首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Synthesis of the potent antiplasmodial 4-aminoquinoline, phenylequine (PQ), is reported for the first time. PQ and the two analogues show increased efficacy in moving from the chloroquine sensitive D10 to the chloroquine resistant K1 strain in vitro. The in vivo efficacy of PQ, and salts thereof, have been determined in Plasmodium berghei ANKA and Plasmodium yoelii. Phenylequine hydrochloride has shown an ED50 of 0.81 in P. yoelii (cf chloroquine ED50 = 1.31).  相似文献   

2.
Plasmodium falciparum malaria imposes a serious public health concern throughout the tropics. Although genetic tools are principally important to fully investigate malaria parasites, currently available forward and reverse tools are fairly limited. It is expected that parasites with a high mutation rate can readily acquire novel phenotypes/traits; however, they remain an untapped tool for malaria biology. Here, we generated a mutator malaria parasite (hereinafter called a ‘malaria mutator’), using site-directed mutagenesis and gene transfection techniques. A mutator Plasmodium berghei line with a defective proofreading 3′ → 5′ exonuclease activity in DNA polymerase δ (referred to as PbMut) and a control P. berghei line with wild-type DNA polymerase δ (referred to as PbCtl) were maintained by weekly passage in ddY mice for 122 weeks. High-throughput genome sequencing analysis revealed that two PbMut lines had 175–178 mutations and a 86- to 90-fold higher mutation rate than that of a PbCtl line. PbMut, PbCtl, and their parent strain, PbWT, showed similar course of infection. Interestingly, PbMut lost the ability to form gametocytes during serial passages. We believe that the malaria mutator system could provide a novel and useful tool to investigate malaria biology.  相似文献   

3.
Increase in drug detoxification and alteration of drug uptake and efflux of Plasmodium falciparum were investigated for their possible association with mefloquine (MQ) resistance in five different clones of P. falciparum from Thailand (T994b3, K1CB2, PR70CB1, PR71CB2 and TM4CB8-2.2.3). Fifty percent inhibitory concentration (IC50) values from these five clones varied between 30- and 50-fold. Regarding the detoxification mechanism, the ability of P. falciparum clones to biotransform MQ was shown in vitro by parasite microsomal protein prepared from parasite infected red blood cells protein (30 μg), NADPH (1 nM) and phosphate buffer pH 7.4, carried out at 37 °C with agitation. Radiolabelled unmetabolized MQ and possible metabolite(s) generated from the reaction was extracted into ethylacetate and separated by radiometric-HPLC after 1 h. All clones were capable of converting MQ into carboxymefloquine (CMQ), which is the main metabolite in human plasma. In addition, another unidentified metabolite eluted at 4.2 min on the chromatograph could be detected from the incubation reaction. This metabolite has never been detected in human liver microsomes before. There was no significant difference in the percentages of CMQ formed in the resistant (T994b3, PR70CB1, PR71CB2) and sensitive (TM4CB8-2.2.3, K1CB2) clones. Another possible mechanism, i.e., alteration in the accumulation of MQ in the parasites was investigated in vitro using [14C]MQ as a tracer. The time courses of [14C]MQ uptake and efflux were generally characterized by two phases. A trend of increased efflux of [14C]MQ was observed in the resistant compared with sensitive clones.  相似文献   

4.
There is a great need of new drugs against malaria because of the increasing spread of parasite resistance against the most commonly used drugs in the field. We found that monensin, a common veterinary antibiotic, has a strong inhibitory effect in Plasmodium berghei and Plasmodium yoelii sporozoites hepatocyte infection in vitro. Infection of host cells by another apicomplexan parasite with a similar mechanism of host cell invasion, Toxoplasma tachyzoites, was also inhibited. Treatment of mice with monensin abrogates liver infection with P. berghei sporozoites in vivo. We also found that at low concentrations monensin inhibits the infection of Plasmodium sporozoites by rendering host cells resistant to infection, rather than having a direct effect on sporozoites. Monensin effect is targeted to the initial stages of parasite invasion of the host cell with little or no effect on development, suggesting that this antibiotic affects an essential host cell component that is required for Plasmodium sporozoite invasion.  相似文献   

