首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To date, the signal transducing adaptor molecule 2 (STAM2) was shown to harbour two ubiquitin binding domains (UBDs) known as the VHS and UIM domains, while the SH3 domain of STAM2 was reported to interact with deubiquitinating enzymes (DUBs) like UBPY and AMSH. In the present study, NMR evidences the interaction of the STAM2 SH3 domain with ubiquitin, demonstrating that SH3 constitutes the third UBD of STAM2. Furthermore, we show that a UBPY-derived peptide can outcompete ubiquitin for SH3 binding and vice versa. These results suggest that the SH3 domain of STAM2 plays versatile roles in the context of ubiquitin mediated receptor sorting.  相似文献   

2.
STAM1 and Hrs are the components of ESCRT-0 complex for lysosomal degradation of membrane proteins is composed of STAM1 Hrs and has multiple ubiquitin binding domains. Here, the solution structure of STAM1 UIM, one of the ubiquitin binding motif, was determined by NMR spectroscopy. The structure of UIM adopts an α-helix with amphipathic nature. The central hydrophobic residues in UIM provides the binding surface for ubiquitin binding and are flanked with positively and negatively charged residues on both sides. The docking model of STAM1 UIM-ubiquitin complex is suggested. In NMR and ITC experiments with the specifically designed mutant proteins, we investigated the ubiquitin interaction of tandem ubiquitin binding domains from STAM1. The ubiquitin binding affinity of the VHS domain and UIM in STAM1 was 52.4 and 94.9 μM, and 1.5 and 2.2 fold increased, respectively, than the value obtained from the isolated domain or peptide. The binding affinities here would be more physiologically relevant and provide more precise understanding in ESCRT pathway of lysosomal degradation.  相似文献   

3.
4.
Human holocarboxylase synthetase shows a high degree of sequence homology in the catalytic domain with bacterial biotin ligases such as Escherichia coli BirA, but differs in the length and sequence of the N-terminus. Despite several studies having been undertaken on the N-terminal region of hHCS, the role of this region remains unclear. We determined the structure of the N-terminal domain of hHCS by limited proteolysis and showed that this domain has a crucial effect on the enzymatic activity. The domain interacts not only with biotin acceptor protein, but also with the catalytic domain of hHCS, as shown by nuclear magnetic resonance (NMR) experiments. We propose that the N-terminal domain of hHCS recognizes the charged region of biotin acceptor protein, distinctly from the recognition by the catalytic domain.

Structured summary

MINT-7543113: hHCS (uniprotkb:P50747) and hHCS (uniprotkb:P50747) bind (MI:0407) by nuclear magnetic resonance (MI:0077)MINT-7543096, MINT-7543129: ACC75 (uniprotkb:O00763) and hHCS (uniprotkb:P50747) bind (MI:0407) by nuclear magnetic resonance (MI:0077)MINT-7543053: hHCS (uniprotkb:P50747) enzymaticly reacts (MI:0414) ACC75 (uniprotkb:O00763) by nuclear magnetic resonance (MI:0077)MINT-7543070: hHCS (uniprotkb:P50747) enzymaticly reacts (MI:0414) ACC75 (uniprotkb:O00763) by enzymatic study (MI:0415)  相似文献   

5.
The calponin homology-associated smooth muscle protein (CHASM) can modulate muscle contractility, and its biological action may involve an interaction with the contractile filament. In this study, we demonstrate an interaction between CHASM and tropomyosin. Deletion constructs of CHASM were generated, and pull-down assays revealed a minimal deletion construct that could bind tropomyosin. Removal of the calponin homology (CH) domain or expression of the CH domain alone did not enable binding. The interaction was characterized by microcalorimetry with a dissociation constant of 2.0 × 10−6 M. Confocal fluorescence microscopy also showed green fluorescent protein (GFP)-CHASM localization to filamentous structures within smooth muscle cells, and this targeting was dependent upon the CH domain.

