首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Blagovic K  Kim LY  Voldman J 《PloS one》2011,6(8):e22892

Background

Autocrine & paracrine signaling are widespread both in vivo and in vitro, and are particularly important in embryonic stem cell (ESC) pluripotency and lineage commitment. Although autocrine signaling via fibroblast growth factor-4 (FGF4) is known to be required in mouse ESC (mESC) neuroectodermal specification, the question of whether FGF4 autocrine signaling is sufficient, or whether other soluble ligands are also involved in fate specification, is unknown. The spatially confined and closed-loop nature of diffusible signaling makes its experimental control challenging; current experimental approaches typically require prior knowledge of the factor/receptor in order to modulate the loop. A new approach explored in this work is to leverage transport phenomena at cellular resolution to downregulate overall diffusible signaling through the physical removal of cell-secreted ligands.

Methodology/Principal Findings

We develop a multiplex microfluidic platform to continuously remove cell-secreted (autocrine\paracrine) factors to downregulate diffusible signaling. By comparing cell growth and differentiation in side-by-side chambers with or without added cell-secreted factors, we isolate the effects of diffusible signaling from artifacts such as shear, nutrient depletion, and microsystem effects, and find that cell-secreted growth factor(s) are required during neuroectodermal specification. Then we induce FGF4 signaling in minimal chemically defined medium (N2B27) and inhibit FGF signaling in fully supplemented differentiation medium with cell-secreted factors to determine that the non-FGF cell-secreted factors are required to promote growth of differentiating mESCs.

Conclusions/Significance

Our results demonstrate for the first time that flow can downregulate autocrine\paracrine signaling and examine sufficiency of extracellular factors. We show that autocrine\paracrine signaling drives neuroectodermal commitment of mESCs through both FGF4-dependent and -independent pathways. Overall, by uncovering autocrine\paracrine processes previously hidden in conventional culture systems, our results establish microfluidic perfusion as a technique to study and manipulate diffusible signaling in cell systems.  相似文献   

3.
Recent studies of early development in a number of invertebrate and vertebrate species have suggested that growth factors and their receptors may play important roles in differentiation as well as cell proliferation. In the mouse embryo, the expression of the receptors for insulin and insulin-like growth factors I and II (IGF-I and -II) are temporally regulated. The ontogeny of receptor and ligand expression within the insulin and IGF gene family suggests that the very earliest stages of mammalian embryogenesis may be subject to regulation by autocrine and paracrine factors from maternal and embryonic sources.  相似文献   

4.
5.
Studies using animal models demonstrated the importance of autocrine/paracrine factors secreted by preimplantation embryos and reproductive tracts for embryonic development and implantation. Although in vitro fertilization-embryo transfer (IVF-ET) is an established procedure, there is no evidence that present culture conditions are optimal for human early embryonic development. In this study, key polypeptide ligands known to be important for early embryonic development in animal models were tested for their ability to improve human early embryo development and blastocyst outgrowth in vitro. We confirmed the expression of key ligand/receptor pairs in cleavage embryos derived from discarded human tri-pronuclear zygotes and in human endometrium. Combined treatment with key embryonic growth factors (brain-derived neurotrophic factor, colony-stimulating factor, epidermal growth factor, granulocyte macrophage colony-stimulating factor, insulin-like growth factor-1, glial cell-line derived neurotrophic factor, and artemin) in serum-free media promoted >2.5-fold the development of tri-pronuclear zygotes to blastocysts. For normally fertilized embryos, day 3 surplus embryos cultured individually with the key growth factors showed >3-fold increases in the development of 6–8 cell stage embryos to blastocysts and >7-fold increase in the proportion of high quality blastocysts based on Gardner’s criteria. Growth factor treatment also led to a 2-fold promotion of blastocyst outgrowth in vitro when day 7 surplus hatching blastocysts were used. When failed-to-be-fertilized oocytes were used to perform somatic cell nuclear transfer (SCNT) using fibroblasts as donor karyoplasts, inclusion of growth factors increased the progression of reconstructed SCNT embryos to >4-cell stage embryos. Growth factor supplementation of serum-free cultures could promote optimal early embryonic development and implantation in IVF-ET and SCNT procedures. This approach is valuable for infertility treatment and future derivation of patient-specific embryonic stem cells.  相似文献   

