首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Amyloid-β (Aβ) peptides can exist in distinct forms including monomers, oligomers and fibrils, consisting of increased numbers of monomeric units. Among these, Aβ oligomers are implicated as the primary toxic species as pointed by multiple lines of evidence. It has been suggested that toxicity could be rendered by the soluble higher-molecular-weight (high-n) Aβ oligomers. Yet, the most culpable form in the pathogenesis of Alzheimer’s disease (AD) remains elusive. Moreover, the potential interaction among the insoluble fibrils that have been excluded from the responsible aggregates in AD development, Aβ monomers and high-n oligomers is undetermined. Here, we report that insoluble Aβ fibrillar seeds can interact with Aβ monomers at the stoichiometry of 1:2 (namely, each Aβ molecule of seed can bind to two Aβ monomers at a time) facilitating the fibrillization by omitting the otherwise mandatory formation of the toxic high-n oligomers during the fibril maturation. As a result, the addition of exogenous Aβ fibrillar seeds is seen to rescue neuronal cells from Aβ cytotoxicity presumably exerted by high-n oligomers, suggesting an unexpected protective role of Aβ fibrillar seeds.  相似文献   

2.
Thapa A  Woo ER  Chi EY  Sharoar MG  Jin HG  Shin SY  Park IS 《Biochemistry》2011,50(13):2445-2455
Polymerization of monomeric amyloid-β peptides (Aβ) into soluble oligomers and insoluble fibrils is one of the major pathways triggering the pathogenesis of Alzheimer's disease (AD). Using small molecules to prevent the polymerization of Aβ peptides can, therefore, be an effective therapeutic strategy for AD. In this study, we investigate the effects of mono- and biflavonoids in Aβ42-induced toxicity and fibrillogenesis and find that the biflavonoid taiwaniaflavone (TF) effectively and specifically inhibits Aβ toxicity and fibrillogenesis. Compared to TF, the monoflavonoid apigenin (AP) is less effective and less specific. Our data show that differential effects of the mono- and biflavonoids in Aβ fibrillogenesis correlate with their varying cytoprotective efficacies. We also find that other biflavonoids, namely, 2',8'-biapigenin, amentoflavone, and sumaflavone, can also effectively inhibit Aβ toxicity and fibrillogenesis, implying that the participation of two monoflavonoids in a single biflavonoid molecule enhances their activity. Biflavonoids, while strongly inhibiting Aβ fibrillogenesis, accumulate nontoxic Aβ oligomeric structures, suggesting that these are off-pathway oligomers. Moreover, TF abrogates the toxicity of preformed Aβ oligomers and fibrils, indicating that TF and other biflavonoids may also reduce the toxicity of toxic Aβ species. Altogether, our data clearly show that biflavonoids, possibly because of the possession of two Aβ binders separated by an appropriate size linker, are likely to be promising therapeutics for suppressing Aβ toxicity.  相似文献   

3.
The Amyloid-β (Aβ) peptide is a major component of the amyloid plaques associated with Alzheimer's disease (AD). Recent studies suggest that the most toxic forms of Aβ are small, soluble oligomeric aggregates. Here, we report the isolation and characterization of a single-chain variable domain (scFv) antibody isolated against oligomeric Aβ using a protocol developed in our laboratory that combines phage display technology and atomic force microscopy (AFM). Starting with a randomized, single framework phage display library, after three rounds of selection against oligomeric Aβ, we identified an scFv that bound oligomeric Aβ specifically, but not monomeric or fibrillar forms. The anti-oligomeric scFv inhibits Aβ aggregation and toxicity, and reduces the toxicity of preformed oligomeric Aβ towards human neuroblastoma cells. When used to probe samples of human brain tissue, the scFv reacted with AD tissue but not a healthy control or Parkinson's disease brain samples. The anti-oligomeric Aβ scFv therefore has potential therapeutic and diagnostic applications in specifically targeting or identifying the toxic morphologies of Aβ in AD brains.  相似文献   

