首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidative damage to cell macromolecules by reactive oxygen species is associated with numerous diseases and aging. In Drosophila, RNAi-mediated silencing of the mitochondrial antioxidant manganese superoxide dismutase (SOD2) throughout the body dramatically reduces life span, accelerates senescence of locomotor function, and enhances sensitivity to applied oxidative stress. Here, we show that Sod2 knockdown in the musculature alone is sufficient to cause the shortened life span and accelerated locomotor declines observed with knockdown of Sod2 throughout the body, indicating that Sod2 deficiency in muscle is central to these phenotypes. Knockdown of Sod2 in the muscle also increased caspase activity (a marker for apoptosis) and caused a mitochondrial pathology characterized by swollen mitochondria, decreased mitochondrial content, and reduced ATP levels. These findings indicate that Sod2 plays a crucial role in the musculature in Drosophila and that the consequences of SOD2 loss in this tissue extend to the viability of the organism as a whole.  相似文献   

2.
Yeast FLP recombinase was used in a binary transgenic system (“FLP-OUT”) to allow induced overexpression of catalase and/or Cu/Zn-superoxide dismutase (Cu/ZnSOD) in adult Drosophila melanogaster. Expression of FLP recombinase was driven by the heat-inducible hsp70 promoter. Once expressed, FLP catalyzed the rearrangement and activation of a target construct in which expression of catalase or Cu/ZnSOD cDNAs was driven by the constitutive actin5C promoter. In this way a brief heat pulse (120 or 180 min, total) of young adult flies activated transgene expression for the rest of the life span. FLP-OUT allows the effects of induced transgene expression to be analyzed in control (no heat pulse) and experimental (heat pulse) populations with identical genetic backgrounds. Under the conditions used, the heat pulse itself always had neutral or slightly negative effects on the life span. Catalase overexpression significantly increased resistance to hydrogen peroxide but had neutral or slightly negative effects on the mean life span. Cu/ZnSOD overexpression extended the mean life span up to 48%. Simultaneous overexpression of catalase with Cu/ZnSOD had no added benefit, presumably due to a preexisting excess of catalase. The data suggest that oxidative damage is one rate-limiting factor for the life span of adult Drosophila. Finally, experimental manipulation of the genetic background demonstrated that the life span is affected by epistatic interactions between the transgene and allele(s) at other loci.  相似文献   

3.
4.
The ventral nerve cord (VNC) of the Drosophila embryo is derived from neuroblasts (NBs). NBs divide in a stem cell lineage to generate a series of ganglion mother cells (GMCs), each of which divides once to produce a pair of neurons or glial cells. One of the NB genes, castor (cas), is expressed in a subset of NBs and has never been identified in neurons and the peripheral nervous system; cas plays a role in axonogenesis. But its limited expression along the dorsal-ventral axis within the central nervous system has not been investigated yet. In the present study, we examined the expression patterns of both genes using confocal microscopy to determine the effects of repo mutation on cas expression. Cas was mainly expressed in layers different from repo-expressed layers during early embryogenesis: repo was expressed mostly from deep to mid layers, while cas, from mid to superficial layers. Loss-of-function of repo did not result in an ectopic expression of cas, but rather, a scattering of cas-expressing cells. However, repo gain-of-function mutation caused repression of cas. In addition, repo-expressing cells seemed to block the migration of cas-expressing cells.  相似文献   

5.
6.
7.
Syntrophin components of the dystrophin glycoprotein complex (DGC) feature multiple protein interaction domains that may act in molecular scaffolding, recruiting signaling proteins to membranes and the DGC. Drosophila Syntrophin-1 (Syn1) and Syntrophin-2 (Syn2) are counterparts of human α1/β1/β2-syntrophins and γ1/γ2-syntrophins, respectively. α1/β1/β2-syntrophins are well documented, while little is known about γ1/γ2-syntrophins. Here, we performed immunohistochemical analyses with a specific antibody to Syn2 and demonstrated predominant expression in the larval and adult central nervous system. To investigate the in vivo functions of Syn2, we have generated Drosophila Syn2 deficiency mutants. Although the Syn2 mutants exhibit no overt phenotype, the combination of Syn1 knockdown and Syn237 mutation dramatically shortened life span, synergistically reduced locomotion ability and synergistically enhanced overgrowth of neuromuscular junctions in N-ethylmaleimide sensitive factor 2 mutants. From these data we conclude that Syn1 and Syn2 are required for locomotion and are involved in regulation of synaptic morphology. In addition, the two syntrophins can at least partially compensate for each other's functions.  相似文献   

8.