6.
GH and GH receptor are expressed in many extrapituitary tissues, permitting autocrine/paracrine activity. Autocrine GH has regulatory functions in embryonic development and cellular differentiation and proliferation and is reported to be involved in the development and metastasis of tumor cells. To understand the principles of transport and signaling of autocrine GH and GH receptor, we used a model system to express both proteins in the same cell. Our experiments show that GH binds the GH receptor immediately after synthesis in the endoplasmic reticulum and facilitates maturation of GH receptor. The hormone-receptor complexes arrive at the cell surface where exogenously added GH is unable to bind these receptors. Autocrine GH activates the GH receptors, but signal transduction occurs only after exiting the endoplasmic reticulum. This model study explains why autocrine GH-producing cells may be insensitive for GH (antagonist) treatment and clarifies autocrine signaling events.  相似文献   

7.
Sustained cell migration is essential for wound healing and cancer metastasis. The epidermal growth factor receptor (EGFR) signaling cascade is known to drive cell migration and proliferation. While the signal transduction downstream of EGFR has been extensively investigated, our knowledge of the initiation and maintenance of EGFR signaling during cell migration remains limited. The metalloprotease TACE (tumor necrosis factor alpha converting enzyme) is responsible for producing active EGFR family ligands in the via ligand shedding. Sustained TACE activity may perpetuate EGFR signaling and reduce a cell’s reliance on exogenous growth factors. Using a cultured keratinocyte model system, we show that depletion of α-catenin perturbs adherens junctions, enhances cell proliferation and motility, and decreases dependence on exogenous growth factors. We show that the underlying mechanism for these observed phenotypical changes depends on enhanced autocrine/paracrine release of the EGFR ligand transforming growth factor alpha in a TACE-dependent manner. We demonstrate that proliferating keratinocyte epithelial cell clusters display waves of oscillatory extracellular signal–regulated kinase (ERK) activity, which can be eliminated by TACE knockout, suggesting that these waves of oscillatory ERK activity depend on autocrine/paracrine signals produced by TACE. These results provide new insights into the regulatory role of adherens junctions in initiating and maintaining autocrine/paracrine signaling with relevance to wound healing and cellular transformation.  相似文献   

8.
Glial cell line-derived neurotrophic factor (GDNF) can induce neuron-like differentiation of mouse pheochromocytoma (MPC) cell lines derived from mice with a heterozygous knockout mutation of nf1, the murine counterpart of the human gene mutated in neurofibromatosis type 1 (NF1). Here, we show that GDNF-induced differentiation in the MPC 862L cell line is mediated by the MEK/extracellular signal-regulated kinase (ERK) pathway. Neurite outgrowth, increased expression of growth-associated protein 43, and decreased incorporation of bromodeoxyuridine (BrdU) were induced by treatment with GDNF, H-RasV12, or a constitutively active MEK2. GDNF also induces leukemia inhibitory factor (LIF) via the MEK/ERK pathway, and LIF itself can elicit these differentiative changes via a cell-extrinsic autocrine/paracrine pathway. Treatment with anti-LIF neutralizing antibody depleted the differentiative activity of the conditioned medium from cells stimulated for MEK/ERK signaling, while recombinant LIF could induce differentiation in MPC cells, indicating that LIF is the sole factor with differentiative activity. LIF could activate MEK1/2 and STAT3, but LIF-induced differentiation was blocked only by the MEK1/2-specific inhibitor U0126, indicating that the MEK/ERK pathway is necessary for LIF action in MPC cells. Our findings suggest that LIF may be utilized for signaling mediated by GDNF and may be important in the pathobiology of neuroendocrine tumors.  相似文献   

9.
10.
Glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) are potent survival factors for dopaminergic neurons and motoneurons with therapeutic potential for Parkinson's disease. Soluble GFLs bind to a ligand-specific glycosylphosphatidylinositol-anchored coreceptor (GDNF family receptor α) and signal through the receptor tyrosine kinase RET. In this paper, we show that all immobilized matrix-bound GFLs, except persephin, use a fundamentally different receptor. They interact with syndecan-3, a transmembrane heparan sulfate (HS) proteoglycan, by binding to its HS chains with high affinity. GFL-syndecan-3 interaction mediates both cell spreading and neurite outgrowth with the involvement of Src kinase activation. GDNF promotes migration of cortical neurons in a syndecan-3-dependent manner, and in agreement, mice lacking syndecan-3 or GDNF have a reduced number of cortical γ-aminobutyric acid-releasing neurons, suggesting a central role for the two molecules in cortical development. Collectively, syndecan-3 may directly transduce GFL signals or serve as a coreceptor, presenting GFLs to the signaling receptor RET.  相似文献   

