首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondria from plants, yeast, and animals each contain at least one peroxiredoxin (Prx) that is involved in peroxide detoxification and redox signalling. The supramolecular dynamics of atypical type II Prx targeted to the mitochondrion was addressed in pea. Microcalorimetric (ITC) titrations identified an extremely high-affinity binding between the mitochondrial PsPrxIIF and Trx-o with a K(D) of 126+/-14 pM. Binding was driven by a favourable enthalpy change (DeltaH= -60.6 kcal mol(-1)) which was counterbalanced by unfavourable entropy changes (TDeltaS= -47.1 kcal mol(-1)). This is consistent with the occurrence of large conformational changes during binding which was abolished upon site-directed mutaganesis of the catalytic C59S and C84S. The redox-dependent interaction was confirmed by gel filtration of mitochondrial extracts and co-immunoprecipitation from extracts. The heterocomplex of PsPrxIIF and Trx-o reduced peroxide substrates more efficiently than free PsPrxIIF suggesting that Trx-o serves as an efficient and specific electron donor to PsPrxIIF in vivo. Other Trx-s tested by ITC analysis failed to interact with PsPrxIIF indicating a specific recognition of PsPrxIIF by Trx-o. PsPrxIIF exists primarily as a dimer or a hexamer depending on the redox state. In addition to the well-characterized oligomerization of classical 2-Cys Prx the results also show that atypical Prx undergo large structural reorganization with implications for protein-protein interaction and function.  相似文献   

2.
Members of the typical 2-Cys peroxiredoxin (Prx) subfamily represent an intriguing example of protein moonlighting behavior since this enzyme shifts function: indeed, upon chemical stimuli, such as oxidative stress, Prx undergoes a switch from peroxidase to molecular chaperone, associated to a change in quaternary structure from dimers/decamers to higher-molecular-weight (HMW) species. In order to detail the structural mechanism of this switch at molecular level, we have designed and expressed mutants of peroxiredoxin I from Schistosoma mansoni (SmPrxI) with constitutive HMW assembly and molecular chaperone activity. By a combination of X-ray crystallography, transmission electron microscopy and functional experiments, we defined the structural events responsible for the moonlighting behavior of 2-Cys Prx and we demonstrated that acidification is coupled to local structural variations localized at the active site and a change in oligomerization to HMW forms, similar to those induced by oxidative stress. Moreover, we suggest that the binding site of the unfolded polypeptide is at least in part contributed by the hydrophobic surface exposed by the unfolding of the active site. We also find an inverse correlation between the extent of ring stacking and molecular chaperone activity that is explained assuming that the binding occurs at the extremities of the nanotube, and the longer the nanotube is, the lesser the ratio binding sites/molecular mass is.  相似文献   

3.
过氧化物氧还蛋白家族的功能及调节机制   总被引:1,自引:0,他引:1  
过氧化物氧还蛋白(peroxiredoxin,Prx)家族是细胞中一类高丰度蛋白质,作为过氧化物酶对维持体内过氧化氢水平发挥着重要的作用,并且通过调控蛋白激酶的氧化还原状态参与细胞信号转导调控过程。Prx家族根据其参与催化反应的半胱氨酸残基数目分为典型双半胱氨酸型(2-Cys)、非典型双半胱氨酸型(atypical 2-Cys)和单半胱氨酸型(1-Cys)。Prx的活性受到寡聚化状态、磷酸化以及蛋白质水解的调控。  相似文献   

