首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 0 毫秒
1.
    

Background

Chronic formaldehyde exposure leads to memory impairment and abnormal elevation of endogenous formaldehyde has been found in the brains of Alzheimer's disease (AD) patients. Hyperphosphorylated Tau protein with subsequent aggregates as neurofibrillary tangles (NFTs) is one of the typical pathological characteristics in AD brains. The mechanism underlying abnormally elevated concentrations of endogenous formaldehyde that induce Tau hyperphosphorylation is unknown.

Methods

N2a cells and mice were treated with formaldehyde for different time points, then Western blotting and immunocytochemistry were utilized to determine the phosphorylation and polymerization of Tau protein. HPLC was used to detect the concentration of formaldehyde in cell media.

Results

Under formaldehyde stress, Tau became hyperphosphorylated, not only in the cytoplasm, but also in the nucleus of neuroblastoma (N2a) cells, and mouse brains. Polymers of cellular phospho-Tau were also detected. Significant accumulation of glycogen synthase kinase-3β (GSK-3β) in the nucleus of N2a and mouse brain cells, and elevation of its phosphorylation at Y216, was observed under formaldehyde stress. Formaldehyde-induced Tau hyperphosphorylation was blocked in the presence of LiCl and CT99021, inhibitors of GSK-3β, and by RNAi interference.

Conclusions

Formaldehyde, which may cause age-related memory loss, can act as a factor triggering Tau hyperphosphorylation via GSK-3β catalysis and induces polymerization of Tau.

General significance

Investigation of formaldehyde-induced Tau hyperphosphorylation may provide novel insights into mechanisms underlying tauopathies.  相似文献   

2.
Liu F  Liang Z  Shi J  Yin D  El-Akkad E  Grundke-Iqbal I  Iqbal K  Gong CX 《FEBS letters》2006,580(26):6269-6274
Phosphorylation of tau protein is regulated by several kinases, especially glycogen synthase kinase 3beta (GSK-3beta), cyclin-dependent protein kinase 5 (cdk5) and cAMP-dependent protein kinase (PKA). Phosphorylation of tau by PKA primes it for phosphorylation by GSK-3beta, but the site-specific modulation of GSK-3beta-catalyzed tau phosphorylation by the prephosphorylation has not been well investigated. Here, we found that prephosphorylation by PKA promotes GSK-3beta-catalyzed tau phosphorylation at Thr181, Ser199, Ser202, Thr205, Thr217, Thr231, Ser396 and Ser422, but inhibits its phosphorylation at Thr212 and Ser404. In contrast, the prephosphorylation had no significant effect on its subsequent phosphorylation by cdk5 at Thr181, Ser199, Thr205, Thr231 and Ser422; inhibited it at Ser202, Thr212, Thr217 and Ser404; and slightly promoted it at Ser396. These studies reveal the nature of the inter-regulation of tau phosphorylation by the three major tau kinases.  相似文献   

3.
Prior work has shown that iron interacts with hyperphosphorylated tau, which contributes to the formation of neurofibrillary tangles (NFTs) in Alzheimer’s disease (AD), whereas iron chelator desferrioxamine (DFO) slows down the clinical progression of the cognitive decline associated with this disease. However, the effects of DFO on tau phosphorylation in the presence or absence of iron have yet to be determined. Using amyloid precursor protein (APP) and presenilin 1 (PS1) double transgenic mouse brain as a model system, we investigated the effects and potential mechanisms of intranasal administration of DFO on iron induced abnormal tau phosphorylation. High-dose iron treatment markedly increased the levels of tau phosphorylation at the sites of Thr205, Thr231 and Ser396, whereas highly induced tau phosphorylation was abolished by intranasal administration of DFO in APP/PS1 transgenic mice. Moreover, DFO intranasal administration also decreases Fe-induced the activities of cyclin-dependent kinase 5 (CDK5) and glycogen synthase kinase 3β (GSK3β), which in turn suppressing tau phosphorylation. Cumulatively, our data show that intranasal DFO treatment exerts its suppressive effects on iron induced tau phosphorylation via CDK5 and GSK3β pathways. More importantly, elucidation of DFO mechanism in suppressing tau phosphorylation may provide insights for developing therapeutic strategies to combat AD.  相似文献   

