首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 117 毫秒
1.
Compression and/or contusion of a peripheral nerve trunk can result in painful sensations. It is possible that release of ATP into the extracellular space may contribute to this symptom. In the present study, we used real-time measurements of ATP-induced bioluminescence together with electrophysiological recordings of compound action potentials to follow changes in the extracellular ATP concentration of isolated rat spinal roots exposed to mechanical stimuli. Nerve compression for about 8 s resulted in an immediate release of ATP into the extracellular space and in a decrease in the amplitude of compound action potentials. On average, a rise in ATP to 60 nM was observed when nerve compression blocked 50% of the myelinated axons. After the compression, the extracellular concentration of ATP returned to the resting level within a few minutes. The importance of ecto-nucleotidases for the recovery period was determined by exposure of isolated spinal roots to high concentrations of ATP and by use of inhibitors of ecto-nucleotidases. It was observed that spinal roots have a high capacity for ATP hydrolysis which is only partially blocked by βγ-methylene ATP and ARL 67156. In conclusion, acute nerve compression produces an increase in the extracellular concentration of ATP and of its metabolites which may be sufficient for activation of purinergic P2 and/or P1 receptors on axons of nociceptive afferent neurons.  相似文献   

2.
Many animal cells release ATP into the extracellular medium, and often this release is mechanosensitive. However, the mechanisms underlying this release are not well understood. Using the luciferin-luciferase bioluminescent assay we demonstrate that a Xenopus oocyte releases ATP at a basal rate approximately 0.01 fmol/s, and gentle mechanical stimulation can increase this to 50 fmol/s. Brefeldin A, nocodazole, and progesterone-induced- maturation block basal and mechanosensitive ATP release. These treatments share the common feature of disrupting the Golgi complex and vesicle trafficking to the cell surface and thereby block protein secretion and membrane protein insertion. We propose that ATP release occurs when protein transport vesicles enriched in ATP fuse with the plasma membrane. Collagenase, integrin-binding peptides, and cytochalasin D also block ATP release, indicating that extracellular, membrane and cytoskeletal elements are involved in the release process. Elevation of intracellular Ca(2+) does not evoke ATP release but potentiates mechanosensitive ATP release. Our study indicates a novel mechanism of mechanotransduction that would allow cells to regulate membrane trafficking and protein transport/secretion in response to mechanical loading.  相似文献   

3.
Adrenal chromaffin cells secrete catecholamines (CA) and ATP in response to acetylcholine (ACh) and high [K+]o. The release process is relatively fast making it difficult to measure the early phase of the secretory response. Recently we were able to resolve the time course of the secretory response by measuring the release of ATP using luciferin-luciferase included in the extracellular medium. For the three secretagogues studied, ACh, nicotine and high [K+]o, the early phase of release followed a complex kinetics. Allowing for an initial delay of the secretory response, the kinetics could be described as the sum of two power exponential processes. Increasing the temperature from 23 to 37 degrees C induced a marked decrease in the two time constants needed to fit the early time course of the ATP secretion. The activation energies, estimated from Arrhenius plots, were approx. 20 and 16 kcal/mol for both phases of ATP release induced by either cholinergic agonists or high [K+]o. These results suggest that cholinergic receptor activation and membrane depolarization induce ATP (and CA) secretion through a common pathway. The initial delay in the onset of the secretory response decreased with increasing doses of secretagogue and with temperature. We propose that the delay preceding the actual onset of ATP release represents the time required for generation of intracellular second messengers. The effective concentration attained by these messengers depend apparently on both receptor occupancy by the agonist and the ensuing Ca2+ channel activation.  相似文献   