5.
The analysis of reciprocal genetic crosses between resistant Helicoverpa armigera strain (BH-R) (227.9-fold) with susceptible Vadodara (VA-S) strain showed dominance (h) of 0.65-0.89 and degree of dominance (D) of 0.299-0.782 suggesting Cry1Ac resistance as a semi-dominant trait. The D and h values of F1 hybrids of female resistant parent were higher than female susceptible parent, showing maternally enhanced dominance of Cry1Ac resistance. The progeny of F2 crosses, backcrosses of F1 hybrid with resistant BH-R parent did not differ significantly in respect of mortality response with resistant parent except for backcross with female BH-R and male of F1 (BH-R × VA-S) cross, suggesting dominant inheritance of Cry1Ac resistance. Evaluation of some biological attributes showed that larval and pupal periods of progenies of reciprocal F1 crosses, backcrosses and F2 crosses were either at par with resistant parent or lower than susceptible parent on treated diet (0.01 μg/g). The susceptible strain performed better in terms of pupation and adult formation than the resistant strain on untreated diet. In many backcrosses and F2 crosses, Cry1Ac resistance favored emergence of more females than males on untreated diet. The normal larval period and the body weight (normal larval growth) were the dominant traits associated with susceptible strain as contrast to longer larval period and the lower body weight (slow growth) associated with resistance trait. Further, inheritance of larval period in F2 and backcross progeny suggested existence of a major resistant gene or a set of tightly linked loci associated with Cry1Ac sensitivity.  相似文献   

6.
Strains of Plasmodium berghei resistant to clindamycin or minocycline were selected by a procedure in which groups of infected mice were treated with increasing doses of drug during each of a series of subpassages. Groups of five mice, each infected by intravenous inoculation with 10 million parasitized erythrocytes, were treated orally with different doses of drug for four consecutive days beginning on the day of infection. Subpassages were routinely made by Day 7, using donor mice from the group that had been treated with the highest dose of drug that allowed for some development of parasitemia during the preceding passage. Drug doses were increased in each passage as dictated by the development of parasitemia during the previous treated passage.The rate of development of resistance to clindamycin or minocycline was much slower than to conventional antimalarials such as chloroquine, quinine, or pyrimethamine. P. berghei developed total resistance to the latter compounds in nine to 12 treated passages in mice over a period of 60 to 85 days. In contrast, development of total resistance to clindamycin required 42 treated passages over a period of 300 days. Total resistance to minocycline was not attained during 86 successive minocycline-treated passages in mice over a period of 600 days, but a sixfold increase in resistance to minocycline was observed.The clindamycin-resistant strain was normally sensitive to minocycline, chloroquine, quinine, and pyrimethamine. The strain partially resistant to minocycline was normally sensitive to clindamycin, chloroquine, quinine, and pyrimethamine. Resistance to clindamycin was stable during 51 drug-free passages in mice over a period of 1 year. Resistance to minocycline was unstable. During 16 drug-free passages in mice the strain reverted towards normal sensitivity to minocycline. Strains resistant to clindamycin or minocycline showed no difference in rate of development in mice as compared to the parent strain. Likewise, only minor morphological modifications were seen in Giemsa-stained blood smears between the two resistant strains and the parent strain.These results suggest that other species of malaria may develop resistance to clindamycin or minocycline. Should resistance to one of these compounds appear, however, it should not invalidate the use of the other in the treatment of malaria.  相似文献   

7.
The ability to manipulate the genome and induce site-specific recombination using either Flippase (FLP) or Cre recombinase has been useful in many systems including Plasmodium berghei for specific deletion events or to obtain conditional gene expression. To test whether these recombinases are active in Plasmodium falciparum we constructed gene knockouts that contain sequences recognised as templates for site-specific recombination. We tested the ability of FLP and Cre recombinases, expressed conditionally in P. falciparum, to mediate deletion of the human dihydrofolate reductase (hdhfr) drug resistance gene. We show that Cre recombinase is capable of efficient removal of hdhfr by site-specific recombination. In contrast, FLP recombinase is very inefficient, even at the optimum temperature of 30 °C for this enzyme. These results demonstrate that Cre recombinase can be utilised in P. falciparum for deletion of specific sequences such as drug resistance genes. This can be exploited for recycling of drug resistance cassettes and for the design of specific recombination events in P. falciparum.  相似文献   