Background

Friedreich''s ataxia (FA), the most frequent form of inherited ataxias in the Caucasian population, is caused by a reduced expression of frataxin, a highly conserved protein. Model organisms have contributed greatly in the efforts to decipher the function of frataxin; however, the precise function of this protein remains elusive. Overexpression studies are a useful approach to investigate the mechanistic actions of frataxin; however, the existing literature reports contradictory results. To further investigate the effect of frataxin overexpression, we analyzed the consequences of overexpressing human (FXN) and fly (FH) frataxins in Drosophila.

Methodology/Principal Findings

We obtained transgenic flies that overexpressed human or fly frataxins in a general pattern and in different tissues using the UAS-GAL4 system. For both frataxins, we observed deleterious effects at the biochemical, histological and behavioral levels. Oxidative stress is a relevant factor in the frataxin overexpression phenotypes. Systemic frataxin overexpression reduces Drosophila viability and impairs the normal embryonic development of muscle and the peripheral nervous system. A reduction in the level of aconitase activity and a decrease in the level of NDUF3 were also observed in the transgenic flies that overexpressed frataxin. Frataxin overexpression in the nervous system reduces life span, impairs locomotor ability and causes brain degeneration. Frataxin aggregation and a misfolding of this protein have been shown not to be the mechanism that is responsible for the phenotypes that have been observed. Nevertheless, the expression of human frataxin rescues the aconitase activity in the fh knockdown mutant.

Conclusion/Significance

Our results provide in vivo evidence of a functional equivalence for human and fly frataxins and indicate that the control of frataxin expression is important for treatments that aim to increase frataxin levels.  相似文献   

9.
10.
11.
The larval phase of the Drosophila life cycle is characterized by constant food intake, resulting in a two hundred-fold increase in mass over four days. Here we show that the conserved energy sensor AMPK is essential for nutrient intake in Drosophila. Mutants lacking dAMPKα are small, with low triglyceride levels, small fat body cells and early pupal lethality. Using mosaic analysis, we find that dAMPKα functions as a nonautonomous regulator of cell growth. Nutrient absorption is impaired in dAMPKα mutants, and this defect stems not from altered gut epithelial cell polarity but from impaired peristaltic activity. Expression of a wild-type dAMPKα transgene or an activated version of the AMPK target myosin regulatory light chain (MRLC) in the dAMPKα mutant visceral musculature restores gut function and growth. These data suggest strongly that AMPK regulates visceral smooth muscle function through phosphorylation of MRLC. Furthermore, our data show that in Drosophila, AMPK performs an essential cell-nonautonomous function, serving the needs of the organism by promoting activity of the visceral musculature and, consequently, nutrient intake.  相似文献   

12.
There is a relationship between various cellular stress factors and aging. In earlier studies, we demonstrated that overexpression of the D-GADD45 gene increases the life span of Drosophila melanogaster. In this study, we investigate the relationship between D-GADD45 activity and resistance to oxidative, genotoxic and thermal stresses as well as starvation. In most cases, flies with constitutive and conditional D-GADD45 overexpression in the nervous system were more stress-resistant than ones without overexpression. At the same time, most of the studied stress factors increased D-GADD45 expression in the wild-type strain. The lifespan-extending effect of D-GADD45 overexpression was also retained after exposure to chronic and acute gamma-irradiation, with doses of 40 сGy and 30 Gy, respectively. However, knocking out D-GADD45 resulted in a significant reduction in lifespan, lack of radiation hormesis and radioadaptive response. A dramatic decrease in the spontaneous level of D-GADD45 expression was observed in the nervous system as age progressed, which may be one of the causes of the age-related deterioration of organismal stress resistance. Thus, D-GADD45 expression is activated by most of the studied stress factors, and D-GADD45 overexpression resulted in an increase of stress resistance.  相似文献   