4.
Peroxiredoxin 2 (Prx2) is an abundant antioxidant protein in erythrocytes that protects against hemolytic anemia resulting from hemoglobin oxidation and Heinz body formation. A small fraction of Prx2 is bound to the cell membrane, but the mechanism and relevance of binding are not clear. We have investigated Prx2 interactions with the erythrocyte membrane and oxidized hemoglobin and whether these interactions are dependent on Prx2 redox state. Membrane binding of Prx2 in erythrocytes decreased when the cells were treated with H2O2, but studies with purified Prx2 and isolated ghosts showed that the interaction was independent of Prx2 redox state. Hemoglobin oxidation leads to the formation of hemichrome, a denatured form of the protein that binds to Band3 protein in the cell membrane as part of the senescence process and is a precursor of Heinz bodies. Hemichrome competed with Prx2 and decreased Prx2 binding to the membrane, potentially explaining the decreased binding in oxidant-exposed cells. The increased membrane binding of Prx2 seen with increasing intracellular calcium was less sensitive to H2O2 or hemichrome, suggesting an alternative mode of binding. Prx2 was also shown to exhibit chaperone-like activity by retarding the precipitation of pre-formed hemichrome. Our results suggest that Prx2, by restricting membrane binding of hemichrome, could impede Band3 clustering and exposure of senescence antigens. This mechanism, plus the observed chaperone activity for oxidized hemoglobin, may help protect against hemolytic anemia.  相似文献   

5.
1-Cys peroxiredoxins (1-Cys Prxs) are antioxidant enzymes that catalyze the reduction of hydroperoxides into alcohols using a strictly conserved cysteine. 1-Cys B-Prxs, homologous to human PrxVI, were recently shown to be reactivated by glutathione S-transferase (GST) pi via the formation of a GST-Prx heterodimer and Prx glutathionylation. In contrast, 1-Cys D-Prxs, homologous to human PrxV, are reactivated by the glutaredoxin-glutathione system through an unknown mechanism. To investigate the mechanistic events that mediate the 1-Cys D-Prx regeneration, interaction of the Prx with glutathione was studied by mass spectrometry and NMR. This work reveals that the Prx can be glutathionylated on its active site cysteine. Evidences are reported that the glutathionylation of 1-Cys D-Prx induces the dissociation of the Prx non-covalent homodimer, which can be recovered by reduction with dithiothreitol. This work demonstrates for the first time the existence of a redox-dependent dimer-monomer switch in the Prx family, similar to the decamer-dimer switch for the 2-Cys Prxs.  相似文献   

6.
Peroxiredoxin 2 (Prx2) is a thiol protein that functions as an antioxidant, regulator of cellular peroxide concentrations, and sensor of redox signals. Its redox cycle is widely accepted to involve oxidation by a peroxide and reduction by thioredoxin/thioredoxin reductase. Interactions of Prx2 with other thiols are not well characterized. Here we show that the active site Cys residues of Prx2 form stable mixed disulfides with glutathione (GSH). Glutathionylation was reversed by glutaredoxin 1 (Grx1), and GSH plus Grx1 was able to support the peroxidase activity of Prx2. Prx2 became glutathionylated when its disulfide was incubated with GSH and when the reduced protein was treated with H2O2 and GSH. The latter reaction occurred via the sulfenic acid, which reacted sufficiently rapidly (k = 500 m−1 s−1) for physiological concentrations of GSH to inhibit Prx disulfide formation and protect against hyperoxidation to the sulfinic acid. Glutathionylated Prx2 was detected in erythrocytes from Grx1 knock-out mice after peroxide challenge. We conclude that Prx2 glutathionylation is a favorable reaction that can occur in cells under oxidative stress and may have a role in redox signaling. GSH/Grx1 provide an alternative mechanism to thioredoxin and thioredoxin reductase for Prx2 recycling.  相似文献   