4.
Alzheimer's disease (AD) is a devastating disorder that is clinically characterized by a comprehensive cognitive decline. Accumulation of the amyloid‐beta (Aβ) peptide plays a pivotal role in the pathogenesis of AD. In AD, the conversion of Aβ from a physiological soluble monomeric form into insoluble fibrillar conformation is an important event. The most toxic form of Aβ is oligomers, which is the intermediate step during the conversion of monomeric form to fibrillar form. There are at least two types of oligomers: oligomers that are immunologically related to fibrils and those that are not. In transgenic AD animal models, both active and passive anti‐Aβ immunotherapies improve cognitive function and clear the parenchymal accumulation of amyloid plaques in the brain. In this report we studied effect of immunotherapy of two sequence‐independent non‐fibrillar oligomer specific monoclonal antibodies on the cognitive function, amyloid load and tau pathology in 3xTg‐AD mice. Anti‐oligomeric monoclonal antibodies significantly reduce the amyloid load and improve the cognition. The clearance of amyloid load was significantly correlated with reduced tau hyperphosphorylation and improvement in cognition. These results demonstrate that systemic immunotherapy using oligomer‐specific monoclonal antibodies effectively attenuates behavioral and pathological impairments in 3xTg‐AD mice. These findings demonstrate the potential of using oligomer specific monoclonal antibodies as a therapeutic approach to prevent and treat Alzheimer's disease.  相似文献   

5.
β‐Amyloid (Aβ) peptide is believed to play a key role in the mechanism of Alzheimer's disease (AD). Aβ tends to aggregate to form amyloid fibrils. A variety of evidence indicates that Aβ aggregates are toxic in vitro and in vivo. An early “Aβ hypothesis” postulated that AD was the consequence of neuron death induced by insoluble deposits of large Aβ fibrils. Newer findings indicate that small soluble Aβ oligomers are the neurotoxic species, yet their structure is still unknown. Many researchers have tried to probe the differences in molecular structure between Aβ oligomers, protofibrils, and fibrils that give rise to their unique toxicities, but with limited success. In this report, we examine the hypothesis that differences in the toxicity of different aggregated Aβ species are the result of differences in species concentration and diffusivity. Using a simple mathematical analysis based on the assumption of a diffusion‐limited reaction, we demonstrate that near 10‐fold differences in toxicity between spherical oligomers and fibrils can be explained from size and concentration arguments. While this work does not suggest that Aβ oligomers and fibrils have identical molecular structures, it highlights the possibility that simple physical phenomena may contribute to the biological processes induced by Aβ. Biotechnol. Bioeng. 2010;106: 333–337. © 2010 Wiley Periodicals, Inc.  相似文献   

6.
Aggregation of a peptide, beta-amyloid (Aβ), is a hallmark molecular process found in Alzheimer’s disease (AD). During Aβ aggregation, oligomeric and fibrillar Aβ are formed, and these molecular self-assembly steps are implicated in generation of toxic effects in AD. Crocetin is a natural carotenoid dicarboxyl acid displaying various pharmaceutical effects and may be co-localized with Aβ mediated by human serum albumin. In the study presented here, we examined the effects of crocetin on Aβ aggregation in three different molecular pathways. Our results demonstrate that crocetin inhibited Aβ fibril formation and destabilized pre-formed Aβ fibrils. Moreover, crocetin caused stabilization of Aβ oligomers and prevented their conversion into Aβ fibrils. Our study reveals potential pathological and pharmaceutical implication of crocetin in AD and suggests possible application of crocetin for currently limited structural studies on unstable Aβ oligomers.  相似文献   

7.
Several protein conformational disorders (Parkinson and prion diseases) are linked to aberrant folding of proteins into prefibrillar oligomers and amyloid fibrils. Although prefibrillar oligomers are more toxic than their fibrillar counterparts, it is difficult to decouple the origin of their dissimilar toxicity because oligomers and fibrils differ both in terms of structure and size. Here we report the characterization of two oligomers of the 42-residue amyloid β (Aβ42) peptide associated with Alzheimer disease that possess similar size and dissimilar toxicity. We find that Aβ42 spontaneously forms prefibrillar oligomers at Aβ concentrations below 30 μm in the absence of agitation, whereas higher Aβ concentrations lead to rapid formation of fibrils. Interestingly, Aβ prefibrillar oligomers do not convert into fibrils under quiescent assembly conditions but instead convert into a second type of oligomer with size and morphology similar to those of Aβ prefibrillar oligomers. Strikingly, this alternative Aβ oligomer is non-toxic to mammalian cells relative to Aβ monomer. We find that two hydrophobic peptide segments within Aβ (residues 16-22 and 30-42) are more solvent-exposed in the more toxic Aβ oligomer. The less toxic oligomer is devoid of β-sheet structure, insoluble, and non-immunoreactive with oligomer- and fibril-specific antibodies. Moreover, the less toxic oligomer is incapable of disrupting lipid bilayers, in contrast to its more toxic oligomeric counterpart. Our results suggest that the ability of non-fibrillar Aβ oligomers to interact with and disrupt cellular membranes is linked to the degree of solvent exposure of their central and C-terminal hydrophobic peptide segments.  相似文献   