4.
WonHee Kim 《FEBS letters》2010,584(14):3085-54
Abnormal tau cleavage is prominent in the neurofibrillary degeneration characteristic of Alzheimer’s disease (AD) and related tauopathies. We recently showed that cleaved human tau is secreted by specific mechanisms when overexpressed. Here we examined the effect of expressing N-terminal and full length tau constructs in transiently and stably transfected neuronal lines. We show that secreted tau exhibits a cleavage pattern similar to CSF-tau from human AD patients and that tau secretion is specifically inhibited by the presence of the exon 2 insert. These results suggest that tau secretion may play a hitherto unsuspected role in AD and related tauopathies.  相似文献   

5.
We analysed the effects of high cholesterol (HC) intake and reduced apolipoprotein E (apoE) activity on tau phosphorylation and on the activities of the major tau kinases and phosphatases in brains from wild-type and apoE-knockout (apoEKO) mice. We show that HC diet potently induced intraneuronal accumulation of hyperphosphorylated tau in apoEKO mice, as well as upregulation of several tau kinases, without affecting tau phosphatases. Our results suggest an interaction between dietary and genetic factors in the development of tauopathies, which can be relevant in humans, where the apoE4 isoform could have a lack of function as compared to other isoforms.  相似文献   

6.
Co-injection of wortmannin (inhibitor of phosphatidylinositol-3 kinase, PI3K) and GF109203X(inhibitor of protein kinase C, PKC) into the rat brain was found to induce spatial memory deficiency and enhance tau hyperphosphorylation in the hippocampus of rat brain. To establish a cell model with durative Alzheimer-like tau hyperphosphorylation in this study, we treated N2a neuroblastoma cells with wortmannin and GF109203X separately and simultaneously, and measured the glycogen synthase kinase 3 (GSK-3)activity by y-32p-labeling and the level of tau phosphorylation by Western blotting. It was found that the application of wortmannin alone only transitorily increased the activity of GSK-3 (about 1 h) and the level of tau hyperphosphorylation at Ser^396/Ser^404 and Ser^199/Ser^202 sites (no longer than 3 h); however, a prolonged and intense activation of GSK-3 (over 12 h) and enhanced tau hyperphosphorylation (about 24 h) were observed when these two selective kinase inhibitors were applied together. We conclude that the simultaneous inhibition of PI3K and PKC can induce GSK-3 overactivation, and further strengthen and prolong the Alzheimerlike tau hyperphosphorylation in N2a cells, suggesting the establishment of a cell model with early pathological events of Alzheimer‘s disease.  相似文献   

7.
Overactivation of GSK3β (glycogen synthase kinase-3β) and downregulation of PP2A (protein phosphatase-2A) have been proposed to be involved in the abnormal tau phosphorylation and aggregation in Alzheimer’s disease (AD). GSK3β and PP2A signaling pathways were reported to be interconnected. Targeting tau kinases was suggested to represent a therapeutic strategy for AD. Here, tau phosphorylation and neuronal apoptosis were induced in cortical cultured neurons by the inhibition of PP2A by okadaic acid (OKA). In this in vitro model of ‘tau pathology’ and neurodegeneration, we tested whether GSK3β and other tau kinases including DYRK1A and CDK5 were implicated. Our results show that the inhibitors of GSK3β, lithium and 6-BIO (6-bromoindirubin-3′-oxime), prevented OKA-induced tau phosphorylation and neuronal apoptosis. The implication of GSK3β in these OKA-induced effects was confirmed by its silencing by hairpin siRNA. By contrast, inhibition of DYRK1A (dual-specificity tyrosine-phosphorylation regulated kinase-1A) and CDK5 (cyclin-dependent kinase-5) reversed OKA-induced tau phosphorylation at certain sites but failed to prevent neuronal apoptosis. These results indicate that OKA-induced effects, especially neuronal apoptosis, are preferentially mediated by GSK3β. Furthermore, since chronic exposure to lithium and 6-BIO might be deleterious for neurons, we tested the effect of a new 6-BIO derivative, 6-BIBEO (6-bromoindirubin-3′-(2-bromoethyl)-oxime), which is much less cytotoxic and more selectively inhibits GSK3β compared to lithium and 6-BIO. We show that 6-BIBEO efficiently reversed OKA-induced tau phosphorylation and neuronal apoptosis. It will be interesting to test neuroprotection by 6-BIBEO in an in vivo model of tau pathology and neurodegeneration.  相似文献   