Structured summary

MINT-7966126: CHASM (uniprotkb:Q99LM3), Tropomyosin alpha (uniprotkb:P04268) and Tropomyosin beta (uniprotkb:P19352) physically interact (MI:0915) by isothermal titration calorimetry (MI:0065)MINT-7966073: CHASM (uniprotkb:Q99LM3) physically interacts (MI:0914) with Tropomyosin beta (uniprotkb:P58776) and Tropomyosin alpha (uniprotkb:P58772) by pull down (MI:0096)MINT-7966187: Tropomyosin alpha (uniprotkb:P04268) and Tropomyosin beta (uniprotkb:P19352) physically interact (MI:0915) with CHASM (uniprotkb:Q99LM3) by pull down (MI:0096)MINT-7966090: CHASM (uniprotkb:Q99LM3) binds (MI:0407) to Tropomyosin alpha (uniprotkb:P04268) by pull down (MI:0096)  相似文献   

6.
Calmodulin-regulated protein phosphorylation plays a pivotal role in amplifying and diversifying the action of calcium ion. In this study, we identified a calmodulin-binding receptor-like protein kinase (CBRLK1) that was classified into an S-locus RLK family. The plasma membrane localization was determined by the localization of CBRLK1 tagged with a green fluorescence protein. Calmodulin bound specifically to a Ca2+-dependent calmodulin binding domain in the C-terminus of CBRLK1. The bacterially expressed CBRLK1 kinase domain could autophosphorylate and phosphorylates general kinase substrates, such as myelin basic proteins. The autophosphorylation sites of CBRLK1 were identified by mass spectrometric analysis of phosphopeptides.

Structured summary

MINT-6800947:CBRLK1 (uniprotkb:Q9ZT06) and AtCaM2 (uniprotkb:P25069) bind (MI:0407) by electrophoretic mobility shift assay (MI:0413)MINT-6800966:AtCaM2 (uniprotkb:P25069) and CBRLK1 (uniprotkb:Q9ZT06) bind (MI:0407) by competition binding (MI:0405)MINT-6800930:CBRLK1 (uniprotkb:Q9ZT06) binds (MI:0407) to AtCaM2 (uniprotkb:P25069) by far Western blotting (MI:0047)MINT-6800978:AtCaM2 (uniprotkb:P25069) physically interacts (MI:0218) with CBRLK1 (uniprotkb:Q9ZT06) by cytoplasmic complementation assay (MI:0228)  相似文献   

7.
S100 proteins interact with the transactivation domain and the C-terminus of p53. Further, S100B has been shown to interact with MDM2, a central negative regulator of p53. Here, we show that S100B bound directly to the folded N-terminal domain of MDM2 (residues 2-125) by size exclusion chromatography and surface plasmon resonance experiments. This interaction with MDM2 (2-125) is a general feature of S100 proteins; S100A1, S100A2, S100A4 and S100A6 also interact with MDM2 (2-125). These interactions with S100 proteins do not result in a ternary complex with MDM2 (2-125) and p53. Instead, we observe the ability of a subset of S100 proteins to disrupt the extent of MDM2-mediated p53 ubiquitylation in vitro.