8.
Alzheimer's disease (AD) is characterized by the aggregation and deposition of amyloid β protein (Aβ) in the brain. Soluble Aβ oligomers are thought to be toxic. To investigate the predominant species of Aβ protein that may play a role in AD pathogenesis, we performed biochemical analysis of AD and control brains. Sucrose buffer-soluble brain lysates were characterized in native form using blue native (BN)-PAGE and also in denatured form using SDS-PAGE followed by Western blot analysis. BN-PAGE analysis revealed a high-molecular weight smear (>1000 kD) of Aβ(42) -positive material in the AD brain, whereas low-molecular weight and monomeric Aβ species were not detected. SDS-PAGE analysis, on the other hand, allowed the detection of prominent Aβ monomer and dimer bands in AD cases but not in controls. Immunoelectron microscopy of immunoprecipitated oligomers and protofibrils/fibrils showed spherical and protofibrillar Aβ-positive material, thereby confirming the presence of high-molecular weight Aβ (hiMWAβ) aggregates in the AD brain. In vitro analysis of synthetic Aβ(40) - and Aβ(42) preparations revealed Aβ fibrils, protofibrils, and hiMWAβ oligomers that were detectable at the electron microscopic level and after BN-PAGE. Further, BN-PAGE analysis exhibited a monomer band and less prominent low-molecular weight Aβ (loMWAβ) oligomers. In contrast, SDS-PAGE showed large amounts of loMWAβ but no hiMWAβ(40) and strikingly reduced levels of hiMWAβ(42) . These results indicate that hiMWAβ aggregates, particularly Aβ(42) species, are most prevalent in the soluble fraction of the AD brain. Thus, soluble hiMWAβ aggregates may play an important role in the pathogenesis of AD either independently or as a reservoir for release of loMWAβ oligomers.  相似文献   

9.
Beta amyloid (Aβ) accumulation is recognized as a hallmark of Alzheimer disease (AD) pathology and the aggregation of Aβ peptide is hypothesized to drive pathogenesis. As such, Aβ is a logical target for therapeutic intervention and there have been many studies looking at diverse classes of drugs that target Aβ. Of concern is the recent failure of several clinical trials, highlighting the need for earlier, possibly preventative intervention, and raising the question of what form of Aβ is the best target. The Aβ oligomers are considered to be the toxic species, but many therapies, such as antibody therapies, target monomers, removing them as substrates for aggregation. Peptide inhibitors, in contrast, are able to interfere with the aggregation process itself. Designing peptide inhibitors requires some knowledge of Aβ structure; while there is structural information about the amyloid core of Aβ fibrils, the transient nature of oligomers makes them difficult to characterize. Fortunately, some interaction sites have been identified between monomers and oligomers of Aβ and these, plus known aggregation-prone sequences in Aβ, can serve as a basis for inhibitor design. In this mini-review we focus on D-amino acid based peptide inhibitors and discuss how their non-toxic and stable nature can be beneficial, while they specifically target aggregation-prone sequences within the Aβ peptide. Many peptide inhibitors have been designed using the LVFFA domain within Aβ to disrupt the self-assembly of Aβ peptide. While this may be sufficient to stop aggregation in vitro, other aggregation sites at the C-terminus may promote aggregation independently and the flexible N terminus may be a good target to induce clearance of aggregates. Ultimately, it may be a combination of targets that provides the best therapeutic strategy.  相似文献   

