s?1, respectively, and the K m values were 0.100 mg/mL, 0.348 mM, and 2.06 mM, respectively. Recombinant AmyL did not bind to starch granules. But the substitution of Trp45 and Trp84, conserved in site 1 of CBM20, with Ala reduced affinity to soluble starch, while the mutations did not affect affinity for oligosaccharides. Substitution of Trp61, conserved in site 2 of CBM20, with Ala enhanced hydrolytic activity towards soluble starch, indicating that site 2 of AmyL does not contribute to binding to soluble long-chain substrates.  相似文献   

8.
The bacterium Microbacterium aurum strain B8.A, originally isolated from a potato plant wastewater facility, is able to degrade different types of starch granules. Here we report the characterization of an unusually large, multidomain M. aurum B8.A α-amylase enzyme (MaAmyA). MaAmyA is a 1,417-amino-acid (aa) protein with a predicted molecular mass of 148 kDa. Sequence analysis of MaAmyA showed that its catalytic core is a family GH13_32 α-amylase with the typical ABC domain structure, followed by a fibronectin (FNIII) domain, two carbohydrate binding modules (CBM25), and another three FNIII domains. Recombinant expression and purification yielded an enzyme with the ability to degrade wheat and potato starch granules by introducing pores. Characterization of various truncated mutants of MaAmyA revealed a direct relationship between the presence of CBM25 domains and the ability of MaAmyA to form pores in starch granules, while the FNIII domains most likely function as stable linkers. At the C terminus, MaAmyA carries a 300-aa domain which is uniquely associated with large multidomain amylases; its function remains to be elucidated. We concluded that M. aurum B8.A employs a multidomain enzyme system to initiate degradation of starch granules via pore formation.  相似文献   

9.
Starch is of fundamental importance for plant development and reproduction and its optimized molecular assembly is potentially necessary for correct starch metabolism. Re-structuring of starch granules in-planta can therefore potentially affect plant metabolism. Modulation of granule micro-structure was achieved by decreasing starch branching and increasing starch-bound phosphate content in the barley caryopsis starch by RNAi suppression of all three Starch Branching Enzyme (SBE) isoforms or overexpression of potato Glucan Water Dikinase (GWD). The resulting lines displayed Amylose-Only (AO) and Hyper-Phosphorylated (HP) starch chemotypes, respectively. We studied the influence of these alterations on primary metabolism, grain composition, starch structural features and starch granule morphology over caryopsis development at 10, 20 and 30 days after pollination (DAP) and at grain maturity. While HP showed relatively little effect, AO showed significant reduction in starch accumulation with re-direction to protein and β-glucan (BG) accumulation. Metabolite profiling indicated significantly higher sugar accumulation in AO, with re-partitioning of carbon to accumulate amino acids, and interestingly it also had high levels of some important stress-related metabolites and potentially protective metabolites, possibly to elude deleterious effects. Investigations on starch molecular structure revealed significant increase in starch phosphate and amylose content in HP and AO respectively with obvious differences in starch granule morphology at maturity. The results demonstrate that decreasing the storage starch branching resulted in metabolic adjustments and re-directions, tuning to evade deleterious effects on caryopsis physiology and plant performance while only little effect was evident by increasing starch-bound phosphate as a result of overexpressing GWD.  相似文献   

10.

Background and Aims

Cambial reactivation in trees occurs from late winter to early spring when photosynthesis is minimal or almost non-existent. Reserve materials might be important for wood formation in trees. The localization and approximate levels of starch and lipids (as droplets) and number of starch granules in cambium and phloem were examined from cambial dormancy to the start of xylem differentiation in locally heated stems of Cryptomeria japonica trees in winter.

Methods

Electric heating tape was wrapped on one side of the stem of Cryptomeria japonica trees at breast height in winter. The localization and approximate levels of starch and lipids (as droplets) and number of starch granules were determined by image analysis of optical digital images obtained by confocal laser scanning microscopy.

Key Results

Localized heating induced earlier cambial reactivation and xylem differentiation in stems of Cryptomeria japonica, as compared with non-heated stems. There were clear changes in the respective localizations and levels of starch and lipids (as droplets) determined in terms of relative areas on images, from cambial dormancy to the start of xylem differentiation in heated stems. In heated stems, the levels and number of starch granules fell from cambial reactivation to the start of xylem differentiation. There was a significant decrease in the relative area occupied by lipid droplets in the cambium from cambial reactivation to the start of xylem differentiation in heated stems.