Structured summary

MINT-7905256: MDM2 (uniprotkb:Q00987) binds (MI:0407) to s100A6 (uniprotkb:P06703) by surface plasmon resonance (MI:0107)MINT-7905063: MDM2 (uniprotkb:Q00987) and s100A1 (uniprotkb:P23297) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905376: s100A4 (uniprotkb:P26447) and MDM2 (uniprotkb:Q00987) physically interact (MI:0915) by competition binding (MI:0405)MINT-7905130: s100A6 (uniprotkb:P06703) and MDM2 (uniprotkb:Q00987) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905207: s100A6 (uniprotkb:P06703) and p53 (uniprotkb:P04637) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905043: s100B (uniprotkb:P04271) and MDM2 (uniprotkb:Q00987) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905196: p53 (uniprotkb:P04637) and s100A4 (uniprotkb:P26447) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905358: p53 (uniprotkb:P04637) and s100A4 (uniprotkb:P26447) physically interact (MI:0915) by fluorescence polarization spectroscopy (MI:0053)MINT-7905220: MDM2 (uniprotkb:Q00987) binds (MI:0407) to s100B (uniprotkb:P04271) by surface plasmon resonance (MI:0107)MINT-7905104: s100A4 (uniprotkb:P26447) and MDM2 (uniprotkb:Q00987) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905229: MDM2 (uniprotkb:Q00987) binds (MI:0407) to s100A1 (uniprotkb:P23297) by surface plasmon resonance (MI:0107)MINT-7905317, MINT-7905162: s100B (uniprotkb:P04271) and p53 (uniprotkb:P04637) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905238: MDM2 (uniprotkb:Q00987) binds (MI:0407) to s100A2 (uniprotkb:P29034) by surface plasmon resonance (MI:0107)MINT-7905174, MINT-7905308: s100A1 (uniprotkb:P23297) and p53 (uniprotkb:P04637) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905247: MDM2 (uniprotkb:Q00987) binds (MI:0407) to s100A4 (uniprotkb:P26447) by surface plasmon resonance (MI:0107)MINT-7905090: s100A2 (uniprotkb:P29034) and MDM2 (uniprotkb:Q00987) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905142, MINT-7905326: MDM2 (uniprotkb:Q00987) and p53 (uniprotkb:P04637) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905185, MINT-7905347: s100A2 (uniprotkb:P29034) and p53 (uniprotkb:P04637) bind (MI:0407) by molecular sieving (MI:0071)  相似文献   

8.
Erik Kish-Trier 《FEBS letters》2009,583(19):3121-3126
The peripheral stalk of the archaeal ATP synthase (A1A0)-ATP synthase is formed by the heterodimeric EH complex and is part of the stator domain, which counteracts the torque of rotational catalysis. Here we used nuclear magnetic resonance spectroscopy to probe the interaction of the C-terminal domain of the EH heterodimer (ECT1HCT) with the N-terminal 23 residues of the B subunit (BNT). The data show a specific interaction of BNT peptide with 26 residues of the ECT1HCT domain, thereby providing a molecular picture of how the peripheral stalk is anchored to the A3B3 catalytic domain in A1A0.

Structured summary

MINT-7260681: Hct (refseq:NP_393485), Ect1 (uniprotkb:Q9HM68) and Bnt (uniprotkb:Q9HM64) physically interact (MI:0915) by nuclear magnetic resonance (MI:0077)  相似文献   

9.
The Plenty of SH3 domains protein (POSH) is an E3 ligase and a scaffold in the JNK mediated apoptosis, linking Rac1 to downstream components.We here describe POSH2 which was identified from a p21-activated kinase 2 (PAK2) interactor screen. POSH2 is highly homologous with other members of the POSH family; it contains four Src homology 3 (SH3) domains and a RING finger domain which confers E3 ligase activity to the protein. In addition POSH2 contains an N-terminal extension which is conserved among its mammalian counterparts. POSH2 interacts with GTP-loaded Rac1. We have mapped this interaction to a previously unrecognized partial Cdc42/Rac1-interactive binding domain.

Structured summary

MINT-7987761: POSH1 (uniprotkb:Q9HAM2) physically interacts (MI:0915) with Ubiquitin (uniprotkb:P62988) by anti tag coimmunoprecipitation (MI:0007)MINT-7987932: PAK2 (uniprotkb:Q13177) binds (MI:0407) to CDC42 (uniprotkb:Q07912) by solid phase assay (MI:0892)MINT-7987908: POSH1 (uniprotkb:Q9HAM2) binds (MI:0407) to Rac1 (uniprotkb:P63000) by solid phase assay (MI:0892)MINT-7987880: POSH2 (uniprotkb:Q8TEJ3) binds (MI:0407) to Rac1 (uniprotkb:P63000) by solid phase assay (MI:0892)MINT-7987734: POSH2 (uniprotkb:Q8TEJ3) physically interacts (MI:0915) with Ubiquitin (uniprotkb:P62988) by anti tag coimmunoprecipitation (MI:0007)MINT-7987779, MINT-7987804, MINT-7987824, MINT-7987838, MINT-7987853: Rac1 (uniprotkb:P63000) physically interacts (MI:0915) with POSH2 (uniprotkb:Q8TEJ3) by anti tag coimmunoprecipitation (MI:0007)MINT-7987920: PAK2 (uniprotkb:Q13177) binds (MI:0407) to Rac1 (uniprotkb:P63000) by solid phase assay (MI:0892)  相似文献   

