首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
In this study, we examined glucose homeostasis and insulin secretion in transgenic mice overexpressing the human apolipoprotein CIII gene (apo CIII tg). These mice have elevated plasma levels of triglycerides, FFA and cholesterol compared to control mice. The body weight, plasma glucose, and insulin levels, glucose disappearance rates, areas under the ipGTT curve for adult (4 - 8 mo. old) and aged (20 - 24 mo. old) apo CIII tg mice and the determination of insulin during the ipGTT were not different from those of control mice. However, an additional elevation of plasma FFA by treatment with heparin for 2 - 4 h impaired the ipGTT responses in apo CIII tg mice compared to saline-treated mice. The glucose disappearance rate in heparin-treated transgenic mice was slightly lower than in heparin-treated controls. Glucose (22.2 mmol/l) stimulated insulin secretion in isolated islets to the same extent in saline-treated control and apo CIII tg mice. In islets from heparin-treated apo CIII tg mice, the insulin secretion at 2.8 and 22.2 mmol glucose/l was lower than in heparin-treated control mice. In conclusion, hypertriglyceridemia per se or a mild elevation in FFA did not affect insulin secretion or insulin resistance in adult or aged apo CIII tg mice. Nonetheless, an additional elevation of FFA induced by heparin in hypertriglyceridemic mice impaired the ipGTT by reducing insulin secretion.  相似文献   

2.
Plasma phospholipid transfer protein (PLTP) interacts with HDL particles and facilitates the transfer of phospholipids from triglyceride (TG)-rich lipoproteins to HDL. Overexpressing human PLTP in mice increases the susceptibility to atherosclerosis. In human plasma, high-active and low-active forms of PLTP exist. To elucidate the contribution of phospholipid transfer activity to changes in lipoprotein metabolism and atherogenesis, we developed mice expressing mutant PLTP, still able to associate with HDL but lacking phospholipid transfer activity. In mice heterozygous for the LDL receptor, effects of the mutant and normal human PLTP transgene (mutPLTP tg and PLTP tg, respectively) were compared. In PLTP tg mice, plasma PLTP activity was increased 2.9-fold, resulting in markedly reduced HDL lipid levels. In contrast, in mutPLTP tg mice, lipid levels were not different from controls. Furthermore, hepatic VLDL-TG secretion was stimulated in PLTP tg mice, but not in mutPLTP tg mice. When mice were fed a cholesterol-enriched diet, atherosclerotic lesion size in PLTP tg mice was increased more than 2-fold compared with control mice, whereas in mutPLTP tg mice, there was no change. Our findings demonstrate that PLTP transfer activity is essential for the development of atherosclerosis in PLTP transgenic mice, identifying PLTP activity as a possible target to prevent atherogenesis, independent of plasma PLTP concentration.  相似文献   

3.
To trace cell lineages and the origin and fate of cells in transplantation and embryo chimeras, a DNA/DNA in situ hybridization cell labelling system was developed, based on a 50-copy murine c-myc transgene on mouse chromosome 8. Elevated levels of cMyc mRNA were found in Myc*tg50 (Myctg50/0 and Myctg50/Myctg50) transgenic tissues, but adult transgenic NMRI mice were anatomically and histologically indistinguishable from control NMRI mice and did not develop tumours on a wild-type or nude (nu / nu) background. The hybridization label detected transgenic nuclei with an efficiency of ~80%. In muscle grafts, this transgene label was successfully applied to trace donor cells in a labelled host and to study the invasion of a graft by host cells. When the cMyc hybridization was used in allophenic mice of the control|acNMRI-Myctg50/? (nu /+ or +/+) type, an up to a three-fold excess of MYC*tg50 positive over control nuclei was found in all organs examined (ventricle, skeletal muscle, liver, small intestine). This overgrowth of MYC*tg50 cells is probably due to transgene expression. Four out of seven (C57BL/6×BALB/c) or (C57BL/6×NMRI)|acMYC*tg50 allophenic mice displayed anatomical abnormalities, e.g. an enlarged thymus and a tumour in the groin region. As these abnormalities were only observed in allophenic mice, they might be due to the imbalance of growth potential between MYC*tg50 transgenic and normal cells in the same individual.  相似文献   