8.
The antifolate anticancer drug methotrexate (MTX) has potent activity against Plasmodium falciparum in vitro. Experience of its use in the treatment of rheumatoid arthritis indicates that it could be safe and efficacious for treating malaria. We sought to establish a murine malaria model to study the mechanism of action and resistance of MTX and its analogue aminopterin (AMP). We used Plasmodium berghei, Plasmodium yoelii yoelii, Plasmodium chabaudi and Plasmodium vinckei. None of these species were susceptible to either drug. We have also tested the efficacy of pyrimethamine in combination with folic acid in P. berghei, and data indicate that folic acid does not influence pyrimethamine efficacy, which suggests that P. berghei may not transport folate. Since MTX and AMP utilise folate receptor/transport to gain access to cells, their lack of efficacy against the four tested murine malaria species may be the result of inefficiency of drug transport.  相似文献   

9.
Malaria is one of the most devastating parasitic diseases worldwide. Plasmodium drug resistance remains a major challenge to malaria control and has led to the re-emergence of the disease. Chloroquine (CQ) and artemisinin (ART) are thought to exert their anti-malarial activity inducing cytotoxicity in the parasite by blocking heme degradation (for CQ) and increasing oxidative stress. Besides the contribution of the CQ resistance transporter (PfCRT) and the multidrug resistant gene (pfmdr), CQ resistance has also been associated with increased parasite glutathione (GSH) levels. ART resistance was recently shown to be associated with mutations in the K13-propeller protein. To analyze the role of GSH levels in CQ and ART resistance, we generated transgenic Plasmodium berghei parasites either deficient in or overexpressing the gamma-glutamylcysteine synthetase gene (pbggcs) encoding the rate-limiting enzyme in GSH biosynthesis. These lines produce either lower (pbggcs-ko) or higher (pbggcs-oe) levels of GSH than wild type parasites. In addition, GSH levels were determined in P. berghei parasites resistant to CQ and mefloquine (MQ). Increased GSH levels were detected in both, CQ and MQ resistant parasites, when compared to the parental sensitive clone. Sensitivity to CQ and ART remained unaltered in both pgggcs-ko and pbggcs-oe parasites when tested in a 4 days drug suppressive assay. However, recrudescence assays after the parasites have been exposed to a sub-lethal dose of ART showed that parasites with low levels of GSH are more sensitive to ART treatment. These results suggest that GSH levels influence Plasmodium berghei response to ART treatment.  相似文献   

10.
The combination therapy of the Artemisinin-derivative Artemether (ART) with Lumefantrine (LM) (Coartem®) is an important malaria treatment regimen in many endemic countries. Resistance to Artemisinin has already been reported, and it is feared that LM resistance (LMR) could also evolve quickly. Therefore molecular markers which can be used to track Coartem® efficacy are urgently needed. Often, stable resistance arises from initial, unstable phenotypes that can be identified in vitro. Here we have used the Plasmodium falciparum multidrug resistant reference strain V1S to induce LMR in vitro by culturing the parasite under continuous drug pressure for 16 months. The initial IC50 (inhibitory concentration that kills 50% of the parasite population) was 24 nM. The resulting resistant strain V1SLM, obtained after culture for an estimated 166 cycles under LM pressure, grew steadily in 378 nM of LM, corresponding to 15 times the IC50 of the parental strain. However, after two weeks of culturing V1SLM in drug-free medium, the IC50 returned to that of the initial, parental strain V1S. This transient drug tolerance was associated with major changes in gene expression profiles: using the PFSANGER Affymetrix custom array, we identified 184 differentially expressed genes in V1SLM. Among those are 18 known and putative transporters including the multidrug resistance gene 1 (pfmdr1), the multidrug resistance associated protein and the V-type H+ pumping pyrophosphatase 2 (pfvp2) as well as genes associated with fatty acid metabolism. In addition we detected a clear selective advantage provided by two genomic loci in parasites grown under LM drug pressure, suggesting that all, or some of those genes contribute to development of LM tolerance – they may prove useful as molecular markers to monitor P. falciparum LM susceptibility.  相似文献   