10.
Colicin A enters Escherichia coli cells through interaction with endogenous TolA and TolB proteins. In vitro, binding of the colicin A translocation domain to TolA leads to unfolding of TolA. Through NMR studies of the colicin A translocation domain and polypeptides representing the individual TolA and TolB binding epitopes of colicin A we question if the unfolding of TolA induced by colicin A is likely to be physiologically relevant. The NMR data further reveals that the colicin A binding site on TolA is different from that for colicin N which explains why there is a difference in colicin toxicity for E. coli carrying a TolA-III homologue from Yersina enterocolitica in place of its own TolA-III.

Structured summary

MINT-7888512: TolA (uniprotkb:P19934) and Col-A (uniprotkb:P04480) bind (MI:0407) by nuclear magnetic resonance (MI:0077)MINT-7888526: TolA (uniprotkb:P19934) and TolB (uniprotkb:P0A857) bind (MI:0407) by nuclear magnetic resonance (MI:0077)MINT-7888999: TolA (uniprotkb:P19934), TolB (uniprotkb:P0A855) and Col-A (uniprotkb:P04480) physically interact (MI:0915) by molecular sieving (MI:0071)MINT-7888982: TolA (uniprotkb:P19934), TolB (uniprotkb:P0A855) and Col-A (uniprotkb:P04480) physically interact (MI:0915) by nuclear magnetic resonance (MI:0077)  相似文献   

11.
You Lee Son 《FEBS letters》2010,584(18):3862-3866
Liver X receptor (LXR)/retinoid X receptor (RXR) heterodimers have been shown to perform critical functions in cholesterol and lipid metabolism. Here, we have conducted a comparative analysis of the contributions of LXR and RXR binding to steroid receptor coactivator-1 (SRC-1), which contains three copies of the NR box. We demonstrated that the coactivator-binding surface of LXR, but not that of RXR, is critically important for physical and functional interactions with SRC-1, thereby confirming that RXR functions as an allosteric activator of SRC-1-LXR interaction. Notably, we identified NR box-2 and -3 as the essential binding targets for the SRC-1-induced stimulation of LXR transactivity, and observed the competitive in vitro binding of NR box-2 and -3 to LXR.

Structured summary

MINT-7986678, MINT-7986639, MINT-7986700, MINT-7986720, MINT-7986736, MINT-7986760, MINT-7986787: LXR (uniprotkb:Q13133) physically interacts (MI:0915) with SRC1 (uniprotkb:Q15788) and RXR (uniprotkb:P19793) by pull down (MI:0096)MINT-7986596, MINT-7986621: SRC1 (uniprotkb:Q15788) physically interacts (MI:0915) with LXR (uniprotkb:Q13133) by pull down (MI:0096)MINT-7986555, MINT-7986575: LXR (uniprotkb:Q13133) physically interacts (MI:0915) with SRC1 (uniprotkb:Q15788) by two hybrid (MI:0018)MINT-7986808, MINT-7986907, MINT-7986890: SRC1 (uniprotkb:Q15788) binds (MI:0407) to LXR (uniprotkb:Q13133) by pull down (MI:0096)MINT-7986822, MINT-7986848, MINT-7986865: SRC1 (uniprotkb:Q15788) binds (MI:0407) to RXR (uniprotkb:P19793) by pull down (MI:0096)  相似文献   

12.
13.
In this paper we investigate the interaction between the C-terminal domains of the measles virus phosphoprotein (XD) and nucleoprotein (NTAIL) by using nuclear magnetic resonance chemical shift perturbation experiments. Using both NTAIL constructs and peptides, we show that contrary to the conserved Box2 region (N489-506), the C-terminal region of NTAIL (N513-525) does not directly interact with XD, and yet affects binding to XD. We tentatively propose a model where the C-terminus of NTAIL would stabilize the NTAIL-XD complex either via a functional coupling with N489-506 or by reducing the entropic penalty associated to the binding-coupled-to-folding process.