10.
Increasing evidence indicates that amyloid aggregates, including oligomers, protofibrils or fibrils, are pivotal toxins in the pathogenesis of many amyloidoses such as Alzheimer's disease (AD), Parkinson's disease, Huntington's disease, prion-related diseases, type 2 diabetes and hereditary renal amyloidosis. Various oligomers assembled from different amyloid proteins share common structures and epitopes. Here we present data indicating that two oligomer-specific single chain variable fragment (scFv) antibodies isolated from a na?ve human scFv library could conformation-dependently recognize oligomers assembled from α-synuclein, amylin, insulin, Aβ1-40, prion peptide 106-126 and lysozyme, and fibrils from lysozyme. Further investigation showed that both scFvs inhibited the fibrillization of α-synuclein, amylin, insulin, Aβ1-40 and prion peptide 106-126, and disaggregated their preformed fibrils. However, they both promoted the aggregation of lysozyme. Nevertheless, the two scFv antibodies could attenuate the cytotoxicity of all amyloids tested. Moreover, the scFvs recognized the amyloid oligomers in all types of plaques, Lewy bodies and amylin deposits in the brain tissues of AD and PD patients and the pancreas of type 2 diabetes patients respectively, and showed that most amyloid fibril deposits were colocalized with oligomers in the tissues. Such conformation-dependent scFv antibodies may have potential application in the investigation of aggregate structures, the mechanisms of aggregation and cytotoxicity of various amyloids, and in the development of diagnostic and therapeutic reagents for many amyloidoses.  相似文献   

11.

Background

Amyloid-related degenerative diseases are associated with the accumulation of misfolded proteins as amyloid fibrils in tissue. In Alzheimer disease (AD), amyloid accumulates in several distinct types of insoluble plaque deposits, intracellular Aβ and as soluble oligomers and the relationships between these deposits and their pathological significance remains unclear. Conformation dependent antibodies have been reported that specifically recognize distinct assembly states of amyloids, including prefibrillar oligomers and fibrils.

Results

We immunized rabbits with a morphologically homogeneous population of Aβ42 fibrils. The resulting immune serum (OC) specifically recognizes fibrils, but not random coil monomer or prefibrillar oligomers, indicating fibrils display a distinct conformation dependent epitope that is absent in prefibrillar oligomers. The fibril epitope is also displayed by fibrils of other types of amyloids, indicating that the epitope is a generic feature of the polypeptide backbone. The fibril specific antibody also recognizes 100,000 × G soluble fibrillar oligomers ranging in size from dimer to greater than 250 kDa on western blots. The fibrillar oligomers recognized by OC are immunologically distinct from prefibrillar oligomers recognized by A11, even though their sizes overlap broadly, indicating that size is not a reliable indicator of oligomer conformation. The immune response to prefibrillar oligomers and fibrils is not sequence specific and antisera of the same specificity are produced in response to immunization with islet amyloid polypeptide prefibrillar oligomer mimics and fibrils. The fibril specific antibodies stain all types of amyloid deposits in human AD brain. Diffuse amyloid deposits stain intensely with anti-fibril antibody although they are thioflavin S negative, suggesting that they are indeed fibrillar in conformation. OC also stains islet amyloid deposits in transgenic mouse models of type II diabetes, demonstrating its generic specificity for amyloid fibrils.

Conclusion

Since the fibril specific antibodies are conformation dependent, sequence-independent, and recognize epitopes that are distinct from those present in prefibrillar oligomers, they may have broad utility for detecting and characterizing the accumulation of amyloid fibrils and fibrillar type oligomers in degenerative diseases.  相似文献   

12.
Accumulation of beta-amyloid (Aβ) is an important pathological event in Alzheimer’s disease (AD). It is now well known that vaccination against fibrillar Aβ prevents amyloid accumulation and preserves cognitive function in transgenic mouse models. To study the effect of vaccination against generic oligomer epitopes, Aβ oligomers, islet amyloid polypeptide oligomers, random peptide oligomer (3A), and Aβ fibrils were used to vaccinate 3xTg-AD, which develop a progressive accumulation of plaques and cognitive impairment. Subcutaneous administration of these antigens markedly reduced total plaque load (Aβ burden) and improved cognitive function in the 3xTg-AD mouse brains as compared to controls. We demonstrated that vaccination with this nonhuman amyloid oligomer generated high titers of specifically antibodies recognizing Aβ oligomers, which in turn inhibited accumulation of Aβ pathology in mice. In addition to amyloid plaques, another hallmark of AD is tau pathology. It was found that there was a significant decline in the level of hyper-phosphorylated tau following vaccination. We have previously shown that immunization with 3A peptide improves cognitive function and clears amyloid plaques in Tg2576 mice, which provides a novel strategy of AD therapy. Here, we have shown that vaccination with 3A peptide in 3xTg-AD mice not only clears amyloid plaques but also extensively clears abnormal tau in brain.  相似文献   