11.
Hormonal cancers such as breast and prostate cancer arise from steroid hormone-regulated tissues. In addition to breast and prostate cancer hormonal regulation has also a role in endometrial, ovarian, testis and thyroid carcinomas. The effects of estrogens, androgens and progestagens on tumor growth are largely mediated by paracrine and autocrine target molecules which include growth factors and growth factor receptors. During cancer progression the hormonal growth regulation is often lost or overcome by an inappropriate activation of growth factor signaling cascades. One of the growth factors which have been associated with the regulation of growth and progression of hormonal cancer is fibroblast growth factor 8 (FGF8) which has also been recognized as an oncogene. FGF8 is widely expressed during embryonic development. It has been shown to mediate embryonic epithelial-mesenchymal transition and to have a crucial role in gastrulation and early organization and differentiation of midbrain/hindbrain, pharyngeal, cardiac, urogenital and limb structures. During adulthood FGF8 expression is much more restricted but in hormonal cancers it becomes frequently activated. High level of FGF8 expression in tumors is associated with a poor prognosis at least in prostate cancer. In experimental models FGF8 induces and facilitates prostate tumorigenesis and increases growth and angiogenesis of tumors. Several lines of evidence for autocrine and paracrine loops in the growth regulation of breast, prostate and ovarian cancer by FGF8 have been suggested.  相似文献   

12.
13.
The intracellular signals driving the proliferation of breast carcinoma (BC) cells have been widely studied. Both the mitotic and metastatic potential of BC cells have been linked to the frequent overexpression of ErbB family members. Other signaling molecules, including the estrogen receptor, the tyrosine kinases c-Src and Syk, and STAT proteins, especially STAT3, have also been implicated in BC tumor growth. Here we have examined ErbB and STAT protein expression and activation in six BC-derived cell lines. ErbB expression and tyrosine phosphorylation varied considerably among the six cell lines. However, STAT protein expression and activation were more consistent. Two levels of STAT3 activation were distinguished in DNA-binding assays: an epidermal growth factor-inducible, high level that requires both ErbB1 and Janus kinase (JAK) activity and an elevated serum-dependent level that is maintained by autocrine/paracrine signaling and requires JAK activity but is independent of ErbB1 kinase activity. BC cell growth could be inhibited by dominant-negative versions of STAT3 and the JAK inhibitor AG490 but not by PD153035 or PD168393, inhibitors of ErbB1 kinase activity. This indicates that BC cell proliferation may be a consequence of STAT3 activation by autocrine/paracrine signals.  相似文献   

14.
We previously demonstrated the capacity of GAS1 (Growth Arrest Specific 1) to inhibit the growth of gliomas by blocking the GDNF–RET signaling pathway. Here, we show that a soluble form of GAS1 (tGAS1), decreases the number of viable MDA MB 231 human breast cancer cells, acting in both autocrine and paracrine manners when secreted from producing cells. Moreover, tGAS1 inhibits the growth of tumors implanted in female nu/nu mice through a RET-independent mechanism which involves interfering with the Artemin (ARTN)-GFRα3-(GDNF Family Receptor alpha 3) mediated intracellular signaling and the activation of ERK. In addition, we observed that the presence of tGAS1 reduces the vascularization of implanted tumors, by preventing the migration of endothelial cells. The present results support a potential adjuvant role for tGAS1 in the treatment of breast cancer, by detaining tumor growth and inhibiting angiogenesis.  相似文献   

15.
Human growth hormone (hGH) plays critical roles in pubertal mammary gland growth, development, and sexual maturation. Accumulated studies have reported that autocrine/paracrine hGH is an orthotopically expressed oncoprotein that promotes normal mammary epithelial cell oncogenic transformation. Autocrine/paracrine hGH has also been reported to promote mammary epithelial cell epithelial-mesenchymal transition (EMT) and invasion. However, the underlying mechanism remains largely obscure. MicroRNAs (miRNAs) are reported to be involved in regulation of multiple cellular functions of cancer. To determine whether autocrine/paracrine hGH promotes EMT and invasion through modulation of miRNA expression, we performed microarray profiling using MCF-7 cells stably expressing wild type or a translation-deficient hGH gene and identified miR-96-182-183 as an autocrine/paracrine hGH-regulated miRNA cluster. Forced expression of miR-96-182-183 conferred on epithelioid MCF-7 cells a mesenchymal phenotype and promoted invasive behavior in vitro and dissemination in vivo. Moreover, we observed that miR-96-182-183 promoted EMT and invasion by directly and simultaneously suppressing BRMS1L (breast cancer metastasis suppressor 1-like) gene expression. miR-96 and miR-182 also targeted GHR, providing a potential negative feedback loop in the hGH-GHR signaling pathway. We further demonstrated that autocrine/paracrine hGH stimulated miR-96-182-183 expression and facilitated EMT and invasion via STAT3 and STAT5 signaling. Consistent with elevated expression of autocrine/paracrine hGH in metastatic breast cancer tissue, miR-96-182-183 expression was also remarkably enhanced. Hence, we delineate the roles of the miRNA-96-182-183 cluster and elucidate a novel hGH-GHR-STAT3/STAT5-miR-96-182-183-BRMS1L-ZEB1/E47-EMT/invasion axis, which provides further understanding of the mechanism of autocrine/paracrine hGH-stimulated EMT and invasion in breast cancer.  相似文献   