11.
High-throughput screening (HTS) of small-molecule libraries against pharmacological targets is a key strategy of contemporary drug discovery. This study reports a simple, robust, and cell-based luminescent method for assaying antimalarial drugs. Using transfection technology, we generated a stable Plasmodium falciparum line with high levels of firefly luciferase expression. A luciferase assay based on this parasite line was optimized in a 96-well plate format and used to compare with the standard [3H] hypoxanthine radioisotope method. The 50% inhibitory concentrations (IC50s) of chloroquine, artesunate, artemether, dihydroartemisinin and curcumin obtained by these two methods were not significantly different (P > 0.05, ANOVA). In addition, this assay could be performed conveniently with a luminescence plate reader using unsynchronized stages within as early as 12 h. Furthermore, the luciferase assay is robust with a Z′ score of 0.77-0.92, which suggests the feasibility for further miniaturization and automation.  相似文献   

12.
Fifteen strains of Plasmodium falciparum have been cultivated since 1979 using the Trager and Jensen method of continuous culture on isolates from malaria patients. One hundred and two drug sensitivity studies have been carried out on these strains using a semimicro test. Three isolates, initially resistant to chloroquine, adapted rapidly to in vitro cultivation and maintained their high level of resistance (ED50 above 660 nM). Eleven isolates, initially chloroquine sensitive (ED50 under 90 nM) became resistant to this drug (ED50 = 190 to 1950 nM) after the 2–15 weeks required for their adaptation to continuous culture. The resistance of these strains never decreased during the following 15 months of continuous culture. The sensitivity to quinine varied initially from one strain to another (ED50= 160 to 660 nM) and fluctuated during cultivation in the ratio of 1, 3.5 for a given strain. The sensitivity of mefloquine remained high for all strains (ED50 under 150 nM) but one (ED50 = 560 nM). These results suggest that there might be a relationship between in vitro adaptation to culture of P. falciparum by the Trager-Jensen method and a chloroquine-resistant characteristic of the strain. There is the possibility of the emergence of a drug-resistant subpopulation or of changes in the metabolic pathways.  相似文献   

13.
We investigated the in vivo effects of orally administered cariprazine (RGH-188; trans-N-{4-[2-[4-(2,3-dichlorophenyl)-piperazin-1-yl]-ethyl]-cyclohexyl}-N′,N′-dimethyl-urea), a D3/D2 dopamine receptor partial agonist with ∼10-fold preference for the D3 receptor. Oral bioavailability of cariprazine at a dose of 1 mg/kg in rats was 52% with peak plasma concentrations of 91 ng/mL. Cariprazine 10 mg/kg had good blood-brain barrier penetration, with a brain/plasma AUC ratio of 7.6:1. In rats, cariprazine showed dose-dependent in vivo displacement of [3H](+)-PHNO, a dopamine D3 receptor-preferring radiotracer, in the D3 receptor-rich region of cerebellar lobules 9 and 10. Its potent inhibition of apomorphine-induced climbing in mice (ED50 = 0.27 mg/kg) was sustained for 8 h. Cariprazine blocked amphetamine-induced hyperactivity (ED50 = 0.12 mg/kg) and conditioned avoidance response (CAR) (ED50 = 0.84 mg/kg) in rats, and inhibited the locomotor-stimulating effects of the noncompetitive NMDA antagonists MK-801 (ED50 = 0.049 mg/kg) and phencyclidine (ED50 = 0.09 mg/kg) in mice and rats, respectively. It reduced novelty-induced motor activity of mice (ED50 = 0.11 mg/kg) and rats (ED50 = 0.18 mg/kg) with a maximal effect of 70% in both species. Cariprazine produced no catalepsy in rats at up to 100-fold dose of its CAR inhibitory ED50 value. Cariprazine 0.02-0.08 mg/kg significantly improved the learning performance of scopolamine-treated rats in a water-labyrinth learning paradigm. Though risperidone, olanzapine, and aripiprazole showed antipsychotic-like activity in many of these assays, they were less active against phencyclidine and more cataleptogenic than cariprazine, and had no significant effect in the learning task. The distinct in vivo profile of cariprazine may be due to its higher affinity and in vivo binding to D3 receptors versus currently marketed typical and atypical antipsychotics.  相似文献   

