首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pharmacological studies, using Ca2+ channel blockers (LaCl3 and verapamil) and calmodulin (CaM) antagonists (CPZ and W7), were carried out to understand the role of Ca2+/CaM in the regulation of heat shock-induced expression of Hsp90 (Hsp87 and Hsp85) and Hsp70 (Hsp75 and Hsp73) members in sorghum. It was observed that the expression of both Hsp87 and Hsp85 proteins was decreased in presence of Ca2+ channel blockers and CaM antagonists, under both control and heat stress conditions, as contrary to the steady state levels of Hsp75 and Hsp73, which were not affected significantly under similar conditions. Further, the exposure of sorghum seedlings to geldanamycin, a specific inhibitor of Hsp90, resulted in induction of Hsp87 and Hsp85 in the absence of heat shock also. This study provides the first evidence suggesting that in plants, the in vivo expression of Hsp90 (Hsp87 and Hsp85) is likely to be modulated by Ca2+/CaM under normal and thermal stress conditions. The likely implications of these findings are discussed.Key words: calmodulin, calmodulin-binding proteins, heat shock proteins, sorghum  相似文献   

2.
Although calmodulin is known to be a component of the Hsp70/Hsp90 multichaperone complex, the functional role of the protein remains uncertain. In this study, we have identified S100A1, but not calmodulin or other S100 proteins, as a potent molecular chaperone and a new member of the multichaperone complex. Glutathione S-transferase pull-down assays and co-immunoprecipitation experiments indicated the formation of stable complexes between S100A1 and Hsp90, Hsp70, FKBP52, and CyP40 both in vitro and in mammalian cells. S100A1 potently protected citrate synthase, aldolase, glyceraldehyde-3-phosphate dehydrogenase, and rhodanese from heat-induced aggregation and suppressed the aggregation of chemically denatured rhodanese and citrate synthase during the refolding pathway. In addition, S100A1 suppressed the heat-induced inactivation of citrate synthase activity, similar to that for Hsp90 and p23. The chaperone activity of S100A1 was antagonized by calmodulin antagonists, such as fluphenazine and prenylamine, that is, indeed an intrinsic function of the protein. The overexpression of S100A1 in COS-7 cells protected transiently expressed firefly luciferase and Escherichia coli beta-galactosidase from inactivation during heat shock. The results demonstrate a novel physiological function for S100A1 and bring us closer to a comprehensive understanding of the molecular mechanisms of the Hsp70/Hsp90 multichaperone complex.  相似文献   

3.
Heat shock protein 90α (Hsp90α) is a ubiquitously expressed molecular chaperone, which is essential for the maintenance of eukaryote homeostasis. Hsp90α can also be secreted extracellularly and is associated with several physiological and pathological processes including wound healing, cancer, infectious diseases and diabetes. Angiogenesis, defined as the sprouting of new blood vessels from pre-existing capillaries via endothelial cell proliferation and migration, commonly occurs in and contributes to the above mentioned processes. However, the secretion of Hsp90α from endothelial cells and also its function in angiogenesis are still unclear. Here we investigated the role of extracellular Hsp90α in angiogenesis using dermal endothelial cells in vitro and a wound healing model in vivo. We find that the secretion of Hsp90α but not Hsp90β is increased in activated endothelial cells with the induction of angiogenic factors and matrix proteins. Secreted Hsp90α localizes on the leading edge of endothelial cells and promotes their angiogenic activities, whereas Hsp90α neutralizing antibodies reverse the effect. Furthermore, using a mouse skin wound healing model in vivo, we demonstrate that extracellular Hsp90α localizes on blood vessels in granulation tissues of wounded skin and promotes angiogenesis during wound healing. Taken together, our study reveals that Hsp90α can be secreted by activated endothelial cells and is a positive regulator of angiogenesis, suggesting the potential application of Hsp90α as a stimulator for wound repair.  相似文献   