Structured summary

MINT-7009780, MINT-7009793, MINT-7009808: N-tail (uniprotkb:Q89933) and P (uniprotkb:P03422) bind (MI:0407) by nuclear magnetic resonance (MI:0077)  相似文献   

14.
Most organisms synthesise the B6 vitamer pyridoxal 5-phosphate (PLP) via the glutamine amidotransferase PLP synthase, a large enzyme complex of 12 Pdx1 synthase subunits with up to 12 Pdx2 glutaminase subunits attached. Deletion analysis revealed that the C-terminus has four distinct functionalities: assembly of the Pdx1 monomers, binding of the pentose substrate (ribose 5-phosphate), formation of the reaction intermediate I320, and finally PLP synthesis. Deletions of distinct C-terminal regions distinguish between these individual functions. PLP formation is the only function that is conferred to the enzyme by the C-terminus acting in trans, explaining the cooperative nature of the complex.

Structured summary

MINT-7994448: PfPdx1 (uniprotkb:C6KT50) and PfPdx1 (uniprotkb:C6KT50) bind (MI:0407) by molecular sieving (MI:0071)MINT-7994425, MINT-7994413, MINT-7994435: PfPdx1 (uniprotkb:C6KT50) and PfPdx1 (uniprotkb:C6KT50) bind (MI:0407) by cosedimentation in solution (MI:0028).  相似文献   

15.
MDM2 and MDM4 are proteins involved in regulating the tumour suppressor p53. MDM2/4 and p53 interact through their N-terminal domains and disrupting this interaction is a potential anticancer strategy. The MDM2-p53 interaction is structurally and biophysically well characterised, whereas equivalent studies on MDM4 are hampered by aggregation of the protein. Here we present the NMR characterization of MDM4 (14-111) both free and in complexes with peptide and small-molecule ligands. MDM4 is more dynamic in its apo state than is MDM2, with parts of the protein being unstructured. These regions become structured upon binding of a ligand. MDM4 appears to bind its ligand through conformational selection and/or an induced fit mechanism; this might influence rational design of MDM4 inhibitors.

Structured summary

MINT-7896835: p53 (uniprotkb:P04637) and MDM4 (uniprotkb:O15151) bind (MI:0407) by isothermal titration calorimetry (MI:0065)MINT-7896820: p53 (uniprotkb:P04637) and MDM4 (uniprotkb:O15151) bind (MI:0407) by nuclear magnetic resonance (MI:0077)  相似文献   

16.
Signal transducing adapter molecule (STAM) forms the endosomal sorting complex required for transport-0 (ESCRT-0) complex with hepatocyte growth factor-regulated substrate (Hrs) to sort the ubiquitinated cargo proteins from the early endosomes to the ESCRT-1 complex. ESCRT-0 complex, STAM and Hrs, contains multiple ubiquitin binding domains, in which STAM has two ubiquitin binding domains, Vps27/Hrs/Stam (VHS) and ubiquitin interacting motif (UIM) at its N-terminus. By the cooperation of the multiple ubiquitin binding domains, the ESCRT-0 complex recognizes poly-ubiquitin, especially Lys63-linked ubiquitin. Here, we report the backbone resonance assignments and the secondary structure of the N-terminal 191 amino acids of the human STAM1 which includes the VHS domain and UIM. The {1H}-15N heteronuclear NOE experiments revealed that an unstructured and flexible loop region connects the VHS domain and UIM. Our work provides the basic information for the further NMR investigation of the interaction between STAM1 and poly-ubiquitin.  相似文献   

17.
18.
Inhibitor of growth 2 (ING2) gene encodes a candidate tumor suppressor and is frequently reduced in many tumors. However, the mechanisms underlying the regulation of ING2, in particular its protein stability, are still unclear. Here we show that the homologous to E6AP carboxyl terminus (HECT)-type ubiquitin ligase Smad ubiquitination regulatory factor 1 (Smurf1) interacts with and targets ING2 for poly-ubiquitination and proteasomal degradation. Intriguingly, the ING2 binding domain in Smurf1 was mapped to the catalytic HECT domain. Furthermore, the C-terminal PHD domain of ING2 was required for Smurf1-mediated degradation. This study provided the first evidence that the stability of ING2 could be regulated by ubiquitin-mediated degradation.