14.
Naphthoquine (NQ), as a component of ARCO® which composed of NQ and artemisinin, is a new 4-aminoquinoline antimalarial synthesized by our institute. Here, a naphthoquine-resistant line of rodent malaria parasite was selected through exposing Plasmodium berghei Keyberg 173 strain to progressively increased drug pressure. The selected strain showed a more than 200-fold decreased susceptibility to NQ with a stable resistance phenotype after 10 serial passages without drug pressure or when cryopreserved over a period of 12 months. In a cross-resistance assay, the susceptibility of NQ-resistant parasites to chloroquine was decreased by 14.5-fold. These findings imply NQ-resistant parasites might be selected by long-term usage of NQ in epidemic areas and the efficacy of NQ or ARCO® in chloroquine-resistant Plasmodium falciparum epidemic areas should be monitored closely.  相似文献   

15.
Tyrothricin, a complex mixture of antibiotic peptides from Bacillus brevis, was reported in 1944 to have antimalarial activity rivalling that of quinine in chickens infected with Plasmodium gallinaceum. We have isolated the major components of tyrothricin, cyclic decapeptides collectively known as the tyrocidines, and tested them against the human malaria parasite Plasmodium falciparum using standard in vitro assays. Although the tyrocidines differ from each other by conservative amino acid substitutions in only three positions, their observed 50% parasite inhibitory concentrations (IC50) spanned three orders of magnitude (0.58 to 360 nM). Activity correlated strictly with increased apparent hydrophobicity and reduced total side-chain surface area and the presence of ornithine and phenylalanine in key positions. In contrast, mammalian cell toxicity and haemolytic activities of the respective peptides were considerably less variable (2.6 to 28 μM). Gramicidin S, a structurally analogous antimicrobial peptide, was less active (IC50 = 1.3 μM) and selective than the tyrocidines. It exerted its parasite inhibition by rapid and selective lysis of infected erythrocytes as judged by fluorescence and light microscopy. The tyrocidines, however, did not cause an overt lysis of infected erythrocytes, but an inhibition of parasite development and life-cycle progression.  相似文献   

16.
It was earlier hypothesized that the malarial parasite may convert precursors of folate analogues to synthesize de novo inhibitors toxic to itself, but not to the mammalian cell. It was suggested that one such analogue, 2,4-diamino-6-hydroxymethylpteridine (DAP) may be converted to aminopterin (AMP), a known dihydrofolate reductase inhibitor. In the present study, we evaluated the ability of DAP to inhibit proliferation of Plasmodium berghei NK65 in mice, with(out) folinic acid rescue. Cumulative dosages of DAP ranging from 0.1 to 20 mg/kg bw. administered either orally or intraperitoneally showed no suppression of parasite growth, or gave mild activities that were not statistically significant (P > 0.05). Our findings do not seem to support the hypothesis of selective de novo metabolism of DAP to AMP by the malarial parasite.  相似文献   

17.

Background

Malaria is a devastating disease and Plasmodium falciparum is the most lethal parasite infecting humans. Understanding the biology of this parasite is vital in identifying potential novel drug targets. During every 48-hour intra-erythrocytic asexual replication cycle, a single parasite can produce up to 32 progeny. This extensive proliferation implies that parasites require substantial amounts of lipid precursors for membrane biogenesis. Glycerol kinase is a highly conserved enzyme that functions at the interface of lipid synthesis and carbohydrate metabolism. P. falciparum glycerol kinase catalyzes the ATP-dependent phosphorylation of glycerol to glycerol-3-phosphate, a major phospholipid precursor.

Methods

The P. falciparum glycerol kinase gene was disrupted using double crossover homologous DNA recombination to generate a knockout parasite line. Southern hybridization and mRNA analysis were used to verify gene disruption. Parasite growth rates were monitored by flow cytometry. Radiolabelling studies were used to assess incorporation of glycerol into parasite phospholipids.