4.
Adenosine triphosphate (ATP) is a neurotransmitter/neuromodulator in both central and peripheral nervous systems. Particularly in the taste bud, a peripheral taste organ, ATP serves as an afferent neurotransmitter. To examine the mechanism that mediates ATP secretion in taste cells, we elaborated an approach for monitoring ATP in an extracellular medium by employing a biosensor, that is, cells responsive to ATP. Two lines of ATP-sensitive cells, HEK-293 and COS-1, which endogenously express P2Y receptors, were employed. In addition, HEK-293 cells transfected with P2X3 receptors were also used. By most relevant parameters (threshold response, inactivation kinetics of ATP responses, and refractory period), COS-1 cells were more suitable as an ATP sensor than HEK-293 cells, both native and transfected. For the HEK-293 cell-based biosensor, one of pitfalls was that they were highly responsive to mechanical disturbances, e.g., solution flux elicited by application of a chemical stimulus, owing to the expression of mechanosensitive Ca2+-permeable cation channels. In COS-1 cells, ATP-dependent Ca2+ transients were generated mostly due to Ca2+ release, the feature allowing one to control the activity of ATP-releasing cells electrophysiologically and to monitor the ATP secretion by Ca2+ responses of the ATP-biosensor. By using this technique, it was demonstrated that individual taste cells of a mouse released ATP in response to membrane depolarization.  相似文献   

5.
We investigated the role of the chondrocyte primary cilium in mechanotransduction events related to cartilage extracellular matrix synthesis. We generated conditionally immortalized wild-type (WT) and IFT88(orpk) (ORPK) mutant chondrocytes that lack primary cilia and assessed intracellular Ca(2+) signaling, extracellular matrix synthesis, and ATP release in response to physiologically relevant compressive strains in a 3-dimensional chondrocyte culture system. All conditions were compared to unloaded controls. We found that cilia were required for compression-induced Ca(2+) signaling mediated by ATP release, and an associated up-regulation of aggrecan mRNA and sulfated glycosaminosglycan secretion. However, chondrocyte cilia were not the initial mechanoreceptors, since both WT and ORPK cells showed mechanically induced ATP release. Rather, we found that primary cilia were required for downstream ATP reception, since ORPK cells did not elicit a Ca(2+) response to exogenous ATP even though WT and ORPK cells express similar levels of purine receptors. We suggest that purinergic Ca(2+) signaling may be regulated by polycystin-1, since ORPK cells only expressed the C-terminal tail. This is the first study to demonstrate that primary cilia are essential organelles for cartilage mechanotransduction, as well as identifying a novel role for primary cilia not previously reported in any other cell type, namely cilia-mediated control of ATP reception.  相似文献   

6.
We previously showed that low doses (0.25-0.5 Gy) of γ-rays elevated thioredoxin (Trx-1) in various organs of mice after whole-body irradiation. Also, it is reported that extracellular ATP, which is released in response to various stresses, regulates the expression of intracellular antioxidants through activation of P2 receptors. We have recently found that low-dose γ-rays induce ATP release from the exposed cells. However, it is not yet clear whether the radiation-induced extracellular ATP modulates the cellular redox balance. Here, we investigated whether γ-ray irradiation-induced release of extracellular ATP contributes to the induction of the cellular antioxidant Trx-1, using mouse macrophage-like RAW264.7 cells. Irradiation with γ-rays or exogenously added ATP increased the expression of Trx-1, and in both cases the increase was blocked by pretreatment with an ectonucleotidase, apyrase. Then, the involvement of ATP-dependent reactive oxygen species (ROS) generation in the increase in antioxidant capacity was examined. ATP stimulation promoted the generation of intracellular ROS and also increased Trx-1 expression. The increase in Trx-1 expression was significantly suppressed by pretreatment of the cells with antioxidants. In conclusion, the γ-ray irradiation-induced release of extracellular ATP may, at least in part, contribute to the production of ROS via purinergic signaling, leading to promotion of intracellular antioxidants as an adaptive response to an oxidative stress.  相似文献   

7.
Chen JG  Gao Y  Jones AM 《Plant physiology》2006,141(3):887-897
Signaling through heterotrimeric G proteins is conserved in diverse eukaryotes. Compared to vertebrates, the simpler repertoire of G-protein complex and accessory components in Arabidopsis (Arabidopsis thaliana) offers a unique advantage over all other multicellular, genetic-model systems for dissecting the mechanism of G-protein signal transduction. One of several biological processes that the G-protein complex regulates in Arabidopsis is cell division. We determined cell production rate in the primary root and the formation of lateral roots in Arabidopsis to define individually the types of modulatory roles of the respective G-protein alpha- and beta-subunits, as well as the heterotrimer in cell division. The growth rate of the root is in part a consequence of cell cycle maintenance in the root apical meristem (RAM), while lateral root production requires meristem formation by founder pericycle cells. Thus, a comparison of these two parameters in various genetic backgrounds enabled dissection of the role of the G-protein subunits in modulation of cell division, both in maintenance and initiation. Cell production rates were determined for the RAM and lateral root formation in gpa1 (Arabidopsis G-protein alpha-subunit) and agb1 (Arabidopsis G-protein beta-subunit) single and double mutants, and in transgenic lines overexpressing GPA1 or AGB1 in agb1 or gpa1 mutant backgrounds, respectively. We found in the RAM that the heterotrimeric complex acts as an attenuator of cell proliferation, whereas the GTP-bound form of the Galpha-subunit's role is a positive modulator. In contrast, for the formation of lateral roots, the Gbetagamma-dimer acts largely independently of the Galpha-subunit to attenuate cell division. These results suggest that Arabidopsis heterotrimeric G-protein subunits have differential and opposing roles in the modulation of cell division in roots.  相似文献   