16.
17.
Retinoic acid (RA) plays an important role in cell growth and tissue development and is also a regulating factor of pituitary function. However, whether RA is generated in the pituitary gland and plays a role as a paracrine and/or autocrine hormone is generally unknown. RA is synthesized from retinoids through oxidation processes. Dehydrogenases catalyzing the oxidation of retinal to RA are members of the retinaldehyde dehydrogenase (RALDH) family. In this study, we examined the expression of RALDH1, RALDH2, and RALDH3 mRNA in the rat embryonic pituitary gland. By in situ hybridization with digoxigenin-labeled cRNA probes, we detected mRNA expression for RALDH2 and RALDH3, but not RALDH1. The expression of RALDH2 and RALDH3 was located in Rathke’s pouch at embryonic day 12.5 (E12.5) and subsequently in the developing anterior pituitary gland. We also used quantitative real-time polymerase chain reaction to analyze RALDH2 and RALDH3 mRNA expression levels during the development of the pituitary gland. We found that pituitary RALDH2 and RALDH3 mRNA levels were high at E17.5 and decreased markedly after birth. Our study is the first to show that RALDH2 and RALDH3, but not RALDH1, are expressed in the embryonic anterior pituitary gland of the rat.  相似文献   

18.
In addition to its role in embryonic development, the Hedgehog pathway has been shown to be an active participant in cancer development, progression, and metastasis. Although this pathway is activated by autocrine signaling by Hedgehog ligands, it can also initiate paracrine signaling with cells in the microenvironment. This creates a network of Hedgehog signaling that determines the malignant behavior of the tumor cells. As a result of paracrine signal transmission, the effects of Hedgehog signaling most profoundly influence the stromal cells that constitute the tumor microenvironment. The stromal cells in turn produce factors that nurture the tumor. Thus, such a resonating cross-talk can amplify Hedgehog signaling, resulting in molecular chatter that overall promotes tumor progression. Inhibitors of Hedgehog signaling have been the subject of intense research. Several of these inhibitors are currently being evaluated in clinical trials. Here, we review the role of the Hedgehog pathway in the signature characteristics of cancer cells that determine tumor development, progression, and metastasis. This review condenses the latest findings on the signaling pathways that are activated and/or regulated by molecules generated from Hedgehog signaling in cancer and cites promising clinical interventions. Finally, we discuss future directions for identifying the appropriate patients for therapy, developing reliable markers of efficacy of treatment, and combating resistance to Hedgehog pathway inhibitors.  相似文献   

19.
20.
Investigations over the last decade have established the essential role of growth factors and their receptors during angiogenesis and carcinogenesis. The vascular endothelial growth factor receptor (VEGFR) family in mammals contains three members, VEGFR-1 (Flt-1), VEGFR-2 (KDR/Flk-1) and VEGFR-3 (Flt-4), which are transmembrane tyrosine kinase receptors that regulate the formation of blood and lymphatic vessels. In the early 1990s, the above VEGFR was structurally characterized by cDNA cloning. Among these three receptors, VEGFR-2 is generally recognized to have a principal role in mediating VEGF-induced responses. VEGFR-2 is considered as the earliest marker for endothelial cell development. Importantly, VEGFR-2 directly regulates tumor angiogenesis. Therefore, several inhibitors of VEGFR-2 have been developed and many of them are now in clinical trials. In addition to targeting endothelial cells, the VEGF/VEGFR-2 system works as an essential autocrine/paracrine process for cancer cell proliferation and survival. Recent studies mark the continuous and increased interest in this related, but distinct, function of VEGF/VEGFR-2 in cancer cells: the autocrine/paracrine loop. Several mechanisms regulate VEGFR-2 levels and modulate its role in tumor angiogenesis and physiologic functions, i.e.: cellular localization/trafficking, regulation of cis-elements of promoter, epigenetic regulation and signaling from Notch, cytokines/growth factors and estrogen, etc. In this review, we will focus on updated information regarding VEGFR-2 research with respect to the molecular mechanisms of VEGFR-2 regulation in human breast cancer. Investigations in the activation, function, and regulation of VEGFR-2 in breast cancer will allow the development of new pharmacological strategies aimed at directly targeting cancer cell proliferation and survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号