13.
During Drosophila metamorphosis some larval tissues escape the general histolysis and are remodelled to form adult tissues. One example is the dorso-longitudinal muscles (DLMs) of the indirect flight musculature. They are formed by an intriguing process in which residual larval oblique muscles (LOMs) split and fuse with imaginal myoblasts associated with the wing disc. These myoblasts arise in the embryo, but remain undifferentiated throughout embryogenesis and larval life, and thus share characteristics with mammalian satellite cells. However, the mechanisms that maintain the Drosophila myoblasts in an undifferentiated state until needed for LOM remodelling are not understood. Here we show that the Him gene is expressed in these myoblasts, but is undetectable in developing DLM fibres. Consistent with this, we found that Him could inhibit DLM development: it inhibited LOM splitting and resulted in fibre degeneration. We then uncovered a balance between mef2, a positive factor required for proper DLM development, and the inhibitory action of Him. Mef2 suppressed the inhibitory effect of Him on DLM development, while Him could suppress the premature myosin expression induced by mef2 in myoblasts. Furthermore, either decreased Him function or increased mef2 function disrupted DLM development. These findings, together with the co-expression of Him and Mef2 in myoblasts, indicate that Him may antagonise mef2 function during normal DLM development and that Him participates in a balance of signals that controls adult myoblast differentiation and remodelling of these muscle fibres. Lastly, we provide evidence for a link between Notch function and Him and mef2 in this balance.  相似文献   

14.
Explants of the central nervous system of Drosophila have been shown to produce nerve fibres in vitro. The effects of various culture conditions on fibre outgrowth have been examined. Nervous tissue could form nerve fibres in vitro when the explants were obtained from mid-embryonic or early- and mid-pupal stages, but not when they were obtained from larvae or late-pupae. The effect of the temperature-sensitive mutation shibirets has been investigated by placing mutant explants into culture at permissive (17°C) or restrictive (28°C) temperatures. No differences in the extent of fibre outgrowth between wild-type and shibirets were observed, regardless of the temperature of cultivation.  相似文献   

15.
Drosophila nasuta nasuta (2n = 8) and D. n. albomicans (2n = 6) are morphologically identical, cross fertile and karyotypically dissimilar pair of chromosomal races belonging to nasuta subgroup of immigrans group of Drosophila. Interracial hybridization between these two races yielded karyotypically stabilized newly evolved Cytoraces with new combinations of chromosomes and DNA content, and are called nasuta-albomicans complex of Drosophila. Along with many other features, striking plasticity in the lifespan has been observed in the karyotypically stabilized members of nasuta-albomicans complex of Drosophila. These findings provide a strong background to understand any changes at the molecular levels. In view of this, we cloned and characterized Sod1 and Rpd3 in the members of nasuta-albomicans complex of Drosophila. The evolution of Sod1 and Rpd3 in D. n. nasuta and D. n. albomicans is contrasting with the other species of Drosophila, at the level of synonymous mutations, intron variation, InDels and secondary structure changes in protein. In the members of NAC of Drosophila there were synonymous changes, variations in intron sequences of Sod1, whereas, in Rpd3, synonymous, nonsynonymous, intron variation, and secondary structure changes in protein were observed. The contrasting differences in the levels of Rpd3 (and Sir2) proteins were also noticed among short-lived and long-lived Cytoraces. The Cytoraces have exhibited not only specific changes in Sod1 and Rpd3, but also show pronounced changes in the levels of synthesis of these proteins, which indicates rapid evolution of these Cytoraces in laboratory. Further these Cytoraces have become a model system to understand the process of anagenesis.  相似文献   