4.
Heat shock protein (Hsp) 70/Hsp90-organizing proteins (Hop/Sti1) are thought to function as adaptor proteins to link the two chaperone machineries Hsp70 and Hsp90 during the processing of substrate proteins in eukaryotes. Hop (Hsp70/Hsp90-organizing protein) is composed of three tetratricopeptide repeat (TPR) domains, of which the first (TPR1) binds to Hsp70, the second (TPR2A) binds to Hsp90, and the third (TPR2B) is of unknown function. Contrary to most other eukaryotes, the homologue closest to the Caenorhabditis elegans Hop homologue R09E12.3 (CeHop) lacks the TPR1 domain and the short linker region connecting it to TPR2A, questioning the reported function as an Hsp90/Hsp70 adaptor in vitro and in vivo. We observed high constitutive expression levels of CeHop and detected significant phenotypes upon knockdown, linking the protein to functions in gonad development. Interestingly, we observed physical interactions with both chaperones Hsp70 and Hsp90, albeit only the interaction with Hsp90 is strong and inhibition of the Hsp90 ATPase activity can be observed upon binding of CeHop. However, the formation of ternary complexes with both chaperone machineries is impaired, as Hsp70 and Hsp90 compete for CeHop interaction sites, in particular as Hsp90 binds to both TPR domains simultaneously and requires both TPR domains for ATPase regulation. These results imply that, at least in C. elegans, essential functions of Hop exist which apparently do not depend on the simultaneous binding of Hsp90 and Hsp70 to Hop.  相似文献   

5.
Hsp90 and Hsp70 are highly conserved molecular chaperones that help maintain proteostasis by participating in protein folding, unfolding, remodeling and activation of proteins. Both chaperones are also important for cellular recovery following environmental stresses. Hsp90 and Hsp70 function collaboratively for the remodeling and activation of some client proteins. Previous studies using E. coli and S. cerevisiae showed that residues in the Hsp90 middle domain directly interact with a region in the Hsp70 nucleotide binding domain, in the same region known to bind J-domain proteins. Importantly, J-domain proteins facilitate and stabilize the interaction between Hsp90 and Hsp70 both in E. coli and S. cerevisiae. To further explore the role of J-domain proteins in protein reactivation, we tested the hypothesis that J-domain proteins participate in the collaboration between Hsp90 and Hsp70 by simultaneously interacting with Hsp90 and Hsp70. Using E. coli Hsp90, Hsp70 (DnaK), and a J-domain protein (CbpA), we detected a ternary complex containing all three proteins. The interaction involved the J-domain of CbpA, the DnaK binding region of E. coli Hsp90, and the J-domain protein binding region of DnaK where Hsp90 also binds. Additionally, results show that E. coli Hsp90 interacts with E. coli J-domain proteins, DnaJ and CbpA, and that yeast Hsp90, Hsp82, interacts with a yeast J-domain protein, Ydj1. Together these results suggest that the complexes may be transient intermediates in the pathway of collaborative protein remodeling by Hsp90 and Hsp70.  相似文献   

6.
Autoantibodies against certain stress or heat shock proteins (Hsps) may play a role in the pathogenesis and/ or prognosis of some diseases. Using immunoblotting with human recombinant Hsps and univariate and multivariate logistic regression models, we have investigated the presence of antibodies against Hsp70, the inducible member of the 70-kDa family of heat shock proteins, and analyzed its possible association with hypertension and working conditions. Plasma and serum were collected from 764 steel mill workers from 6 work sites exposed to (1) severe noise; (2) severe noise and dust; (3) noise, dust, and heat; (4) noise and heat; (5) severe noise and heat; and (6) office conditions (control). Workers with prolonged exposure to stresses such as noise, dust, and high temperature and a combination of these in the workplace had a high incidence (26.6% to 40.2%) of antibodies to Hsp70 compared to the lowest incidence (18.6%) of antibodies to Hsp70 in the control group of office workers. Moreover, there was a statistical association of antibodies against Hsp70 with hypertension. The statistical correlation between the presence of antibodies to Hsp70 and hypertension is higher in the group of workers with blood pressure of 160/95 mmHg than in the 140/90-mmHg group after excluding possible effects of the workplace stresses. These results suggest that harsh workplace conditions can increase the production of antibodies against Hsp70 and that the presence of antibodies to this stress protein may be associated with hypertension. The precise mechanism for the elevation of antibodies against Hsps by environmental and workplace stresses and their relation to hypertension remains to be established.  相似文献   