Conclusions

The results showed clearly that the levels and number of storage starch granules in cambium and phloem cells and levels of lipids (as droplets) in the cambium decreased from cambial reactivation to the start of xylem differentiation in heated stems during the winter. The observations suggest that starch and lipid droplets might be needed as sources of energy for the initiation of cambial cell division and the differentiation of xylem in Cryptomeria japonica.  相似文献   

11.
The genome of Arabidopsis thaliana encodes three glucan, water dikinases. Glucan, water dikinase 1 (GWD1; EC 2.7.9.4) and phosphoglucan, water dikinase (PWD; EC 2.7.9.5) are chloroplastic enzymes, while glucan, water dikinase 2 (GWD2) is cytosolic. Both GWDs and PWD catalyze the addition of phosphate groups to amylopectin chains at the surface of starch granules, changing its physicochemical properties. As a result, GWD1 and PWD have a positive effect on transitory starch degradation at night. Because of its cytosolic localization, GWD2 does not have the same effect. Single T‐DNA mutants of either GWD1 or PWD or GWD2 have been analyzed during the entire life cycle of A. thaliana. We report that the three dikinases are all important for proper seed development. Seeds from gwd2 mutants are shrunken, with the epidermal cells of the seed coat irregularly shaped. Moreover, gwd2 seeds contain a lower lipid to protein ratio and are impaired in germination. Similar seed phenotypes were observed in pwd and gwd1 mutants, except for the normal morphology of epidermal cells in gwd1 seed coats. The gwd1, pwd and gwd2 mutants were also very similar in growth and flowering time when grown under continuous light and all three behaved differently from wild‐type plants. Besides pinpointing a novel role of GWD2 and PWD in seed development, this analysis suggests that the phenotypic features of the dikinase mutants in A. thaliana cannot be explained solely in terms of defects in leaf starch degradation at night.  相似文献   

12.

Background

Native starch accumulates as granules containing two glucose polymers: amylose and amylopectin. Phosphate (0.2–0.5%) and proteins (0.1–0.7%) are also present in some starches. Phosphate groups play a major role in starch metabolism while granule-bound starch synthase 1 (GBSS1) which represents up to 95% of the proteins bound to the granule is responsible for amylose biosynthesis.

Methods

Synchrotron micro-X-ray fluorescence (μXRF) was used for the first time for high-resolution mapping of GBSS1 and phosphate groups based on the XRF signal of sulfur (S) and phosphorus (P), respectively. Wild-type starches were studied as well as their related mutants lacking GBSS1 or starch-phosphorylating enzyme.

Results

Wild-type potato and maize starch exhibited high level of phosphorylation and high content of sulfur respectively when compared to mutant potato starch lacking glucan water dikinase (GWD) and mutant maize starch lacking GBSS1. Phosphate groups are mostly present at the periphery of wild-type potato starch granules, and spread all over the granule in the amylose-free mutant. P and S XRF were also measured within single small starch granules from Arabidopsis or Chlamydomonas not exceeding 3–5 μm in diameter.

Conclusions

Imaging GBSS1 (by S mapping) in potato starch sections showed that the antisense technique suppresses the expression of GBSS1 during biosynthesis. P mapping confirmed that amylose is mostly present in the center of the granule, which had been suggested before.

General significance

μXRF is a potentially powerful technique to analyze the minor constituents of starch and understand starch structure/properties or biosynthesis by the use of selected genetic backgrounds.  相似文献   

13.
Starch binding domains (SBDs) are able to bind to and facilitate the degradation of raw starch and starchy substrates. In general, in the CAZy database they have been classified among the carbohydrate-binding module (CBM) families. The two families CBM25 and CBM26 together with families CBM20, 21, 34, 41, 45, 48, 53, 58, 68 and 69 belong to twelve SBD CAZy families. They represent a group of closely related modules exhibiting some sequence similarity, although each of the two families possesses its own features. Both CBM25 and CBM26 adopt a typical SBD fold of distorted β-barrel as recognized in the modules present in the maltohexaose-producing amylase from Bacillus halodurans. With regard to catalytic domains, most members are α-amylases and maltooligosaccharide-producing amylases from the α-amylase glycoside hydrolase (GH) family GH13, but also some β-amylases (GH14) and hypothetical proteins (e.g. from the family GH31) are known. The main goal of this review was to compare the available amino acid sequences of SBDs from both families CBM25 and CBM26 and to reveal, if possible, SBD(s) with the character “intermediary” between the CBM25 and CBM26. Emphasis was also given on a structural comparison of the identified intermediary SBD with the CBM25 and CBM26 representatives and a detailed evolutionary division of both CBM families that can be utilized for defining the future subfamilies.  相似文献   