7.
Peroxiredoxins (Prx) are efficient thiol-dependent peroxidases and key players in the mechanism of H2O2-induced redox signaling. Any structural change that could affect their redox state, oligomeric structure, and/or interaction with other proteins could have a significant impact on the cascade of signaling events. Several post-translational modifications have been reported to modulate Prx activity. One of these, overoxidation of the peroxidatic cysteine to the sulfinic derivative, inactivates the enzyme and has been proposed as a mechanism of H2O2 accumulation in redox signaling (the floodgate hypothesis). Nitration of Prx has been reported in vitro as well as in vivo; in particular, nitrated Prx2 was identified in brains of Alzheimer disease patients. In this work we characterize Prx2 tyrosine nitration, a post-translational modification on a noncatalytic residue that increases its peroxidase activity and its resistance to overoxidation. Mass spectrometry analysis revealed that treatment of disulfide-oxidized Prx2 with excess peroxynitrite renders mainly mononitrated and dinitrated species. Tyrosine 193 of the YF motif at the C terminus, associated with the susceptibility toward overoxidation of eukaryotic Prx, was identified as nitrated and is most likely responsible for the protection of the peroxidatic cysteine against oxidative inactivation. Kinetic analyses suggest that tyrosine nitration facilitates the intermolecular disulfide formation, transforming a sensitive Prx into a robust one. Thus, tyrosine nitration appears as another mechanism to modulate these enzymes in the complex network of redox signaling.  相似文献   

8.
The proteins from the thioredoxin family are crucial actors in redox signaling and the cellular response to oxidative stress. The major intracellular source for oxygen radicals are the components of the respiratory chain in mitochondria. Here, we show that the mitochondrial 2-Cys peroxiredoxin (Prx3) is not only substrate for thioredoxin 2 (Trx2), but can also be reduced by glutaredoxin 2 (Grx2) via the dithiol reaction mechanism. Grx2 reduces Prx3 exhibiting catalytic constants (K(m), 23.8 μmol·liter(-1); V(max), 1.2 μmol·(mg·min)(-1)) similar to Trx2 (K(m), 11.2 μmol·liter(-1); V(max), 1.1 μmol·(mg·min)(-1)). The reduction of the catalytic disulfide of the atypical 2-Cys Prx5 is limited to the Trx system. Silencing the expression of either Trx2 or Grx2 in HeLa cells using specific siRNAs did not change the monomer:dimer ratio of Prx3 detected by a specific 2-Cys Prx redox blot. Only combined silencing of the expression of both proteins led to an accumulation of oxidized protein. We further demonstrate that the distribution of Prx3 in different mouse tissues is either linked to the distribution of Trx2 or Grx2. These results introduce Grx2 as a novel electron donor for Prx3, providing further insights into pivotal cellular redox signaling mechanisms.  相似文献   

9.
10.
Peroxiredoxins (Prx) are a family of nonselenium peroxidases that are involved in cell defense against oxidative stress and in redox regulation of intracellular signaling. Mammalian peroxiredoxin 6 (Prx6) belongs to the 1-Cys Prx subfamily. The protein-protein interactions of human Prx6 were studied using a yeast two-hybrid system. Hybrid plasmid pHybLex/Zeo/Prx6, which directed synthesis of a chimeric protein consisting of the DNA-binding domain (BD) of LexA and a Prx6 sequence, was used to screen a two-hybrid cDNA library Hybrid Hunter (Invitrogen). The screening identified two potential interaction partners of Prx6: the calcium-activated cysteine endopeptidase calpain and the p50RhoGAP protein of the family of Sec14-like proteins. The possibility for the interactions observed in the two-hybrid system to occur in oxidative stress in vivo is discussed.  相似文献   

11.
Isothiocyanates are phytochemicals with anti-cancer properties that include the ability to trigger apoptosis. A substantial body of evidence suggests that reaction of the electrophilic isothiocyanate moiety with cysteine residues in cellular proteins and glutathione accounts for their biological activity. In this study we investigated the effect of several different isothiocyanates on the redox states of the cysteine-dependent peroxiredoxins (Prx) in Jurkat T lymphoma cells, and compared this to known effects on the selenoprotein thioredoxin reductase, glutathione reductase and intracellular GSH levels. Interestingly, oxidation of mitochondrial Prx3 could be detected as early as 5 min after exposure of cells to phenethyl isothiocyanate, with complete oxidation occurring at doses that only had small inhibitory effects on total cellular thioredoxin reductase and glutathione reductase activities. Peroxiredoxin oxidation was specific to the mitochondrial isoform with cytoplasmic Prx1 and Prx2 maintained in their reduced forms at all analyzed time points and concentrations of isothiocyanate. Phenethyl isothiocyanate could react with purified Prx3 directly, but it did not oxidize Prx3 or promote its oxidation by hydrogen peroxide. A selection of aromatic and alkyl isothiocyanates were tested and while all lowered cellular GSH levels, only the isothiocyanates that caused Prx3 oxidation were able to trigger cell death. We propose that pro-apoptotic isothiocyanates selectively disrupt mitochondrial redox homeostasis, as indicated by Prx3 oxidation, and that this contributes to their pro-apoptotic activity.  相似文献   