13.
Soluble oligomers of the amyloid-β (Aβ) peptide play a key role in the pathogenesis of Alzheimer's disease, but their elusive nature makes their detection challenging. Here we describe a novel immunoassay based on surface plasmon resonance (SPR) that specifically recognizes biologically active Aβ oligomers. As a capturing agent, we immobilized on the sensor chip the monoclonal antibody 4G8, which targets a central hydrophobic region of Aβ. This SPR assay allows specific recognition of oligomeric intermediates that rapidly appear and disappear during the incubation of synthetic Aβ(1-42), discriminating them from monomers and higher order aggregates. The species recognized by SPR generate ionic currents in artificial lipid bilayers and inhibit the physiological pharyngeal contractions in Caenorhabditis elegans, a new method for testing the toxic potential of Aβ oligomers. With these assays we found that the formation of biologically relevant Aβ oligomers is inhibited by epigallocatechin gallate and increased by the A2V mutation, previously reported to induce early onset dementia. The SPR-based immunoassay provides new opportunities for detection of toxic Aβ oligomers in biological samples and could be adapted to study misfolding proteins in other neurodegenerative disorders.  相似文献   

14.
Alzheimer's disease is characterized by the presence of extracellular deposits of amyloid, primarily composed of the amyloid β-protein (Aβ). A growing body of evidence indicates that oligomeric forms of Aβ play a critical role in disease causation. Soybean isoflavones are flavonoids with an isoflavone backbone. Isoflavones have been reported to protect against Aβ-induced neurotoxicity in cultured cell systems, the molecular mechanisms remain unclear. Our previous studies demonstrated that red wine-related flavonoids with a flavone backbone are able to inhibit Aβ assembly and destabilize preformed Aβ aggregates. Here, we show that isoflavones, especially glycitein and genistein, have anti-fibrillization, anti-oligomerization and fibril-destabilizing effects on Aβ(1-40) and Aβ(1-42)in vitro at physiological pH and temperature, by using nucleation-dependent polymerization monitored by thioflavin T fluorescence, atomic force microscopy, electron microscopy, and photo-induced cross-linking of unmodified proteins followed by SDS-PAGE. Our three-dimensional fluorescence spectroscopic analyses demonstrated that glycitein interacted with Aβ monomers, oligomers and fibrils, indicating specific binding of glycitein to these Aβ species. Glycitein also interacted with different Aβ fragments (Aβ(1-42), Aβ(1-40), Aβ(1-16) and Aβ(25-35)), exhibiting the highest fluorescence enhancement with Aβ(25-35). We speculated that glycitein's anti-amyloidogenic properties are specifically mediated by its binding to Aβ monomers, oligomers and fibrils. Isoflavones may hold promise as a treatment option for preventative strategies targeting amyloid formation in Alzheimer's disease.  相似文献   

15.
Abeta40 protects non-toxic Abeta42 monomer from aggregation   总被引:1,自引:0,他引:1  
Abeta40 and Abeta42 are the predominant Abeta species in the human body. Toxic Abeta42 oligomers and fibrils are believed to play a key role in causing Alzheimer's disease (AD). However, the role of Abeta40 in AD pathogenesis is not well established. Emerging evidence indicates a protective role for Abeta40 in AD pathogenesis. Although Abeta40 is known to inhibit Abeta42 fibril formation, it is not clear whether the inhibition acts on the non-toxic monomer or acts on the toxic Abeta42 oligomers. In contrast to conventional methods that detect the appearance of fibrils, in our study Abeta42 aggregation was monitored by the decreasing NMR signals from Abeta42 monomers. In addition, differential NMR isotope labelling enabled the selective observation of Abeta42 aggregation in a mixture of Abeta42 and Abeta40. We found Abeta40 monomers inhibit the aggregation of non-toxic Abeta42 monomers, in an Abeta42/Abeta40 ratio-dependent manner. NMR titration revealed that Abeta40 monomers bind to Abeta42 aggregates with higher affinity than Abeta42 monomers. Abeta40 can also release Abeta42 monomers from Abeta42 aggregates. Thus, Abeta40 likely protects Abeta42 monomers by competing for the binding sites on pre-existing Abeta42 aggregates. Combining our data with growing evidence from transgenic mice and human genetics, we propose that Abeta40 plays a critical, protective role in Alzheimer's by inhibiting the aggregation of Abeta42 monomer. Abeta40 itself, a peptide already present in the human body, may therefore be useful for AD prevention and therapy.  相似文献   