Structured summary

MINT-7894271: ING2 (uniprotkb:Q9H160) binds (MI:0407) to Smurf1 (uniprotkb:Q9HCE7) by pull-down (MI:0096)MINT-7894319, MINT-7894339: ING2 (uniprotkb:Q9H160) physically interacts (MI:0915) with Smurf1 (uniprotkb:Q9HCE7) by anti tag co-immunoprecipitation (MI:0007)MINT-7894301: Smurf1 (uniprotkb:Q9HCE7) physically interacts (MI:0915) with ING2 (uniprotkb:Q9H160) by anti bait co-immunoprecipitation (MI:0006)MINT-7894358: ING1b (uniprotkb:Q9UK53-2) physically interacts (MI:0915) with Smurf1 (uniprotkb:Q9HCE7) by anti tag co-immunoprecipitation (MI:0007)MINT-7894249: ING2 (uniprotkb:Q9H160) physically interacts (MI:0915) with ubiquitin (uniprotkb:P62988) by anti tag co-immunoprecipitation (MI:0007)  相似文献   

19.
eIF3f is a subunit of eukaryotic initiation factor 3 (eIF3). We previously showed that eIF3f is phosphorylated by cyclin dependent kinase 11 (CDK11p46) which is an important effector in apoptosis. Here, we identified a second eIF3f phosphorylation site (Thr119) by CDK11p46 during apoptosis. We demonstrated that eIF3f is directly phosphorylated by CDK11p46 in vivo. Phosphorylation of eIF3f plays an important role in regulating its function in translation and apoptosis. Phosphorylation of eIF3f enhances the association of eIF3f with the core eIF3 subunits during apoptosis. Our data suggested that eIF3f may inhibit translation by increasing the binding to the eIF3 complex during apoptosis.

Structured summary

MINT-6948874: EIF3b (uniprotkb:P55884) physically interacts (MI:0218) with EIF3f (uniprotkb:O00303) by anti bait coimmunoprecipitation (MI:0006)MINT-6948891: EIF3b (uniprotkb:P55884) physically interacts (MI:0218) with EIF3c (uniprotkb:Q99613), EIF3a (uniprotkb:Q14152) and EIF3f (uniprotkb:O00303) by anti bait coimmunoprecipitation (MI:0006)MINT-6948836, MINT-6948849, MINT-6948862: CDK11p46 (uniprotkb:P21127) phosphorylates (MI:0217) EIF3f (uniprotkb:O00303) by protein kinase assay (MI:0424)  相似文献   

20.
The universal enzymatic cofactor vitamin B6 can be synthesized as pyridoxal 5-phosphate (PLP) by the glutamine amidotransferase Pdx1. We show that Saccharomyces cerevisiae Pdx1 is hexameric by analytical ultracentrifugation and by crystallographic 3D structure determination. Bacterial homologues were previously reported to exist in hexamer:dodecamer equilibrium. A small sequence insertion found in yeast Pdx1 elevates the dodecamer dissociation constant when introduced into Bacillus subtilis Pdx1. Further, we demonstrate that the yeast Pdx1 C-terminus contacts an adjacent subunit, and deletion of this segment decreases enzymatic activity 3.5-fold, suggesting a role in catalysis.

Structured summary

MINT-7147859: PDX1 (uniprotkb:P16451) and PDX1 (uniprotkb:P16451) bind (MI:0407) by cosedimentation in solution (MI:0028)MINT-7147899: PDX1 (uniprotkb:P37528) and PDX1 (uniprotkb:P37528) bind (MI:0407) by cosedimentation in solution (MI:0028)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号