12.
Budanova EN  Bystrova MF 《Genetika》2008,44(2):170-176
Peroxiredoxins (Prx) are a family of nonselenium peroxidases that are involved in cell defense against oxidative stress and in redox regulation of intracellular signaling. Mammalian peroxiredoxin 6 (Prx6) belongs to the 1-Cys Prx subfamily. The protein--protein interactions of human Prx6 were studied using a yeast two-hybrid system. Hybrid plasmid pHybLex/Zeo/Prx6, which directed synthesis of a chimeric protein consisting of the DNA-binding domain (BD) of LexA and a Prx6 sequence, was used to screen a two-hybrid cDNA library Hybrid Hunter (Invitrogen). The screening identified two potential interaction partners of Prx6: the calcium-activated cysteine endopeptidase calpain and the p50RhoGAP protein of the family of Sec14-like proteins. The possibility for the interactions observed in the two-hybrid system to occur in oxidative stress in vivo is discussed.  相似文献   

13.
Cytochrome c6from the unicellular green alga Scenedesmus obliquus was sequenced, crystallized in its reduced and oxidized state and the three-dimensional structure of the protein in both redox states was determined by X-ray crystallography. Reduced cytochrome c6crystallized as a monomer in the space group P 21212, whereas the oxidized protein crystallized as a dimer in the space group P 3121. The structures were solved by molecular replacement and refined to 1. 9 and 2.0 A, respectively.Comparison of the structures of both redox states revealed only slight differences on the protein surface, whereas a distortion along the axis between the heme iron and its coordinating Met61 residue was observed. No redox-dependent movement of internal water molecules could be detected. The high degree of similarity of the surfaces and charge distributions of both redox states, as well as the dimerization of cytochrome c6as observed in the oxidized crystal, is discussed with respect to its biological relevance and its implications for the reaction mechanisms between cytochrome c6and its redox partners. The dimer of oxidized cytochrome c6may represent a molecular structure occurring in a binary complex with cytochrome b6f. This assembly might be required for the correct orientation of cytochrome c6with respect to its redox partner cytochrome b6f, facilitating the electron transfer within the complex. If the dimerization is not redox-dependent in vivo, the almost identical surfaces of both redox states do not support a long range differentiation between reduced and oxidized cyt c6, i.e. a random collision model for the formation of an electron transfer complex must be assumed.  相似文献   

14.
A cDNA sequence coding for a pea (Pisum sativum L.) 2-Cys peroxiredoxin (2-Cys Prx) has been cloned. The deduced amino acid sequence showed a high sequence homology to the 2-Cys Prx enzymes of Phaseolus vulgaris (86%), Arabidopsis thaliana (75%), and Spinacia oleracea (75%), and contained a chloroplast target sequence at its N-terminus. The mature enzyme, without the transit peptide, has a molecular mass of 22 kDa as well as two cysteine residues (Cys-53 and Cys-175) which are well conserved among proteins of this group. The protein was expressed in a heterologous system using the expression vector pET3d, and was purified to homogeneity by three sequential chromatographic steps. The enzyme exhibits peroxidase activity on hydrogen peroxide (H(2)O(2)) and t-butyl hydroperoxide (TBHP) with DTT as reducing agent. Although both pea Trxs f and m reduce oxidized 2-Cys Prx, Trx m is more efficient. The precise conditions for oligomerization of 2-Cys Prx through extensive gel filtration studies are also reported. The transition dimer-decamer produced in vitro between pH 7.5 and 8.0 and the influence of DTT suggest that a great change in the enzyme quaternary structure of 2-Cys Prx may take place in the chloroplast during the dark-light transition. In addition, the cyclophilin-dependent reduction of chloroplast 2-Cys Prx is shown.  相似文献   