4.
Familial Parkinson’s disease (PD) has been linked to point mutations and duplication of the α-synuclein gene and mutant α-synuclein expression increases the vulnerability of neurons to exogenous insults. In this study, we analyzed the levels of dopamine and its metabolites in the olfactory bulb (OB), and nigrostriatal regions of transgenic mice expressing human, mutant A53T α-synuclein (α-syn tg) and their non-transgenic (ntg) littermates using a sub-toxic, moderate dose of MPTP to determine if mutant human α-synuclein sensitizes the central dopaminergic systems to oxidative stress. We observed that after a single, sub-lethal MPTP injection, dopamine levels were reduced in striatum and SN in both the α-syn tg and ntg mice. In the olfactory bulb, a region usually resistant to MPTP toxicity, levels were reduced only in the α-syn tg mice. In addition, we identified a significant increase in dopamine metabolism in the α-syn transgenic, but not ntg mice. Finally, MPTP treatment of α-syn tg mice was associated with a marked elevation in the oxidative product, 3-nitrotyrosine that co-migrated with α-synuclein. Cumulatively, the data support the hypothesis that mutant α-synuclein sensitizes dopaminergic neurons to neurotoxic insults and is associated with greater oxidative stress. The α-syn tg line is therefore useful to study the genetic and environmental inter-relationship in PD.  相似文献   

5.
Activation of the endothelin (ET) system promotes vasoconstriction, inflammation, and fibrosis in various tissues, including the lung. Therefore, ET-1 transgenic mice overexpressing ET-1 develop pulmonary fibrosis in a slow, age-dependent manner. In vivo, NO is the most important counterregulatory mediator of the ET system and decreases ET-1 promoter activity. The aim of our study was to elucidate the impact on pulmonary inflammation and fibrosis of the interaction between NO and the ET system in young ET-1 transgenic mice before the onset of pulmonary fibrosis. Male ET-1 transgenic mice and wild-type littermates at the age of 8 weeks were randomly allocated to the following 6 groups: WT (n = 11), wild-type animals without treatment; WT + l-NAME (n = 14), wild-type animals receiving l-NAME, an inhibitor of NO synthase; WT + l-NAME + LU (n = 13), wild-type animals receiving l-NAME and LU 302872, a dual ETA/ETB-receptor antagonist; ET1tg (n = 10), ET-1 transgenic mice; ET1tg + l-NAME (n = 13); and ET1tg + l-NAME + LU (n = 13). After 6 weeks, animals were euthanized, and hearts and lungs were harvested for histology and immunohistochemistry. No differences in pulmonary inflammation, as indicated by macrophage infiltration, or in interstitial fibrosis were observed between WT and ET1tg mice at baseline; however, inflammation and interstitial fibrosis were significantly enhanced in ET1tg mice, but not in WT groups, after l-NAME treatment. The combined ETA/ETB-receptor antagonist LU 302872 abolished inflammation and interstitial fibrosis in l-NAME-treated ET1tg mice. Perivascular fibrosis and media/lumen ratio of pulmonary bronchi and arteries did not differ between all study groups. In our study l-NAME induced pulmonary fibrosis and inflammation only in young ET1tg mice. Additional treatment with LU 302872 abolished these effects. We thus conclude that an imbalance between an activated ET system and a suppressed NO system contributes to pulmonary inflammation and fibrosis.  相似文献   

6.

Background

Lung fibrosis is a devastating pulmonary disorder characterized by alveolar epithelial injury, extracellular matrix deposition and scar tissue formation. Due to its potent collagenolytic activity, cathepsin K, a lysosomal cysteine protease is an interesting target molecule with therapeutic potential to attenuate bleomycin-induced pulmonary fibrosis in mice. We here tested the hypothesis that over-expression of cathepsin K in the lungs of mice is protective in bleomycin-induced pulmonary fibrosis.