8.
Tau pathology is implicated in mechanisms of neurodegenerative tauopathies, including Alzheimer’s disease (AD) and hereditary frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). It has been reported that transgenic mice expressing FTDP-17 mutation P301L of human tau (P301L mice) display extensive tau pathology and exhibit behavioral deficits with aging. In this study, we investigated the effects of T-817MA, a neuroprotective agent, on the motor and cognitive impairments associated with neuronal degeneration in P301L mice. T-817MA prevented the progression of motor deficit and the loss of spinal cord motor neurons in P301L mice. Furthermore, T-817MA significantly attenuated the spatial memory impairment and the reduction in synaptic terminal density in the hippocampal dentate gyrus of P301L mice. These results indicate that T-817MA improved the motor and cognitive impairments as a result of inhibiting neuronal degeneration derived from tau pathology in the P301L mice. Therefore, it is expected that T-817MA has a therapeutic potential for tau-related neurodegenerative diseases such as AD.  相似文献   

9.
Preventing or reducing tau hyperphosphorylation is considered to be a therapeutic strategy in the treatment of Alzheimer’s disease (AD). Rapamycin may be a potential therapeutic agent for AD, because the rapamycin-induced autophagy may enhance the clearance of the hyperphosphorylated tau. However, recent rodent studies show that the protective effect of rapamycin may not be limited in the autophagic clearance of the hyperphosphorylated tau. Because some tau-related kinases are targets of the mammalian target of rapamycin (mTOR), we assume that rapamycin may regulate tau phosphorylation by regulating these kinases. Our results showed that in human neuroblastoma SH-SY5Y cells, treatment with rapamycin induced phosphorylation of the type IIα regulatory (RIIα) subunit of cAMP-dependent kinase (PKA). Rapamycin also induced nuclear translocation of the catalytic subunits (Cat) of PKA and decreases in tau phosphorylation at Ser214 (pS214). The above effects of rapamycin were prevented by pretreatment with the mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) inhibitor U0126. In addition, these effects of rapamycin might not depend on the level of tau expression, because similar results were obtained in both the non-tau-expressing wild type human embryonic kidney 293 (HEK293) cells and HEK293 cells stably transfected with the longest isoform of recombinant human tau (tau441; HEK293/tau441). These findings suggest that rapamycin decreases pS214 via regulation of PKA. Because tau phosphorylation at Ser214 may prime tau for further phosphorylation by other kinases, our findings provide a novel possible mechanism by which rapamycin reduces or prevents tau hyperphosphorylation.  相似文献   

10.
Although widely explored, the pathogenesis of Alzheimer’s disease (AD) has yet to be cleared. Over the past twenty years the so call amyloid cascade hypothesis represented the main research paradigm in AD pathogenesis. In spite of its large consensus, the proposed role of β-amyloid (Aβ) remain to be elucidated. Many evidences are starting to cast doubt on Aβ as the primary causative factor in AD. For instance, Aβ is deposited in the brain following many different kinds of injury. Also, concentration of Aβ needed to induce toxicity in vitro are never reached in vivo. In this review we propose an amyloid-independent interpretation of several AD pathogenic features, such as synaptic plasticity, endo-lysosomal trafficking, cell cycle regulation and neuronal survival.  相似文献   