7.
8.
Hsp90 is critical for the regulation and activation of numerous client proteins critical for diverse functions such as cell growth, differentiation, and reproduction. Cytosolic Hsp90 function is dependent on a battery of co-chaperone proteins that regulate the ATPase activity of Hsp90 function or direct Hsp90 to interact with specific client proteins. Little is known about how Hsp90 complexes vary between different organisms and how this affects the scope of clients that are activated by Hsp90. This study determined whether ten distinct Hsp90 co-chaperones were encoded by genes in 19 disparate eukaryotic organisms. Surprisingly, none of the co-chaperones were present in all organisms. The co-chaperone Hop/Sti1 was most widely dispersed (18 out of 19 species), while orthologs of Cdc37, which is critical for the stability and activation of diverse protein kinases in yeast and mammals, were identified in only nine out of 19 species examined. The organism with the smallest proteome, Encephalitozoon cuniculi, contained only three of these co-chaperones, suggesting a correlation between client diversity and the complexity of the Hsp90 co-chaperone machine. Our results suggest co-chaperones are critical for cytosolic Hsp90 function in vivo, but that the composition of Hsp90 complexes varies depending on the specialized protein folding requirements of divergent species.  相似文献   

9.
Cell Stress & Chaperones journal has become a major outlet for papers and review articles about anti-heat shock protein (HSP) antibodies. In the last decade, it became evident that apart from their intracellular localization, members of the heat shock protein 90 (Hsp90; HSPC) and Hsp70 (HSPA) family are also found on the cell surface. In this review, we will focus on Hsp70 (HSPA1A), the major stress-inducible member of the human Hsp70 family. Depending on the cell type, the membrane association of Hsp70 comes in two forms. In tumor cells, Hsp70 appears to be integrated within the plasma membrane, whereas in non-malignantly transformed (herein termed normal) cells, Hsp70 is associated with cell surface receptors. This observation raises the question whether or not these two surface forms of Hsp70 in tumor and normal cells can be distinguished using Hsp70 specific antibodies. Presently a number of Hsp70 specific antibodies are commercially available. These antibodies were generated by immunizing mice either with recombinant or HeLa-derived human Hsp70 protein, parts of the Hsp70 protein, or with synthetic peptides. This review aims to characterize the binding of different anti-human Hsp70 antibodies and their capacity to distinguish between integrated and receptor-bound Hsp70 in tumor and normal cells.  相似文献   

10.
Ppt1 is the yeast member of a novel family of protein phosphatases, which is characterized by the presence of a tetratricopeptide repeat (TPR) domain. Ppt1 is known to bind to Hsp90, a molecular chaperone that performs essential functions in the folding and activation of a large number of client proteins. The function of Ppt1 in the Hsp90 chaperone cycle remained unknown. Here, we analyzed the function of Ppt1 in vivo and in vitro. We show that purified Ppt1 specifically dephosphorylates Hsp90. This activity requires Hsp90 to be directly attached to Ppt1 via its TPR domain. Deletion of the ppt1 gene leads to hyperphosphorylation of Hsp90 in vivo and an apparent decrease in the efficiency of the Hsp90 chaperone system. Interestingly, several Hsp90 client proteins were affected in a distinct manner. Our findings indicate that the Hsp90 multichaperone cycle is more complex than was previously thought. Besides its regulation via the Hsp90 ATPase activity and the sequential binding and release of cochaperones, with Ppt1, a specific phosphatase exists, which positively modulates the maturation of Hsp90 client proteins.  相似文献   