Methods

Wild-type and cathepsin K overexpressing (cathepsin K transgenic; cath K tg) mice were challenged intratracheally with bleomycin and sacrificed at 1, 2, 3 and 4 weeks post-treatment followed by determination of lung fibrosis by estimating lung collagen content, lung histopathology, leukocytic infiltrates and lung function. In addition, changes in cathepsin K protein levels in the lung were determined by immunohistochemistry, real time RT-PCR and western blotting.

Results

Cathepsin K protein levels were strongly increased in alveolar macrophages and lung parenchymal tissue of mock-treated cathepsin K transgenic (cath K tg) mice relative to wild-type mice and further increased particularly in cath K tg but also wild-type mice in response to bleomycin. Moreover, cath K tg mice responded with a lower collagen deposition in their lungs, which was accompanied by a significantly lower lung resistance (RL) compared to bleomycin-treated wild-type mice. In addition, cath K tg mice responded with a lower degree of lung fibrosis than wild-type mice, a process that was found to be independent of inflammatory leukocyte mobilization in response to bleomycin challenge.

Conclusion

Over-expression of cathepsin K reduced lung collagen deposition and improved lung function parameters in the lungs of transgenic mice, thereby providing at least partial protection against bleomycin-induced lung fibrosis.  相似文献   

7.
BACKGROUND: Amyloid-beta (A beta) accumulates in plaques and as cerebral amyloid angiopathy (CAA) in the brains of both Alzheimer's disease (AD) patients and transgenic A betaPPswe/tg2576 (tg2576) mice. Increasingly, evidence in humans and mice shows this process to be modulated by apolipoprotein E (apoE). MATERIALS AND METHODS: To explore this relationship, we measured apoE and A beta levels in brains of tg2576 mice and controls at intervals between 2 and 20 months. In addition, A beta concentrations in plasma and muscle of these animals were also quantified. RESULTS: Quite strikingly, we found that the amount of tg2576 mice brain apoE was elevated by an average of 45%, relative to the control mice from 2 months on. The level of brain apoE soared after 14 months to almost 60% greater than the level found in control mice. A beta concentrations in brains before 9 months were less than 2 ng/mg of protein, but by 14 months concentrations rose to 8.7 ng/mg, and by 20 months to 47 ng/mg. In plasma, we noted that the levels of A beta in tg2576 mice declined from above 30 ng/ml prior to 12 months to 14 ng/ml by 14 months. Histology showed that A beta plaques and CAA began to be discernible in the tg2576 mice at about 9 and 20 months of age, respectively. CONCLUSIONS: ApoE was immunocytochemically detected in neuritic plaques that were positive for thioflavine-S. We suggest that the elevation of brain apoE in tg2576 mice participates in an age-related dysregulation of A beta clearance and signals the start of A beta sequestration during the time of cognitive dysfunction.  相似文献   

8.
In order to investigate a role for insulin-like growth factor-1 (IGF-1) in ameliorating the effects of demyelinating events and potentiating remyelination, we have generated transgenic (tg) mice expressing IGF-1 under the control of the myelin basic protein promoter. Heterozygous tg mice expressed the highest levels of IGF-1 in brain during the most active periods of myelination as determined by Western and Northern blotting. A high level of expression was found throughout the lives of the tg mice. There was no increased expression of IGF-1 in other organs. The brains of heterozygous mice were larger than those of normal mice by 2 weeks of age, and they continued to increase in size for several months. Light and electron microscopy showed extensive myelination of axons. Behavioral studies of the older heterozygous mice documented difficulty with balance. This new tg mouse model can be bred to mice that are heterozygous for genetic leukodystrophies to produce eventually mice that are affected with a given leukodystrophy but overexpress IGF-1 during myelination and remyelination. It will be interesting to see if overexpression of IGF-1 can modulate the pathological and clinical features of the inherited leukodystrophies with or without supplemental therapies.  相似文献   