8.
We have previously shown that extracellular ATP acts as a mitogen via protein kinase C (PKC)-dependent and independent pathways (Wang, D., Huang, N., Gonzalez, F.A., and Heppel, L.A. Multiple signal transduction pathways lead to extracellular ATP-stimulated mitogenesis in mammalian cells. I. Involvement of protein kinase C-dependent and independent pathways in the mitogenic response of mammalian cells to extracellular ATP. J. Cell. Physiol., 1991). The present aim was to determine if metabolism of arachidonic acid, resulting in prostaglandin E2 (PGE2) synthesis and elevation of cAMP levels, plays a role in mitogenesis mediated by extracellular ATP. Addition of ATP caused a marked enhancement of cyclic AMP accumulation in 3T3, 3T6, and A431 cells. Aminophylline, an antagonist of the adenosine A2 receptor, had no effect on the accumulation of cyclic AMP elicited by ATP, while it inhibited the action of adenosine. The accumulation of cyclic AMP was concentration dependent, which corresponds to the stimulation of DNA synthesis by ATP. The maximal accumulation was achieved after 45 min, with an initial delay period of about 15 min. That the activation of arachidonic acid metabolism contributed to cyclic AMP accumulation and mitogenesis stimulated by ATP in 3T3, 3T6, and A431 cells was supported by the following observations: (a) extracellular ATP stimulated the release of [3H]arachidonic acid and PGE2 into the medium; (b) inhibition of arachidonic acid release by inhibitors of phospholipase A2 blocked PGE2 production, cyclic AMP accumulation, and DNA synthesis activated by ATP, and this inhibition could be reversed by adding exogenous arachidonic acid; (c) cyclooxygenase inhibitors, such as indomethacin and aspirin, diminished the release of PGE2 and blocked cyclic AMP accumulation as well as [3H]thymidine incorporation in response to ATP; (d) PGE2 was able to restore [3H]thymidine incorporation when added together with ATP in the presence of cyclooxygenase inhibitors; (e) pertussis toxin inhibited ATP-stimulated DNA synthesis in a time- and dose-dependent fashion as well as arachidonic acid release and PGE2 formation. Other evidence for involvement of a pertussis toxin-sensitive G protein(s) in ATP-stimulated DNA synthesis as well as in arachidonic acid release is presented. In A431 cells, the enhancement of arachidonic acid and cyclic AMP accumulation by ATP was partially blocked by PKC down-regulation, implying that the activation of PKC may represent an additional pathway in ATP-stimulated metabolism of arachidonic acid. In all of these studies, ADP and AMP-PNP, but not adenosine, were as active as ATP.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
PC12 cells, a rat pheochromocytoma cell line, has been reported to release norepinephrine in response to extracellular ATP in the presence of extracellular Ca2+. The potency order of ATP analogues was adenosine 5'-O-(3-thiotriphosphate) greater than ATP greater than adenosine 5'-O-(1-thiotriphosphate) = 2-methylthioadenosine 5'-triphosphate (MeSATP) greater than 2'- and 3'-O-(4-benzoyl-benzoyl)ATP (BzATP) greater than ADP greater than 5-adenylylimidodiphosphate. Adenosine 5'-O-(2-thiodiphosphate), beta, gamma-methyleneadenosine 5'-triphosphate, AMP and adenosine were inactive. The ATP action in the absence of extracellular Ca2+, suggests a small but appreciable contribution of intracellular Ca2+ mobilization, for norepinephrine release. However, for some ATP derivatives, like BzATP, almost no contribution of the phospholipase C-Ca2+ pathway is suggested, based on their low activity in inositol phosphates production. To identify the ATP-receptor protein, PC12 cell membranes were photoaffinity-labeled with [32P]BzATP. SDS-PAGE analysis showed that a 53-kDa protein labeling was inhibited by ATP and its derivatives, as well as by P2-antagonists, suramin and reactive blue 2, which inhibit the nucleotide-induced norepinephrine release. The inhibitory activity of the nucleotides was, in parallel with their potency, to induce norepinephrine release. Despite their inability to release norepinephrine, GTP and GTP gamma S inhibited the BzATP labeling, suggesting the participation of a putative G protein in the ATP-receptor-mediated actions. We suggest that the 53-kDa protein on the PC12 cell surface is an ATP receptor, which mediates the norepinephrine release, depending, mainly, on extracellular Ca2+ gating.  相似文献   