16.
Some neurodegenerative diseases such as Alzheimer disease (AD) and Parkinson disease are caused by protein misfolding. In AD, amyloid β‐peptide (Aβ) is thought to be a toxic agent by self‐assembling into a variety of aggregates involving soluble oligomeric intermediates and amyloid fibrils. Here, we have designed several green fluorescent protein (GFP) variants that contain pseudo‐Aβ β‐sheet surfaces and evaluated their abilities to bind to Aβ and inhibit Aβ oligomerization. Two GFP variants P13H and AP93Q bound tightly to Aβ, Kd = 260 nM and Kd = 420 nM, respectively. Moreover, P13H and AP93Q were capable of efficiently suppressing the generation of toxic Aβ oligomers as shown by a cell viability assay. By combining the P13H and AP93Q mutations, a super variant SFAB4 comprising four strands of Aβ‐derived sequences was designed and bound more tightly to Aβ (Kd = 100 nM) than those having only two pseudo‐Aβ strands. The SFAB4 protein preferentially recognized the soluble oligomeric intermediates of Aβ more than both unstructured monomer and mature amyloid fibrils. Thus, the design strategy for embedding pseudo‐Aβ β‐sheet structures onto a protein surface arranged in the β‐barrel structure is useful to construct molecules capable of binding tightly to Aβ and inhibiting its aggregation. This strategy may provide implication for the diagnostic and therapeutic development in the treatment of AD. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

17.

Background

Age-related neurodegenerative diseases share a number of important pathological features, such as accumulation of misfolded proteins as amyloid oligomers and fibrils. Recent evidence suggests that soluble amyloid oligomers and not the insoluble amyloid fibrils may represent the primary pathological species of protein aggregates.

Results

We have produced several monoclonal antibodies that specifically recognize prefibrillar oligomers and do not recognize amyloid fibrils, monomer or natively folded proteins. Like the polyclonal antisera, the individual monoclonals recognize generic epitopes that do not depend on a specific linear amino acid sequence, but they display distinct preferences for different subsets of prefibrillar oligomers. Immunological analysis of a number of different prefibrillar Aβ oligomer preparations show that structural polymorphisms exist in Aβ prefibrillar oligomers that can be distinguished on the basis of their reactivity with monoclonal antibodies. Western blot analysis demonstrates that the conformers defined by the monoclonal antibodies have distinct size distributions, indicating that oligomer structure varies with size. The different conformational types of Aβ prefibrillar oligomers can serve as they serve as templates for monomer addition, indicating that they seed the conversion of Aβ monomer into more prefibrillar oligomers of the same type.

Conclusions

These results indicate that distinct structural variants or conformers of prefibrillar Aβ oligomers exist that are capable of seeding their own replication. These conformers may be analogous to different strains of prions.
  相似文献   

18.
In recent studies of transgenic models of Alzheimer's disease (AD), it has been reported that antibodies to aged beta amyloid peptide 1-42 (Abeta(1-42)) solutions (mixtures of Abeta monomers, oligomers and amyloid fibrils) cause conspicuous reduction of amyloid plaques and neurological improvement. In some cases, however, neurological improvement has been independent of obvious plaque reduction, and it has been suggested that immunization might neutralize soluble, non-fibrillar forms of Abeta. It is now known that Abeta toxicity resides not only in fibrils, but also in soluble protofibrils and oligomers. The current study has investigated the immune response to low doses of Abeta(1-42) oligomers and the characteristics of the antibodies they induce. Rabbits that were injected with Abeta(1-42) solutions containing only monomers and oligomers produced antibodies that preferentially bound to assembled forms of Abeta in immunoblots and in physiological solutions. The antibodies have proven useful for assays that can detect inhibitors of oligomer formation, for immunofluorescence localization of cell-attached oligomers to receptor-like puncta, and for immunoblots that show the presence of SDS-stable oligomers in Alzheimer's brain tissue. The antibodies, moreover, were found to neutralize the toxicity of soluble oligomers in cell culture. Results support the hypothesis that immunizations of transgenic mice derive therapeutic benefit from the immuno-neutralization of soluble Abeta-derived toxins. Analogous immuno-neutralization of oligomers in humans may be a key in AD vaccines.  相似文献   