11.
The 20 S proteasome has been suggested to play a critical role in mediating the degradation of abnormal proteins under conditions of oxidative stress and has been found in tight association with the molecular chaperone Hsp90. To elucidate the role of Hsp90 in promoting the degradation of oxidized calmodulin (CaM(ox)), we have purified red blood cell 20 S proteasomes free of Hsp90 and assessed their ability to degrade CaM(ox) in the absence or presence of Hsp90. Purified 20 S proteasome does not degrade CaM(ox) unless Hsp90 is added. CaM(ox) degradation is sensitive to both proteasome and Hsp90-specific inhibitors and is further enhanced in the presence of 2 mm ATP. Irrespective of the presence of Hsp90, we find that unoxidized CaM is not significantly degraded. Direct binding measurements demonstrate that Hsp90 selectively associates with CaM(ox); essentially no binding is observed between Hsp90 and unoxidized CaM. These results indicate that Hsp90 in association with the 20 S proteasome can selectively associate with oxidized and partially unfolded CaM to promote degradation by the proteasome.  相似文献   

12.
13.
Heat shock protein 90 (Hsp90) is a molecular chaperone whose association is required for the stability and function of multiple mutated, chimeric and over-expressed signaling proteins that promote the growth and/or survival of cancer cells. Hsp90 client proteins include mutated p53, Bcr-Abl, Raf-1, Akt, ErbB2 and hypoxia-inducible factor 1α (HIF-1α). Hsp90 inhibitors, by interacting specifically with a single molecular target, cause the destabilization and eventual degradation of Hsp90 client proteins, and they have shown promising antitumor activity in preclinical model systems. One Hsp90 inhibitor, 17-allylaminogeldanamycin (17AAG), is currently in phase I clinical trial. Because of the chemoprotective activity of several proteins that are Hsp90 clients, the combination of an Hsp90 inhibitor with a standard chemotherapeutic agent could dramatically increase the in vivo efficacy of the therapeutic agent.  相似文献   

14.
Molecular chaperones Hsp70 and Hsp90 are in part responsible for maintaining the viability of cells by facilitating the folding and maturation process of many essential client proteins. The ubiquitin ligase C-terminus of Hsc70 interacting protein (CHIP) has been shown in vitro and in vivo to associate with Hsp70 and Hsp90 and ubiquitinate them, thus targeting them to the proteasome for degradation. Here, we study one facet of this CHIP-mediated turnover by determining the lysine residues on human Hsp70 and Hsp90 ubiquitinated by CHIP. We performed in vitro ubiquitination reactions of the chaperones using purified components and analyzed the samples by tandem mass spectrometry to identify modified lysine residues. Six such ubiquitination sites were identified on Hsp70 (K325, K451, K524, K526, K559, and K561) and 13 ubiquitinated lysine residues were found on Hsp90 (K107, K204, K219, K275, K284, K347, K399, K477, K481, K538, K550, K607, and K623). We mapped the ubiquitination sites on homology models of almost full-length human Hsp70 and Hsp90, which were found to cluster in certain regions of the structures. Furthermore, we determined that CHIP forms polyubiquitin chains on Hsp70 and Hsp90 linked via K6, K11, K48, and K63. These findings clarify the mode of ubiquitination of Hsp70 and Hsp90 by CHIP, which ultimately leads to their degradation.  相似文献   