Results

Disruption of the P. falciparum glycerol kinase gene produced viable parasites, but their growth was significantly reduced to 56.5 ± 1.8% when compared to wild type parasites. 14C-glycerol incorporation into the major phospholipids of the parasite membrane, phosphatidylcholine and phosphatidylethanolamine, was 48.4 ± 10.8% and 53.1 ± 5.7% relative to an equivalent number of wild type parasites.

Conclusions

P. falciparum glycerol kinase is required for optimal intra-erythrocytic asexual parasite development. Exogenous glycerol may be used as an alternative carbon source for P. falciparum phospholipid biogenesis, despite the lack of glycerol kinase to generate glycerol-3-phosphate.

General significance

These studies provide new insight into glycerolipid metabolism in P. falciparum.  相似文献   

18.
Chemotherapy of rodent malaria: transfer of resistance vs mutation   总被引:1,自引:0,他引:1  
Pyrimethamine-resistant strains of Plasmodium berghei and P. vinckei were produced by exposing populations of erythrocytic parasites to the selection pressure of increasing doses of drug as well as by single-step mutations. Pyrimethamine-sensitive parasites of both rodent plasmodia were found to mutate at a rate of 1–2 × 10?11 when exposed to a single course of drug therapy, consisting of 15 mg/kg/day for 4 consecutive days, given subcutaneously. Resistance obtained by either method, was found to be stabile for at least 40 passages in the absence of drug pressure, the longest number of passages tested. Parasites exposed to 15 mg/ kg/day were also found to be resistant to 160 mg/kg/day, the maximum dose of pyrimethamine tolerated by the rodent host.Plasmodium berghei chloroquine-sensitive parasites were found to have a mutation rate of 1.5 × 10?10, when exposed to a single course of chloroquine therapy, consisting of 30 mg/kg/day chloroquine base given for 4 consecutive days, subcutaneously. These parasites were also found to be resistant to 60 mg/kg/day the highest dose of chloroquine tolerated by the rodent host. Chloroquine-resistant strains of P. vinckei could not be developed by a single-step mutation nor by selection by slow increases in drug pressure.Pyrimethamine-resistant strains of P. berghei, whether, the resistance was developed by single-step mutation, or by slowly increasing the pyrimethamine doses over extended periods of time, demonstrated dihydrofolate reductases which were similar in activity, Michaelis constants, and inability to be stimulated by increased concentrations of KCl. The same was found to be true for the dihydrofolate reductases (EC 1.5.1.3) isolated from pyrimethamine-resistant P. vinckei strains. The enzymes isolated from the resistant strains differed in all respects from their sensitive counterparts.Attempts at drug resistance-transfer, using both a biological filter system, and a dual drug resistant system, were both unsuccessful. The origin of all drug resistant strains studied and reported in this paper, can best be explained by the occurrence of mutation, most probably involving the change of a single nucleotide base in the DNA.  相似文献   

19.
A set of derivatives encompassing structural modifications on the privileged phenalenone scaffold were assessed for their antiplasmodial activities against a strain of chloroquine sensitive Plasmodium falciparum F32. Two compounds exhibited considerable effects against the malaria parasite (IC50 ? 1 μg/mL), one of which maintained the same level of activity in a chloroquine-resistant strain. This is the first record of antiplasmodial activity on this type of scaffold, providing a new structural motif as a new lead for antimalarial activity.  相似文献   

20.
Exploration of triclosan analogs has led to novel diaryl ureas with significant potency against in vitro cultures of drug-resistant and drug-sensitive strains of the human malaria parasite Plasmodium falciparum. Compound 18 demonstrated EC50 values of 37 and 55 nM versus in vitro cultured parasite strains and promising in vivo efficacy in a Plasmodium berghei antimalarial mouse model, with >50% survival at day 31 post-treatment when administered subcutaneously at 256 mg/kg. This series of compounds provides a chemical scaffold of novel architecture, as validated by cheminformatics analysis, to pursue antimalarial drug discovery efforts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号