10.
We previously showed that fluid flow, which chondrocytes experience in vivo and which results in a variety of morphological and metabolic changes in cultured articular chondrocytes, can also stimulate a rise in intracellular calcium concentration ([Ca2+]i). However, the mechanism by which Ca2+ is mobilized in response to flow is unclear. In this study, we investigated the roles of intracellular Ca2+ stores, G-proteins, and extracellular ATP in the flow-induced Ca2+ response in bovine articular chondrocytes (BAC). Cells loaded with the Ca2+ sensitive dye Fura-2 were exposed to steady flow at 34 ml/min (37 dynes/cm2) in a parallel plate flow chamber. Whereas ryanodine and caffeine had no effect, both neomycin and thapsigargin significantly decreased the Ca2+i response to flow, suggesting a role for Ca2+ store release, possibly through an inositol 1,4,5-trisphosphate (IP3)-dependent mechanism. Twenty-four-hour treatment with pertussis toxin also significantly decreased the response, suggesting that the mechanism may be G-protein regulated. In addition, ATP release by chondrocytes does not appear to mediate the flow-induced Ca2+ response because suramin, a P2 purinergic blocker, had no effect. These results suggest that BAC respond rapidly to changes in their mechanical environment, such as increased fluid flow, by a mechanism that involves IP3 stimulated Ca2+i release and G-protein activation. J. Cell. Physiol. 180:402–408, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

11.
ASH sensory neurons are required in Caenorhabditis elegans for a wide range of avoidance behaviors in response to chemical repellents, high osmotic solutions and nose touch. The ASH neurons are therefore hypothesized to be polymodal nociceptive neurons. To understand the nature of polymodal sensory response and adaptation at the cellular level, we expressed the calcium indicator protein cameleon in ASH and analyzed intracellular Ca(2+) responses following stimulation with chemical repellents, osmotic shock and nose touch. We found that a variety of noxious stimuli evoked strong responses in ASH including quinine, denatonium, detergents, heavy metals, both hyper- and hypo-osmotic shock and nose touch. We observed that repeated chemical stimulation led to a reversible reduction in the magnitude of the sensory response, indicating that adaptation occurs within the ASH sensory neuron. A key component of ASH adaptation is GPC-1, a G-protein gamma-subunit expressed specifically in chemosensory neurons. We hypothesize that G-protein gamma-subunit heterogeneity provides a mechanism for repellent-specific adaptation, which could facilitate discrimination of a variety of repellents by these polymodal sensory neurons.  相似文献   

12.
Extracellular purine nucleotides appear capable of regulating plant development, defence and stress responses by acting in part as agonists of plasma membrane calcium channels. Factors stimulating ATP release include wounding, osmotic stress and elicitors. Here we show that exogenous abscisic acid and L-glutamate can also cause ATP accumulation around Arabidopsis thaliana roots. Release of ADP from root epidermis would trigger ionotropic receptor-like activity in the plasma membrane, resulting in transient elevation of cytosolic free calcium. Root epidermal protoplasts (expressing aequorin as a cytosolic free calcium reporter) can support an extracellular ADP-induced cytosolic calcium elevation in the presence of an extracellular reductant. This confirms that ADP could elicit calcium-based responses distinct to those of ATP, which have been shown previously to involve production of extracellular reactive oxygen species.  相似文献   