11.
The abnormal hyperphosphorylation of tau protein is one of the hallmarks of Alzheimer disease and other tauopathies; as yet the exact role of various tau kinases in this pathology is not fully understood. Here, we show that injection of isoproterenol, an activator of cAMP-dependent kinase (PKA), into rat hippocampus bilaterally results in the activation of PKA, calcium/calmodulin-dependent kinase II and cyclin-dependent kinase-5, inhibition of protein phosphatase-2A, hyperphosphorylation of tau at several Alzheimer-like epitopes and a disturbance of spatial memory retention 48 h after the drug injection. These findings suggest the involvement of PKA and PKA-mediated signaling pathway in the Alzheimer-like tau hyperphosphorylation and memory impairment.  相似文献   

12.
ADAM family proteins are type I transmembrane, zinc-dependent metalloproteases. This family has multiple conserved domains, including a signal peptide, a pro-domain, a metalloprotease domain, a disintegrin (DI) domain, a cysteine-rich (Cys) domain, an EGF-like domain, a transmembrane domain, and a cytoplasmic domain. The Cys and DI domains may play active roles in regulating proteolytic activity or substrate specificity. ADAM19 has an autolytic processing activity within its Cys domain, and the processing is necessary for its proteolytic activity. To identify a new physiological function of ADAM19, we screened for associating proteins by using the extracellular domain of ADAM19 in a yeast two-hybrid system. Cysteine-rich protein 2 (CRIP2) showed an association with ADAM19 through its DI and Cys domains. Sequence analysis revealed that CRIP2 is a secretable protein without a classical signal. CRIP2 secretion was increased by overexpression of ADAM19 and decreased by suppression of ADAM19 expression. Moreover, CRIP2 secretion increased in parallel with the autolytic processing of ADAM19 stimulated by lipopolysaccharide. These findings suggest that ADAM19 autolysis is activated by lipopolysaccharide and that ADAM19 promotes the secretion of CRIP2.  相似文献   

13.
Cilnidipine, a calcium channel blocker, has been reported to have neuroprotective effects. We investigated whether cilnidipine could protect neurons from hypoxia and explored the role of the phosphatidylinositol 3-kinase (PI3K) and extracellular signal-related kinase (ERK) pathways in the neuroprotective effect of cilnidipine. The viability of a primary culture of cortical neurons injured by hypoxia, measured by trypan blue staining and lactate dehydrogenase (LDH) assay, was dramatically restored by cilnidipine treatment. TUNEL and DAPI staining showed that cilnidipine significantly reduced apoptotic cell death induced by hypoxia. Free radical stress and calcium influx induced by hypoxia were markedly decreased by treatment with cilnidipine. Survival signaling proteins associated with the PI3K and ERK pathways were significantly increased while death signaling proteins were markedly decreased in the primary culture of cortical neurons simultaneously exposed to cilnidipine and hypoxia when compared with the neurons exposed only to hypoxia. These neuroprotective effects of cilnidipine were blocked by treatment with a PI3K inhibitor or an ERK inhibitor. These results show that cilnidipine protects primary cultured cortical neurons from hypoxia by reducing free radical stress, calcium influx, and death-related signaling proteins and by increasing survival-related proteins associated with the PI3K and ERK pathways, and that activation of those pathways plays an important role in the neuroprotective effects of cilnidipine against hypoxia. These findings suggest that cilnidipine has neuroprotective effects against hypoxia through various mechanisms, as well as a blood pressure-lowering effect, which might help to prevent ischemic stroke and reduce neuronal injury caused by ischemic stroke.  相似文献   