9.
AimOxidative stress is considered one of the main events that lead to aging and neurodegeneration. Antioxidant treatments used to counteract oxidative damage have been associated with a wide variety of side effects or at the utmost to be ineffective. The aim of the present study was to investigate the antioxidant property of a natural mineral, the tribomechanically micronized zeolite (MZ).Main methodsCell death and oxidative stress were assessed in retinoic acid differentiated SH-SY5Y cells, a neuronal-like cell line, after a pro-oxidant stimulus. In vivo evaluation of antioxidant activity and amyloidogenic processing of beta amyloid have been evaluated in a transgenic model of aging related neurodegeneration, the APPswePS1dE9 transgenic mice (tg mice) after a five-month long period of water supplementation with MZ.Key findingsThe study showed that 24 h of cell pretreatment with MZ (1) protected the cells by radical oxygen species (ROS)-induced cell death and moreover (2) induced a reduction of the mitochondrial ROS production following a pro-oxidant stimulation. Looking for an antioxidant effect of MZ in vivo, we found (3) an increased activity of the endogenous antioxidant enzyme superoxide dismutase (SOD) in the hippocampus of tg mice and (4) a reduction in amyloid levels and plaque load in MZ treated tg mice compared to control tg mice.SignificanceOur results suggest MZ as a novel potential adjuvant in counteracting oxidative stress and plaque accumulation in the field of neurodegenerative diseases.  相似文献   

10.
Myostatin, a member of the TGF-beta family, negatively regulates skeletal muscle development. Depression of myostatin activity leads to increased muscle growth and carcass lean yield. In an attempt to down-regulate myostatin, transgenic mice were produced with a ribozyme-based construct or a myostatin pro domain construct. Though the expression of the ribozyme was detected, muscle development was not altered by the ribozyme transgene. However, a dramatic muscling phenotype was observed in transgenic mice carrying the myostatin pro domain gene. Expression of the pro domain transgene at 5% of beta-actin mRNA levels resulted in a 17-30% increase in body weight (P < 0.001). The carcass weight of the transgenic mice showed a 22-44% increase compared with nontransgenic littermates at 9 weeks of age (16.05 +/- 0.67 vs. 11.16 +/- 0.28 g in males; 9.99 +/- 0.38 vs. 8.19 +/- 0.19 g in females, P < 0.001). Extreme muscling was present throughout the whole carcass of transgenic mice as hind and fore limbs and trunk weights, all increased significantly (P < 0.001). Epididymal fat pad weight, an indicator of body fat, was significantly decreased in pro domain transgenic mice (P < 0.001). Analysis of muscle morphology indicated that cross-sectional areas of fast-glycolytic fibers (gastrocnemius) and fast-oxidative glycolytic fibers (tibialis) were larger in pro domain transgenic mice than in their controls (P < 0.01), whereas fiber number (gastrocnemius) was not different (P > 0.05). Thus, the muscular phenotype is attributable to myofiber hypertrophy rather than hyperplasia. The results of this study suggest that the over-expression of myostatin pro domain may provide an alternative to myostatin knockouts as a means of increasing muscle mass in other mammals.  相似文献   

11.
IL-10 plays an essential role in blocking cytokine production by activated macrophages. To analyze the consequences of enforced expression of IL-10 by macrophages on innate and adaptive immune responses, we generated transgenic mice (macIL-10tg mice) expressing an epitope-tagged IL-10 (Flag-IL-10) under control of the human CD68 promoter. Expression of Flag-IL-10 was constitutive and restricted to macrophages, as shown by sorting splenocyte cell populations and intracellular staining for IL-10. Transgenic macrophages displayed suppressed production of TNF-alpha and IL-12 upon stimulation with LPS. When macIL-10tg mice were challenged with LPS, serum levels of proinflammatory cytokines were attenuated compared with controls. Infection with Mycobacterium bovis bacille Calmette-Guérin resulted in approximately 10-fold-higher bacterial loads than in wild-type mice. Normal T and B cell responses were observed in macIL-10tg mice, suggesting that macrophage-specific overexpression of IL-10 predominantly acts in an autocrine/paracrine manner, resulting in chronically deactivated macrophages that manifest an impaired ability to control pathogens.  相似文献   