16.
Genome-wide screening for sensitivity to chronic endoplasmic reticulum (ER) stress induced by dithiothreitol and tunicamycin (TM) identified mutants deleted for Cu, Zn superoxide dismutase (SOD) function (SOD1, CCS1) or affected in NADPH generation via the pentose phosphate pathway (TKL1, RPE1). TM-induced ER stress led to an increase in cellular superoxide accumulation and an increase in SOD1 expression and Sod1p activity. Prior adaptation of the hac1 mutant deficient in the unfolded protein response (UPR) to the superoxide-generating agent paraquat reduced cell death under ER stress. Overexpression of the ER oxidoreductase Ero1p known to generate hydrogen peroxide in vitro, did not lead to increased superoxide levels in cells subjected to ER stress. The mutants lacking SOD1, TKL1, or RPE1 exhibited decreased UPR induction under ER stress. Sensitivity of the sod1 mutant to ER stress and decreased UPR induction was partially rescued by overexpression of TKL1 encoding transketolase. These data indicate an important role for SOD and cellular NADP(H) in cell survival during ER stress, and it is proposed that accumulation of superoxide affects NADP(H) homeostasis, leading to reduced UPR induction during ER stress.  相似文献   

17.
Cryptochrome (CRYs) proteins have been elucidated as the molecular basis for magnetoreception in Drosophila, and a putative magnetic receptor (named IscA1) protein may aslo be involved in sensing magnetic fields in Drosophila. However, whether IscA1 has a conserved role in diverse animals and functions in orientation during animal migration is unknown. Here we report on the cloning and sequencing of the IscA1 gene from Agrotis segetum, which encodes a predicted protein IscA1 that has 131 amino acids and two conserved iron-sulphur cluster binding domains. Multiple sequence alignment and phylogenetic analysis were used to show that IscA1 had a relatively high homology from species of Noctuoidea. Quantitative polymerase chain reaction showed that IscA1 was ubiquitously expressed in adult organs and, among all developmental stages, expression was higher in adults. When Agrotis segetum was exposed to 14?h light/10?h dark, IscA1 expression also showed daily oscillations, and constant light or dark disturbed these oscillations. IscA1 expression levels in a migratory population were higher than in a reared population and higher in a southward migratory population than in a northward. These findings suggest that the IscA1 gene in A. segetum might be associated with migration and provide a molecular basis for further study on the functions of IscA1 gene in magnetoreception and potential control of the turnip moth.  相似文献   

18.
In Drosophila, gap genes translate positional information from gradients of maternal coordinate activity and act to position the periodic patterns of pair-rule gene stripes across broad domains of the embryo. In holometabolous insects, maternal coordinate genes are fast-evolving, the domains that gap genes specify often differ from their orthologues in Drosophila while the expression of pair-rule genes is more conserved. This implies that gap genes may buffer the fast-evolving maternal coordinate genes to give a more conserved pair-rule output. To test this idea, we have examined the function and expression of three honeybee orthologues of gap genes, Krüppel, caudal, and giant. In honeybees, where many Drosophila maternal coordinate genes are missing, these three gap genes have more extensive domains of expression and activity than in other insects. Unusually, honeybee caudal mRNA is initially localized to the anterior of the oocyte and embryo, yet it has no discernible function in that domain. We have also examined the influence of these three genes on the expression of honeybee even-skipped and a honeybee orthologue of engrailed and show that the way that these genes influence segmental patterning differs from Drosophila. We conclude that while the fundamental function of these gap genes is conserved in the honeybee, shifts in their expression and function have occurred, perhaps due to the apparently different maternal patterning systems in this insect.  相似文献   

19.
20.
Manganese-dependent superoxide dismutase (SOD2) serves as the primary defense against mitochondrial superoxide, and decreased SOD2 activity results in a range of pathologies. To investigate the events occurring soon after depletion of SOD2, we generated SOD2 gene knockout chicken DT40 cells complemented with a human SOD2 (hSOD2) cDNA, whose expression can be switched off by doxycycline (Dox). When SOD2 was depleted by the addition of Dox, the cells grew slightly slower and formed fewer colonies than cells expressing hSOD2. In addition, these cells showed a high sensitivity to paraquat, which produces superoxide, and died through apoptosis. In contrast to results obtained with mouse and DrosophilaSod2 mutants, we found no indication of an increase in DNA lesions due to depletion of SOD2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号