14.
An increasing body of evidence suggested that intracellular lipid metabolism is dramatically perturbed in various cardiovascular and neurodegenerative diseases with genetic and lifestyle components (e.g., dietary factors). Therefore, a lipidomic approach was also developed to suggest possible mechanisms underlying Alzheimer’s disease (AD). Neural membranes contain several classes of glycerophospholipids (GPs), that not only constitute their backbone but also provide the membrane with a suitable environment, fluidity, and ion permeability. In this review article, we focused our attention on GP and GP-derived lipid mediators suggested to be involved in AD pathology. Degradation of GPs by phospholipase A2 can release two important brain polyunsaturated fatty acids (PUFAs), e.g., arachidonic acid and docosahexaenoic acid, linked together by a delicate equilibrium. Non-enzymatic and enzymatic oxidation of these PUFAs produces several lipid mediators, all closely associated with neuronal pathways involved in AD neurobiology, suggesting that an interplay among lipids occurs in brain tissue. In this complex GP meshwork, the search for a specific modulating enzyme able to shift the metabolic pathway towards a neuroprotective role as well as a better knowledge about how lipid dietary modulation may act to slow the neurodegenerative processes, represent an essential step to delay the onset of AD and its progression. Also, in this way it may be possible to suggest new preventive or therapeutic options that can beneficially modify the course of this devastating disease.  相似文献   

15.
For decades, studies have been focusing on the neuronal abnormalities that accompany neurodegenerative disorders. Yet, glial cells are emerging as important players in numerous neurological diseases. Astrocytes, the main type of glia in the central nervous system , form extensive networks that physically and functionally connect neuronal synapses with cerebral blood vessels. Normal brain functioning strictly depends on highly specialized cellular cross-talk between these different partners to which Ca2 +, as a signaling ion, largely contributes. Altered intracellular Ca2 + levels are associated with neurodegenerative disorders and play a crucial role in the glial responses to injury. Intracellular Ca2 + increases in single astrocytes can be propagated toward neighboring cells as intercellular Ca2 + waves, thereby recruiting a larger group of cells. Intercellular Ca2+ wave propagation depends on two, parallel, connexin (Cx) channel-based mechanisms: i) the diffusion of inositol 1,4,5-trisphosphate through gap junction channels that directly connect the cytoplasm of neighboring cells, and ii) the release of paracrine messengers such as glutamate and ATP through hemichannels (‘half of a gap junction channel’). This review gives an overview of the current knowledge on Cx-mediated Ca2 + communication among astrocytes as well as between astrocytes and other brain cell types in physiology and pathology, with a focus on the processes of neurodegeneration and reactive gliosis. Research on Cx-mediated astroglial Ca2 + communication may ultimately shed light on the development of targeted therapies for neurodegenerative disorders in which astrocytes participate. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.  相似文献   

16.
Ping Hu 《FEBS letters》2010,584(12):2526-4104
Ser(Thr)-O-linked β-N-acetylglucosamine (O-GlcNAc) is a ubiquitous modification of nucleocytoplasmic proteins. Extensive crosstalk exists between O-GlcNAcylation and phosphorylation, which regulates signaling in response to nutrients/stress. The development of novel O-GlcNAc detection and enrichment methods has improved our understanding of O-GlcNAc functions. Mass spectrometry has revealed O-GlcNAc’s many interactions with phosphorylation-mediated signaling. However, mechanisms regulating O-GlcNAcylation and phosphorylation are quite different. Phosphorylation is catalyzed by hundreds of distinct kinases. In contrast, in mammals, uridine diphospho-N-acetylglucosamine:polypeptide β-N-acetylglucosaminyl transferase (OGT) and β-D-N-acetylglucosaminidase (OGA) are encoded by single highly conserved genes. Both OGT’s and OGA’s specificities are determined by their transient associations with many other proteins to create a multitude of specific holoenzymes. The extensive crosstalk between O-GlcNAcylation and phosphorylation represents a new paradigm for cellular signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号