13.
Tendon cells receive mechanical signals from the load bearing matrices. The response to mechanical stimulation is crucial for tendon function. However, overloading tendon cells may deteriorate extracellular matrix integrity by activating intrinsic factors such as matrix metalloproteinases (MMPs) that trigger matrix destruction. We hypothesized that mechanical loading might induce interleukin-1beta (IL-1beta) in tendon cells, which can induce MMPs, and that extracellular ATP might inhibit the load-inducible gene expression. Human tendon cells isolated from flexor digitorum profundus tendons (FDPs) of four patients were made quiescent and treated with ATP (10 or 100 microM) for 5 min, then stretched equibiaxially (1 Hz, 3.5% elongation) for 2 h followed by an 18-h-rest period. Stretching induced IL-1beta, cyclooxygenase 2 (COX 2), and MMP-3 genes but not MMP-1. ATP reduced the load-inducible gene expression but had no effect alone. A medium change caused tendon cells to secrete ATP into the medium, as did exogenous UTP. The data demonstrate that mechanical loading induces ATP release in tendon cells and stimulates expression of IL-1beta, COX 2, and MMP-3. Load-induced endogenous IL-1beta may trigger matrix remodeling or a more destructive pathway(s) involving IL-1beta, COX 2, and MMP-3. Concomitant autocrine and paracrine release of ATP may serve as a negative feedback mechanism to limit activation of such an injurious pathway. Attenuation or failure of this negative feedback mechanism may result in the progression to tendinosis.  相似文献   

14.
The skeleton constantly interacts and adapts to the physical world. We have previously reported that physiologically relevant mechanical forces lead to small repairable membrane injuries in bone-forming osteoblasts, resulting in release of ATP and stimulation of purinergic (P2) calcium responses in neighboring cells. The goal of this study was to develop a theoretical model describing injury-related ATP and ADP release, their extracellular diffusion and degradation, and purinergic responses in neighboring cells. After validation using experimental data for intracellular free calcium elevations, ATP, and vesicular release after mechanical stimulation of a single osteoblast, the model was scaled to a tissue-level injury to investigate how purinergic signaling communicates information about injuries with varying geometries. We found that total ATP released, peak extracellular ATP concentration, and the ADP-mediated signaling component contributed complementary information regarding the mechanical stimulation event. The total amount of ATP released governed spatial factors, such as the maximal distance from the injury at which purinergic responses were stimulated. The peak ATP concentration reflected the severity of an individual cell injury, allowing to discriminate between minor and severe injuries that released similar amounts of ATP because of differences in injury repair, and determined temporal aspects of the response, such as signal propagation velocity. ADP-mediated signaling became relevant only in larger tissue-level injuries, conveying information about the distance to the injury site and its geometry. Thus, we identified specific features of extracellular ATP and ADP spatiotemporal signals that depend on tissue mechanoresilience and encode the severity, scope, and proximity of the mechanical stimulus.  相似文献   

15.
Tang W  Brady SR  Sun Y  Muday GK  Roux SJ 《Plant physiology》2003,131(1):147-154
Raising the level of extracellular ATP to mM concentrations similar to those found inside cells can block gravitropism of Arabidopsis roots. When plants are grown in Murashige and Skoog medium supplied with 1 mM ATP, their roots grow horizontally instead of growing straight down. Medium with 2 mM ATP induces root curling, and 3 mM ATP stimulates lateral root growth. When plants are transferred to medium containing exogenous ATP, the gravity response is reduced or in some cases completely blocked by ATP. Equivalent concentrations of ADP or inorganic phosphate have slight but usually statistically insignificant effects, suggesting the specificity of ATP in these responses. The ATP effects may be attributable to the disturbance of auxin distribution in roots by exogenously applied ATP, because extracellular ATP can alter the pattern of auxin-induced gene expression in DR5-beta-glucuronidase transgenic plants and increase the response sensitivity of plant roots to exogenously added auxin. The presence of extracellular ATP also decreases basipetal auxin transport in a dose-dependent fashion in both maize (Zea mays) and Arabidopsis roots and increases the retention of [(3)H]indole-3-acetic acid in root tips of maize. Taken together, these results suggest that the inhibitory effects of extracellular ATP on auxin distribution may happen at the level of auxin export. The potential role of the trans-plasma membrane ATP gradient in auxin export and plant root gravitropism is discussed.  相似文献   

16.
17.