15.
The ubiquitous molecular chaperone Hsp90 acts in concert with a cohort of associated proteins to facilitate the functional maturation of a number of cellular signaling proteins, such as steroid hormone receptors and oncogene tyrosine kinases. The Hsp90-associated protein p23 is required for the assembly of functional steroid aporeceptor complexes in cell lysates, and Hsp90-binding ansamycin antibiotics disrupt the activity of Hsp90-dependent signaling proteins in cultured mammalian cells and prevent the association of p23 with Hsp90-receptor heterocomplexes; these observations have led to the hypotheses that p23 is required for the maturation of Hsp90 target proteins and that ansamycin antibiotics abrogate the activity of such proteins by disrupting the interaction of p23 with Hsp90. In this study, I demonstrate that ansamycin antibiotics disrupt the function of Hsp90 target proteins expressed in yeast cells; prevent the assembly of Sba1, a yeast p23-like protein, into steroid receptor-Hsp90 complexes; and result in the assembly of receptor-Hsp90 complexes that are defective for ligand binding. To assess the role of p23 in Hsp90 target protein function, I show that the activity of Hsp90 target proteins is unaffected by deletion of SBA1. Interestingly, steroid receptor activity in cells lacking Sba1 displays increased sensitivity to ansamycin antibiotics, and this phenotype is rescued by the expression of human p23 in yeast cells. These findings indicate that Hsp90-dependent signaling proteins can achieve a functional conformation in vivo in the absence of p23. Furthermore, while the presence of p23 decreases the sensitivity of Hsp90-dependent processes to ansamycin treatment, ansamycin antibiotics disrupt signaling through some mechanism other than altering the Hsp90-p23 interaction.  相似文献   

16.
The ubiquitous Hsp90 is critical for protein homeostasis in the cells, stabilizing “client” proteins in a functional state. Hsp90 activity depends on its ability to bind and hydrolyze ATP, involving various conformational changes that are regulated by co-chaperones, posttranslational modifications and small molecules. Compounds like geldanamycin (GA) and radicicol inhibit the Hsp90 ATPase activity by occupying the ATP binding site, which can lead client protein to degradation and also inhibit cell growth and differentiation in protozoan parasites. Our goal was to produce the recombinant Hsp90 of Leishmania braziliensis (LbHsp90) and construct of its N-terminal (LbHsp90N) and N-domain and middle-domain (LbHsp90NM), which lacks the C-terminal dimerization domain, in order to understand how Hsp90 works in protozoa. The recombinant proteins were produced folded as attested by spectroscopy experiments. Hydrodynamic experiments revealed that LbHsp90N and LbHsp90NM behaved as elongated monomers while LbHsp90 is an elongated dimer. All proteins prevented the in vitro citrate synthase and malate dehydrogenase aggregation, attesting that they have chaperone activity, and interacted with adenosine ligands with similar dissociation constants. The LbHsp90 has low ATPase activity (kcat = 0.320 min− 1) in agreement with Hsp90 orthologs, whereas the LbHsp90NM has negligible activity, suggesting the importance of the dimeric protein for this activity. The GA interacts with LbHsp90 and with its domain constructions with different affinities and also inhibits the LbHsp90 ATPase activity with an IC50 of 0.7 μM. All these results shed light on the LbHsp90 activity and are the first step to understanding the Hsp90 molecular chaperone system in L. braziliensis.  相似文献   

17.
Heat shock protein 90 (Hsp90) is a molecular chaperone that plays a central role in maintaining cellular homeostasis by facilitating activation of a large number of client proteins. ATP-dependent client activation by Hsp90 is tightly regulated by a host of co-chaperone proteins that control progression through the activation cycle. ATPase stimulation of Hsp90 by Aha1p requires a conserved RKxK motif that interacts with the catalytic loop of Hsp90. In this study, we explore the role of this RKxK motif in the biological and biochemical properties of Hch1p. We found that this motif is required for Hch1p-mediated ATPase stimulation in vitro, but mutations that block stimulation do not impair the action of Hch1p in vivo. This suggests that the biological function of Hch1p is not directly linked to ATPase stimulation. Moreover, a mutation in the catalytic loop of Hsp90 specifically impairs ATPase stimulation by Aha1p but not by Hch1p. Our work here suggests that both Hch1p and Aha1p regulate Hsp90 function through interaction with the catalytic loop but do so in different ways.  相似文献   