14.
Production of a raw starch-digesting glucoamylase O (GA O) by protease-negative, glycosidase-negative mutant strain HF-15 of Aspergillus awamori var. kawachi was undertaken under submerged culture conditions. The purified GA O was electrophoretically homogeneous and similar to the parent glucoamylase I (GA I) in the hydrolysis curves toward gelatinized potato starch, raw starch, and glycogen and in its thermostability and pH stability, but it was different in molecular weight and carbohydrate content (250,000 and 24.3% for GA O, 90,000 and ca. 7% for GA I, respectively). The chitin-bound GA O hydrolyzed raw starch but the chitin-bound GA I failed to digest raw starch because chitin was adsorbed at the raw starch affinity site of the GA I molecule. The removal of the raw starch affinity site of GA O with subtilisin led to the formation of a modified GA O (molecular weight, 170,000), which hydrolyzed glycogen 100%, similar to GA O and GA I, and was adsorbed onto chitin and fungal cell wall but not onto raw starch, Avicel, or chitosan. The modified GA I (molecular weight, 83,000) derived by treatment with substilisin hydrolyzed glycogen up to only 80% and failed to be adsorbed onto any of the above polysaccharides. The N-bromosuccinimide-oxidized GA O lost its activity toward gelatinized and raw starches, but the abilities to be adsorbed onto raw starch and chitin were preserved. It was thus suggested that both the raw starch affinity site essential for raw starch digestion and the chitin-binding site specific for the binding with chitin in the cell wall could be different from the active site, located in the three respective positions in the GA O molecule.  相似文献   

15.
Starch-binding domains (SBDs) comprise distinct protein modules that bind starch, glycogen or related carbohydrates and have been classified into different families of carbohydrate-binding modules (CBMs). The present review focuses on SBDs of CBM20 and CBM48 found in amylolytic enzymes from several glycoside hydrolase (GH) families GH13, GH14, GH15, GH31, GH57 and GH77, as well as in a number of regulatory enzymes, e.g., phosphoglucan, water dikinase-3, genethonin-1, laforin, starch-excess protein-4, the β-subunit of AMP-activated protein kinase and its homologues from sucrose non-fermenting-1 protein kinase SNF1 complex, and an adaptor-regulator related to the SNF1/AMPK family, AKINβγ. CBM20s and CBM48s of amylolytic enzymes occur predominantly in the microbial world, whereas the non-amylolytic proteins containing these modules are mostly of plant and animal origin. Comparison of amino acid sequences and tertiary structures of CBM20 and CBM48 reveals the close relatedness of these SBDs and, in some cases, glycogen-binding domains (GBDs). The families CBM20 and CBM48 share both an ancestral form and the mode of starch/glycogen binding at one or two binding sites. Phylogenetic analyses demonstrate that they exhibit independent behaviour, i.e. each family forms its own part in an evolutionary tree, with enzyme specificity (protein function) being well represented within each family. The distinction between CBM20 and CBM48 families is not sharp since there are representatives in both CBM families that possess an intermediate character. These are, for example, CBM20s from hypothetical GH57 amylopullulanase (probably lacking the starch-binding site 2) and CBM48s from the GH13 pullulanase subfamily (probably lacking the starch/glycogen-binding site 1). The knowledge gained concerning the occurrence of these SBDs and GBDs through the range of taxonomy will support future experimental research.  相似文献   

16.
Light induces both the germination of turions of the duckweed Spirodela polyrhiza and the degradation of the reserve starch stored in the turions. The germination photoresponse requires nitrate, and we show here that nitrate is also needed for the light-induced degradation of the turion starch. Ammonium cannot substitute for nitrate in this regard, and nitrate thus acts specifically as signal to promote starch degradation in the turions. Irradiation with continuous red light leads to starch degradation via auto-phosphorylation of starch-associated glucan, water dikinase (GWD), phosphorylation of the turion starch and enhanced binding of alpha-amylase to starch granules. The present study shows that all of these processes require the presence of nitrate, and that nitrate exerts its effect on starch degradation at a point between the absorption of light by phytochrome and the auto-phosphorylation of the GWD. Nitrate acts to coordinate carbon and nitrogen metabolism in germinating turions: starch will only be broken down when sufficient nitrogen is present to ensure appropriate utilization of the released carbohydrate. These data constitute the first report of control over the initiation of reserve starch degradation by nitrate.  相似文献   

17.