15.
Patterns of expression of the 2-Cys and 1-Cys peroxiredoxin (Prx) proteins of the rodent malaria parasite Plasmodium yoelii during its life cycle were observed by immunofluorescent antibody staining and confocal laser scanning microscopy. 2-Cys Prx was expressed in the parasite cytoplasm throughout the life cycle, and the thioredoxin (Trx)-peroxidase activity of 2-Cys Prx revealed with the recombinant protein suggested that the Prx is constitutively expressed and, thus, likely plays a housekeeping role in the parasite's intracellular redox control. In contrast, 1-Cys Prx showed stage-specific expression in blood-stage parasites. The limited expression of 1-Cys Prx in the trophozoite cytoplasm suggests that 1-Cys Prx may be involved in haemoglobin metabolism by the parasite, which generates a prooxidative haem iron and increases intracellular oxidative stress. The antioxidant activity of 1-Cys Prx was tested for its ability to protect yeast enolase against inactivation of the mixed-function oxidation system. Differential expression of the two Prx proteins during the erythrocytic and insect stages suggests the importance of these proteins in protecting parasites against oxidative stress, which is generated by the parasite's metabolism and also from the environment.  相似文献   

16.
Life under aerobic conditions has shaped peroxiredoxins (Prx) as ubiquitous thiol-dependent hydroperoxidases and redox sensors. Structural features that balance the catalytically active or inactive redox states of Prx, and, therefore, their hydroperoxidase or sensor function, have so far been analyzed predominantly for Prx1-type enzymes. Here we identify and characterize two modulatory residues of the Prx5-type model enzyme PfAOP from the malaria parasite Plasmodium falciparum. Gain- and loss-of-function mutants reveal a correlation between the enzyme parameters and the inactivation susceptibility of PfAOP with the size of residue 109 and the presence or absence of a catalytically relevant but nonessential cysteine residue. Based on our kinetic data and the crystal structure of PfAOPL109M, we suggest a novel mechanism for balancing the hydroperoxidase activity and inactivation susceptibility of Prx5-type enzymes. Our study provides unexpected insights into Prx structure–function relationships and contributes to our understanding of what makes Prx good enzymes or redox sensors.  相似文献   

17.
Mitochondrial dysfunction and elevated reactive oxygen species are strongly implicated in both aging and various neurodegenerative disorders, including Huntington disease (HD). Because reactive oxygen species can promote the selective oxidation of protein cysteine sulfhydryl groups to disulfide bonds we examined the spectrum of disulfide-bonded proteins that were specifically altered in a HD context. Protein extracts from PC12 cells overexpressing the amino-terminal fragment of the Huntingtin (Htt) protein with either a nonpathogenic or pathogenic polyglutamine repeat (Htt-103Q) were resolved by redox two-dimensional PAGE followed by mass spectrometry analysis. Several antioxidant proteins were identified that exhibited changes in disulfide bonding unique to Htt-103Q expressing cells. In particular, the antioxidant protein peroxiredoxin 1 (Prx1) exhibited both decreased expression and hyperoxidation in response to mutant Htt expressed in either PC12 cells or immortalized striatal cells exposed to 3-nitropropionic acid. Ectopic expression of Prx1 in PC12 cells attenuated mutant Htt-induced toxicity. In contrast, short hairpin RNA-mediated knockdown of Prx1 potentiated mHtt toxicity. Furthermore, treatment with the dithiol-based compounds dimercaptopropanol and dimercaptosuccinic acid suppressed toxicity in both HD cell models, whereas monothiol compounds were relatively ineffective. Dimercaptopropanol treatment also prevented mutant Htt-induced loss of Prx1 expression in both cell models. Our studies reveal for the first time that pathogenic Htt can affect the expression and redox state of antioxidant proteins; an event countered by specific dithiol-based compounds. These findings should provide a catalyst to explore the use of dithiol-based drugs for the treatment of neurodegenerative diseases.  相似文献   