19.
The aggregation of soluble amyloid‐beta (Aβ) peptide into oligomers/fibrils is one of the key pathological features in Alzheimer's disease (AD). The Aβ aggregates are considered to play a pivotal role in the pathogenesis of AD. Therefore, inhibiting Aβ aggregation and destabilizing preformed Aβ fibrils would be an attractive therapeutic target for prevention and treatment of AD. S14G‐humanin (HNG), a synthetic derivative of Humanin (HN), has been shown to be a strong neuroprotective agent against various AD‐related insults. Recent studies have shown that HNG can significantly improve cognitive deficits and reduce insoluble Aβ levels as well as amyloid plaque burden without affecting amyloid precursor protein processing and Aβ production in transgenic AD models. However, the potential mechanisms by which HNG reduces Aβ‐related pathology in vivo remain obscure. In the present study, we found that HNG could significantly inhibit monomeric Aβ1–42 aggregation into fibrils and destabilize preformed Aβ1–42 fibrils in a concentration‐dependent manner by Thioflavin T fluorescence assay. In transmission electron microscope study, we observed that HNG was effective in inhibiting Aβ1–42 fibril formation and disrupting preformed Aβ1–42 fibrils, exhibiting various types of amorphous aggregates without identifiable Aβ fibrils. Furthermore, HNG‐treated monomeric or fibrillar Aβ1–42 was found to significantly reduce Aβ1–42‐mediated cytotoxic effects on PC12 cells in a dose‐dependent manner by MTT assay. Collectively, our results demonstrate for the first time that HNG not only inhibits Aβ1–42 fibril formation but also disaggregates preformed Aβ1–42 fibrils, which provides the novel evidence that HNG may have anti‐Aβ aggregation and fibrillogenesis, and fibril‐destabilizing properties. Together with previous studies, we concluded that HNG may have promising therapeutic potential as a multitarget agent for the prevention and/or treatment of AD. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
In protein conformational disorders ranging from Alzheimer to Parkinson disease, proteins of unrelated sequence misfold into a similar array of aggregated conformers ranging from small oligomers to large amyloid fibrils. Substantial evidence suggests that small, prefibrillar oligomers are the most toxic species, yet to what extent they can be selectively targeted and remodeled into non-toxic conformers using small molecules is poorly understood. We have evaluated the conformational specificity and remodeling pathways of a diverse panel of aromatic small molecules against mature soluble oligomers of the Aβ42 peptide associated with Alzheimer disease. We find that small molecule antagonists can be grouped into three classes, which we herein define as Class I, II, and III molecules, based on the distinct pathways they utilize to remodel soluble oligomers into multiple conformers with reduced toxicity. Class I molecules remodel soluble oligomers into large, off-pathway aggregates that are non-toxic. Moreover, Class IA molecules also remodel amyloid fibrils into the same off-pathway structures, whereas Class IB molecules fail to remodel fibrils but accelerate aggregation of freshly disaggregated Aβ. In contrast, a Class II molecule converts soluble Aβ oligomers into fibrils, but is inactive against disaggregated and fibrillar Aβ. Class III molecules disassemble soluble oligomers (as well as fibrils) into low molecular weight species that are non-toxic. Strikingly, Aβ non-toxic oligomers (which are morphologically indistinguishable from toxic soluble oligomers) are significantly more resistant to being remodeled than Aβ soluble oligomers or amyloid fibrils. Our findings reveal that relatively subtle differences in small molecule structure encipher surprisingly large differences in the pathways they employ to remodel Aβ soluble oligomers and related aggregated conformers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号