12.
A strain of human CD3ε transgenic mice, tgε26, exhibits severe immunodeficiency associated with early arrest of T cell development. Complete loss of T cells is observed in homozygous tgε26 mice, but not in heterozygotes, suggesting that genomic disruption due to transgenic integration may contribute to the arrest of T cell development. Here we report the identification of the transgenic integration site in tgε26 mice. We found that multiple copies of the human CD3ε transgene are inserted between the Sstr5 and Metrn loci on chromosome 17, and that this is accompanied by duplication of the neighboring genomic region spanning 323 kb. However, none of the genes in this region were abrogated. These results suggest that the severe immunodeficiency seen in tgε26 mice is not due to gene disruption resulting from transgenic integration.  相似文献   

13.
The over-expressed Cu/Zn-superoxide dismutase (Cu/Zn-SOD) gene has been found in some circumstances phenotypically deleterious and associated with oxidative injury-mediated aberrations while in other studies it was considered neuroprotective. In this work we examine a number of biochemical markers in fetal and adult brain from transgenic (tg) mice expressing the human Cu/Zn-SOD gene, which may determine this dual characteristic. These markers include the polyunsaturated fatty acid (PUFA) profile in discrete phospholipid species, the alpha-tocopherol levels, a marker for lipid anti-oxidant status, and thiobarbituric acid reactive substance (TBARS), a marker for the tissue oxidative status. The PUFA profile in choline- and ethanolamine-phosphoglycerides was similar in tg and nontransgenic (ntg) animals of either fetal or adult brain. Serine-phosphoglycerides, however, showed a marked decrease from 20. 07+/-0.53 to 14.92+/-0.87 wt% and 14.52+/-1.15 wt% in docosahexaenoic acid (DHA; 22:6 n3), in the tg 51 and tg 69 fetal brains, respectively, but not in the comparable adult tissues. The alpha-tocopherol levels were significantly higher in the fetal compared to the adult brain. There were no differences in the anti-oxidant levels between the ntg and tg fetal brains, but there were differences in the adult animals; the tg mice were higher by at least two-fold than the control animals. The basal TBARS in the tg 51 fetal brain was 35% lower than that of ntg mouse and in the presence of Fe(2+), brain slices from the former released less TBARS (57% reduction) into the medium than the latter. These results suggest that higher dosages of Cu/Zn-SOD gene are compatible with increased alpha-tocopherol levels, reduced basal TBARS levels and a DHA deficiency in the fetal, but not the adult, tg brain.  相似文献   

14.
Selection of immature CD4CD8 double-positive (DP) thymocytes for CD4 or CD8-lineage commitment is controlled by the interaction of the TCR with stromal cell-expressed peptide/MHC. We show that thymocyte-intrinsic genes influence the pattern of expression of a MHC class I-restricted transgenic (tg) TCR so that in DBA/2 mice, DP thymocytes with a characteristically high expression of tg TCR, infrequently transit to CD8 single-positive thymocytes. In contrast, in B10.D2 mice, the same tg TCR is expressed at lower levels on a subpopulation of DP thymocytes that more frequently transit to CD8 single-positive thymocytes. These characteristics were not influenced by thymic stromal components that control positive selection. Radiation chimeras reconstituted with a mixture of BM from tg TCR mice of the two genetic backgrounds revealed that the relative frequency of transit to the CD8 lineage remained thymocyte-intrinsic. Identifying the gene products whose polymorphism controls CD8 T cell development may shed new light on the mechanisms controlling T cell commitment/selection in mice other than the most studied "C57BL/6"-based strains.  相似文献   