18.
Coral bleaching represents a complex physiological process that is affected not only by environmental conditions but by the dynamic internal cellular biology of symbiotic dinoflagellates (Symbiodinium spp.) and their cnidarian hosts. Recently, nitric oxide (NO) has emerged as a key molecule involved with the expulsion of Symbiodinium from host cnidarian cells. However, the site of production remains under debate, and the corresponding signaling pathways within and between host and endosymbiont remain elusive. In this study, using freshly isolated Symbiodinium from the soft coral Eunicea fusca, I demonstrate that thermally induced stress causes an upregulation in Symbiodinium heat shock protein 90 (Hsp90). In turn, Hsp90 shows a concomitant ability to enhance the activity of a constitutively expressed isoform of NO synthase. The resulting production of NO constitutes a signaling molecule capable of inducing Symbiodinium expulsion. Using nitric oxide synthase (NOS) and Hsp90 polyclonal antibodies, thermal stress-induced Hsp90 was shown to co-immunoprecipitate with a constitutive isoform of NOS. The specific blocking of Hsp90 activity, with the Hsp90 inhibitor geldanamycin, was capable of inhibiting NO production implicating the involvement of a coordinated regulatory system. These results have strong evolutionary implications for Hsp90–NOS chaperone complexes among biological kingdoms and provide evidence for a new functional role in symbiotic associations.  相似文献   

19.
Hsp90作为热休克蛋白家族中的重要一员,是一种对细胞生存所必需的分子伴侣,它发挥着稳定顾客蛋白构象、维持其功能的作用。许多顾客蛋白在肿瘤中处于过度表达或持续激活状态,与肿瘤的发生发展有着密切的关系。因此,Hsp90在近年的研究中倍受关注,已经发展为抗肿瘤治疗的良好靶点,目前已经有多个Hsp90抑制剂进入临床实验。近年随着肿瘤分子生物学的研究,肿瘤分子靶向治疗已取得明显成果,针对多种癌症已获得了多个用于靶向治疗的单克隆抗体或小分子化学物质,如用于治疗某些HER2阳性乳腺癌的曲妥珠单抗、用于治疗NSCLC的吉非替尼等。然而随着这些药物的应用,肿瘤耐药性不可避免的产生。多方面研究表明Hsp90抑制剂会引起与耐药相关的多个分子的降解,提示其在拮抗耐药方面具有重要的意义。本文就Hsp90分子抑制剂在拮抗肿瘤耐药方面的研究进行综述。  相似文献   

20.
Luteolin (3,4,5,7-tetrahydroxyflavones), a major dietary flavone, regulates a variety of biological effects including cancer progression, insulin resistance and inflammation. However, its exact actions on adipogenesis and osteogenesis and the underlying molecular mechanisms are yet to be clarified. In this study, we show that luteolin suppresses lipid accumulation but increases osteoblast differentiation. In mechanism studies, luteolin increases the expression of the heat shock proteins (Hsp) 40 (Dnajb1) and Hsp90 (Hsp90b1), but not those of other heat shock proteins including Hsp20, Hsp27, Hsp47, Hsp70, Hsp72, and Hsp90, and another type of Hsp40 (Dnaja1). Silencing Dnajb1 by using small interfering RNAs (siRNAs), but not against Hsp90b1, recapitulates the effects of luteolin in adipocyte and osteoblast differentiation. Consistently, the forced expression of Dnajb1 decreases the lipid accumulation and stimulates alkaline phosphatase (ALPL) activity. The antiadipogenic and proosteogenic effects of luteolin are significantly blunted in Dnajb1-deficient cells, further suggesting that Dnajb1 is, at least in part, required for luteolin's dual actions in adipogenesis and osteogenesis. Together, our data implicate luteolin as an ingredient and Dnajb1 as a molecular target for the development of functional foods and drugs in metabolic and bone-related diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号