Background

Starch is a main source of carbohydrate in human diets, but differences are observed in postprandial glycaemia following ingestion of different foods containing identical starch contents. Such differences reflect variations in rates at which different starches are digested in the intestine. In seeking explanations for these differences, we have studied the interaction of α-amylase with starch granules. Understanding this key step in digestion should help with a molecular understanding for observed differences in starch digestion rates.

Methods

For enzymes acting upon solid substrates, a Freundlich equation relates reaction rate to enzyme adsorption at the surface. The Freundlich exponent (n) equals 2/3 for a liquid-smooth surface interface, 1/3 for adsorption to exposed edges of ordered structures and 1.0 for solution–solution interfaces. The topography of a number of different starch granules, revealed by Freundlich exponents, was compared with structural data obtained by differential scanning calorimetry and Fourier transform infrared spectroscopy with attenuated total internal reflectance (FTIR-ATR).

Results

Enzyme binding rate and FTIR-ATR peak ratio were directly proportional to n and ΔgelH was inversely related to n. Amylase binds fastest to solubilised starch and to granules possessing smooth surfaces at the solid–liquid interface and slowest to granules possessing ordered crystalline surfaces.

Conclusions

Freundlich exponents provide information about surface blocklet structures of starch that supplements knowledge obtained from physical methods.

General Significance

Nanoscale structures at the surface of starch granules influence hydrolysis by α-amylase. This can be important in understanding how dietary starch is digested with relevance to diabetes, cardiovascular health and cancer.  相似文献   

18.

Key message

We report here that the mutation causing fractured starch granules in the barley line “Franubet” results from a point mutation in the barley gene corresponding to the rice FLO6 gene.

Abstract

The “fra” mutation in barley, which was originally isolated and characterized over 30 years ago, results in fractured starch granules and an opaque phenotype. This mutation has been used in breeding programs, since it appears to be useful in the production of pearled barley for human consumption. However, selection for this phenotype is difficult, since wild-type and heterozygous kernels cannot be distinguished phenotypically, and until now, the gene involved in this mutation has not been determined. Here, we used a map-based cloning approach using nanopore sequencing to obtain long reads from a BAC clone carrying markers on either side of the fra locus. By fine mapping followed by aligning RNA-seq reads to four genes within the mapped region, we were able to determine that the fra mutation is caused by the introduction of a stop codon in the barley homologue of the rice FLOURY ENDOSPERM 6 (FLO6) gene. This gene has a CBM48 domain that binds to starch, and may act through interactions with isoamylase1 (ISA1), assisting in the binding of ISA1 to starch granules. Perfect markers able to distinguish all genotypes were designed and tested in several large populations; in all cases, the markers were able to distinguish wild-type, heterozygous, and mutant genotypes.
  相似文献   

19.
To understand the lignocellulose degradation activity of the Clostridium josui cellulosome, a carbohydrate-binding module of the scaffoldin CjCBM3 was characterized. CjCBM3 shows binding to crystalline cellulose, non-crystalline cellulose and soluble polysaccharides. The binding isotherm of CjCBM3 to acid-swollen cellulose is best fitted by the Langmuir two-site model, suggesting that there are two CjCBM3 binding sites on acid-swollen cellulose with different affinities. The second site shows lower affinity and larger binding capacity, suggesting that the cellulosome is directly targeted to the cellulose surface with high affinity, where larger amounts of the cellulosome bind to cellulose with low affinity.  相似文献   

20.
Degradation of reserve starch in turions, perennation organs of the duckweed Spirodela polyrhiza , is induced by continuous red light (cR). Irradiation of the turions with this light results in the autophosphorylation of starch-associated glucan water dikinase (GWD). The ensuing phosphorylation of the starch by this enzyme was proposed to result in the enhanced association of starch-degrading enzymes to the starch granules and in the initiation of starch breakdown. The present results confirm that the irradiation of dark-adapted turions with cR results in phosphorylation of the starch, accompanying changes in the capacity of the granule starch to bind turion endogenous α-amylase, as well as changes in the starch degradation level. All three effects show very similar dependence on the time of irradiation, suggesting that they may be linked. The α-amylase is a plausible candidate for effecting starch breakdown initiation. However, the increased binding capacity of the starch granules for this enzyme is insufficient to account for the initiation of the starch breakdown as this capacity is already high prior to the irradiation. The decisive effect of cR irradiation on starch degradation may lie in enabling α-amylase to gain access to otherwise sequestered starch granules or in activating α-amylase bound to the granules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号