15.
Amyloid-beta peptides (Abeta) are widely presumed to play a causal role in Alzheimer disease. Release of Abeta from the amyloid precursor protein (APP) requires proteolysis by the beta-site APP-cleaving enzyme (BACE1). Although increased BACE1 activity in Alzheimer disease brains and human (h) BACE1 transgenic (tg) mice results in altered APP cleavage, the contribution of these molecular alterations to neurodegeneration is unclear. We therefore used the murine Thy1 promoter to express high levels of hBACE1, with or without hAPP, in neurons of tg mice. Compared with hAPP mice, hBACE1/hAPP doubly tg mice had increased levels of APP C-terminal fragments (C89, C83) and decreased levels of full-length APP and Abeta. In contrast to non-tg controls and hAPP mice, hBACE1 mice and hBACE1/hAPP mice showed degeneration of neurons in the neocortex and hippocampus and degradation of myelin. Neurological deficits were also more severe in hBACE1 and hBACE1/hAPP mice than in hAPP mice. These results demonstrate that high levels of BACE1 activity are sufficient to elicit neurodegeneration and neurological decline in vivo. This pathogenic pathway involves the accumulation of APP C-terminal fragments but does not depend on increased production of human Abeta. Thus, inhibiting BACE1 may block not only Abeta-dependent but also Abeta-independent pathogenic mechanisms.  相似文献   

16.
Nonobese diabetic (NOD) and NOD-DRalpha transgenic (tg) mice, expressing Aalpha(d):Abeta(g7) and Aalpha(d):Abeta(g7) plus DRalpha:Ebeta(g7) class II molecules, respectively, both develop insulin-dependent diabetes mellitus (IDDM), whereas NOD-Ealpha tg mice expressing Aalpha(d):Abeta(g7) plus Ealpha:Ebeta(g7) are protected. We show that IL-12 administration induces rapid IDDM onset in NOD-DRalpha but fails to provoke insulitis and diabetes in NOD-Ealpha tg mice. Nevertheless, T cells from IL-12-treated NOD-Ealpha tg mice secrete IFN-gamma and transfer IDDM to NOD-SCID and NOD-Ealpha-SCID recipients, demonstrating the presence of peripheral diabetogenic Th1 cells in the protected mice. Surprisingly, regulatory cells were undetectable. Moreover, Ealpha:Ebeta(g7) could substitute for DRalpha:Ebeta(g7) in Ag presentation, arguing against mechanisms of protection involving capture of diabetogenic I-A(g7)-restricted epitopes by Ealpha:Ebeta(g7)molecules. Interestingly, the expression of naturally processed epitopes derived from DRalpha- and Ealpha-chains bound to I-A(g7) is different in the two strains of tg mice, and the difference is enhanced by IL-12 administration. I-A(g7) molecules from both NOD-DRalpha and NOD-Ealpha tg mice present the conserved DRalpha/Ealpha 52-68 sequence, at high and low levels, respectively. In addition, only IDDM-resistant NOD-Ealpha tg mice possess APCs bearing Ealpha65-77/I-A(g7) complexes, which tolerize the specific T cells. This is associated with the selective inhibition of the response to insulinoma-associated protein 2 (IA-2), an autoantigen in IDDM. Our results support protective mechanisms based on I-A(g7) blockade by peptides unique to the Ealpha-chain, such as Ealpha65-77 and/or tolerance of diabetogenic T cells cross-reactive with Ealpha-peptide/I-A(g7) complexes.  相似文献   

17.
Does my mouse have Alzheimer's disease?   总被引:4,自引:0,他引:4  
Small animal models that manifest many of the characteristic neuropathological and behavioral features of Alzheimer's disease (AD) have been developed and have proven of great value for studying the pathogenesis of this disorder at the molecular, cellular and behavioral levels. The great progress made in our understanding of the genetic factors that either cause or contribute to the risk of developing AD has prompted many laboratories to create transgenic (tg) mice that overexpress specific genes which cause familial forms of the disease. Several of these tg mice display neuropathological and behavioral features of AD including amyloid β-peptide (Aβ) and amyloid deposits, neuritic plaques, gliosis, synaptic alterations and signs of neurodegeneration as well as memory impairment. Despite these similarities, important differences in neuropathology and behavior between these tg mouse models and AD have also been observed, and to date no perfect animal model has emerged. Moreover, ascertaining which elements of the neuropathological and behavioral phenotype of these various strains of tg mice are relevant to that observed in AD continues to be a challenge. Here we provide a critical review of the AD-like neuropathology and behavioral phenotypes of several well-known and utilized tg mice that express human APP transgenes.  相似文献   