18.
The transition from dark to light involves marked changes in the redox reactions of photosynthetic electron transport and in chloroplast stromal enzyme activity even under mild light and growth conditions. Thus, it is not surprising that redox regulation is used to dynamically adjust and coordinate the stromal and thylakoid compartments. While oxidation of regulatory proteins is necessary for the regulation, the identity and the mechanism of action of the oxidizing pathway are still unresolved. Here, we studied the oxidation of a thylakoid-associated atypical thioredoxin-type protein, ACHT1, in the Arabidopsis thaliana chloroplast. We found that after a brief period of net reduction in plants illuminated with moderate light intensity, a significant oxidation reaction of ACHT1 arises and counterbalances its reduction. Interestingly, ACHT1 oxidation is driven by 2-Cys peroxiredoxin (Prx), which in turn eliminates peroxides. The ACHT1 and 2-Cys Prx reaction characteristics in plants further indicated that ACHT1 oxidation is linked with changes in the photosynthetic production of peroxides. Our findings that plants with altered redox poise of the ACHT1 and 2-Cys Prx pathway show higher nonphotochemical quenching and lower photosynthetic electron transport infer a feedback regulatory role for this pathway.  相似文献   

19.

Background

Peroxiredoxins (Prxs) are a class of abundant thiol peroxidases that degrade hydroperoxides to water. Prxs are sensitive to oxidation, and it is hypothesized that they also act as redox sensors. The accumulation of oxidized Prxs may indicate disruption of cellular redox homeostasis.

Scope of review

This review discusses the biochemical properties of the Prxs that make them suitable as endogenous biomarkers of oxidative stress, and describes the methodology available for measuring Prx oxidation in biological systems.

Major conclusions

Two Prx oxidation products accumulate in cells under increased oxidative stress: an intermolecular disulfide and a hyperoxidized form. Methodologies are available for measuring both of these redox states, and oxidation has been reported in cells and tissues under oxidative stress from external or internal sources.

General significance

Monitoring the oxidation state of Prxs provides insight into disturbances of cellular redox homeostasis, and complements the use of exogenous probes of oxidative stress. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.  相似文献   

20.
Peroxiredoxins (Prxs) are a widespread and highly expressed family of cysteine‐based peroxidases that react very rapidly with H2O2, organic peroxides, and peroxynitrite. Correct subfamily classification has been problematic because Prx subfamilies are frequently not correlated with phylogenetic distribution and diverge in their preferred reductant, oligomerization state, and tendency toward overoxidation. We have developed a method that uses the Deacon Active Site Profiler (DASP) tool to extract functional‐site profiles from structurally characterized proteins to computationally define subfamilies and to identify new Prx subfamily members from GenBank(nr). For the 58 literature‐defined Prx test proteins, 57 were correctly assigned, and none were assigned to the incorrect subfamily. The >3500 putative Prx sequences identified were then used to analyze residue conservation in the active site of each Prx subfamily. Our results indicate that the existence and location of the resolving cysteine vary in some subfamilies (e.g., Prx5) to a greater degree than previously appreciated and that interactions at the A interface (common to Prx5, Tpx, and higher order AhpC/Prx1 structures) are important for stabilization of the correct active‐site geometry. Interestingly, this method also allows us to further divide the AhpC/Prx1 into four groups that are correlated with functional characteristics. The DASP method provides more accurate subfamily classification than PSI‐BLAST for members of the Prx family and can now readily be applied to other large protein families. Proteins 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号