18.
人突变appE基因在转基因鼠体内的表达及血清脂质变化   总被引:3,自引:0,他引:3  
为了研究人突变apoE7基因在血脂代谢中的作用.采用微注射的方法建立了人apoE7转基因鼠,三个首建鼠(tg1,tg2,tg3)整合目的基因的拷贝数相差2倍左右,其血中表达的人apoE7的水平也不相同,低水平表达的tg1为1.26mg/dl,高水平表达的首建鼠tg3血清中apoE7浓度可高达21.1mg/dl.异常apoE基因的表达导致了转基因鼠血清甘油三酯和胆固醇明显升高,为对照的1.5~3倍.高密度脂蛋白HDL降低,低密度脂蛋白LDL和极低密度脂蛋白VLDL升高.经20mmol/LZnSO4诱导后,F1代Tg3鼠系血清甘油三酯(TG)水平高达444mg/dl,胆固醇(TC)高达234mg/d1.HDL升高和LDL/VLDL降低十分明显,表现了高脂血症的指征.  相似文献   

19.
The contribution of a transmembrane (Tm) form of TNF to protective immunity against Mycobacterium bovis bacillus Calmette-Guérin (BCG) was studied in transgenic (tg) mice expressing a noncleavable Tm TNF but lacking the TNF/lymphotoxin-alpha (LT-alpha) locus (Tm TNF tg mice). These mice were as resistant to BCG infection as wild-type mice, whereas TNF/LT-alpha(-/-), TNF(-/-), and LT-alpha(-/-) mice succumbed. Tm TNF tg mice developed granulomas of smaller size but at 2- to 4-fold increased frequencies compared with wild-type mice. Granulomas were mainly formed by monocytes and activated macrophages expressing Tm TNF mRNA and accumulating acid phosphatase. NO synthase 2 activation as a key macrophage bactericidal mechanism was low during the acute phase of infection in Tm TNF tg mice but was still sufficient to limit bacterial growth and increased in late infection. While infection with virulent Mycobacterium tuberculosis resulted in very rapid death of TNF/LT-alpha(-/-) mice, it also resulted in survival of Tm TNF tg mice which presented an increase in the number of CFU in spleen (5-fold) and lungs (10-fold) as compared with bacterial load of wild-type mice. In conclusion, the Tm form of TNF induces an efficient cell-mediated immunity and total resistance against BCG even in the absence of LT-alpha and secreted TNF. However, Tm TNF-mediated protection against virulent M. tuberculosis infection can also be efficient but not as strong as in BCG infection, in which cognate cellular interactions may play a more predominant role in providing long-term surveillance and containment of BCG-infected macrophages.  相似文献   

20.
Recent studies indicate that the Tg2576 transgenic mouse model of Alzheimer's disease [tg(hAPP)] demonstrates disturbances in plasma glucose and neuroendocrine function reminiscent of Alzheimer's disease (AD). Alterations in any one of these systems can have a profound effect on hepatic cytochrome P450 (CYP) expression. Additionally, the recent discovery that amyloid beta 1-42 can induce the expression of CYP reductase in neuronal cultures further suggests that hepatic CYP-related metabolism may be affected by the expression of mutant human amyloid precursor protein in these tg(hAPP) mice. Therefore, the current study was conducted to investigate the activity and protein content of several CYP isoforms in the livers and kidneys of aged (20-month-old) tg(hAPP) mice. tg(hAPP) mice exhibit significant elevations in hepatic CYP2B, CYP2E1-, CYP3A- and CYP4A-associated activities and CYP4A immunoreactive protein compared with wild-type. In contrast to the liver, a significant depression in renal CYP2E1- and CYP4A-associated activities were demonstrated in tg(hAPP) mice. The presence of the mutant hAPP protein was detected in the brain, kidney and livers of tg(hAPP) mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号