Background

The epithelial cell response to stress involves the transmission of signals between contiguous cells that can be visualized as a calcium wave. In some cell types, this wave is dependent on the release of extracellular trinucleotides from injured cells. In particular, extracellular ATP has been reported to be critical for the epithelial cell response to stress and has recently been shown to be upregulated in tumors in vivo.

Methodology/Principal Findings

Here, we identify stanniocalcin-1 (STC1), a secreted pleiotrophic protein, as a critical mediator of calcium wave propagation in monolayers of pulmonary (A549) and prostate (PC3) epithelial cells. Addition of STC1 enhanced and blocking STC1 decreased the distance traveled by an extracellular ATP-dependent calcium wave. The same effects were observed when calcium was stimulated by the addition of exogenous ATP. We uncover a positive feedback loop in which STC1 promotes the release of ATP from cells in vitro and in vivo.

Conclusions/Significance

The results indicated that STC1 plays an important role in the early response to mechanical injury by epithelial cells by modulating signaling of extracellular ATP. This is the first report to describe STC1 as a modulator or purinergic receptor signaling.  相似文献   

18.
Intercellular communication allows co-ordination of cell metabolism and sensitivity to extracellular stimuli. In bone cells, paracrine stimulation and cell-to-cell coupling through gap junctions induce the formation of complex intercellular networks, which favours the intercellular exchange of nutrients and second messengers, ultimately controlling the process of bone remodelling. The importance of local factors in bone remodelling is known since many years. Bone cells secrete and respond to a variety signals, among which include prostaglandins, cytokines, growth factors, and ATP. We here report evidence that extracellular NAD(+) is a novel extracellular signal stimulating osteoblast differentiation. We found that HOBIT human osteoblastic cells, which are known to express ADP-ribosyl cyclase/CD38 activity, respond to micromolar concentrations of extracellular NAD(+) with oscillatory increases of the cytosolic Ca(2+) concentration. The initial Ca(2+) response was followed by a time-dependent inhibition of cell growth, the appearance of an epithelial morphology, and by an increase of alkaline phosphatase and osteocalcin expression. Under resting condition HOBIT cells release NAD(+) in the extracellular medium and the release is significantly potentiated by mechanical stimulation. Taken together these results point to NAD(+) as a novel autocrine/paracrine factor involved in stimulation and maintenance of the osteoblast differentiated phenotype.  相似文献   

19.
Excitatory effects of adenosine and ATP on carotid body (CB) chemoreception have been previously described. Our hypothesis is that both ATP and adenosine are the key neurotransmitters responsible for the hypoxic chemotransmission in the CB sensory synapse, their relative contribution depending on the intensity of hypoxic challenge. To test this hypothesis we measured carotid sinus nerve (CSN) activity in response to moderate and intense hypoxic stimuli (7 and 0% O(2)) in the absence and in the presence of adenosine and ATP receptor antagonists. Additionally, we quantified the release of adenosine and ATP in normoxia (21% O(2)) and in response to hypoxias of different intensities (10, 5, and 2% O(2)) to study the release pathways. We found that ZM241385, an A(2) antagonist, decreased the CSN discharges evoked by 0 and 7% O(2) by 30.8 and 72.5%, respectively. Suramin, a P(2)X antagonist, decreased the CSN discharges evoked by 0 and 7% O(2) by 64.3 and 17.1%, respectively. Simultaneous application of both antagonists strongly inhibited CSN discharges elicited by both hypoxic intensities. ATP release by CB increased in parallel to hypoxia intensity while adenosine release increased preferably in response to mild hypoxia. We have also found that the lower the O(2) levels are, the higher is the percentage of adenosine produced from extracellular catabolism of ATP. Our results demonstrate that ATP and adenosine are key neurotransmitters involved in hypoxic CB chemotransduction, with a more relevant contribution of adenosine during mild hypoxia, while vesicular ATP release constitutes the preferential origin of extracellular adenosine in high-intensity hypoxia.  相似文献   

20.
ATP is a vital molecule used by living organisms as a universal source of energy required to drive the cogwheels of intracellular biochemical reactions necessary for growth and development. Animal cells release ATP to the extracellular milieu, where it functions as the primary signaling cue at the epicenter of a diverse range of physiological processes. Although recent findings revealed that intact plant tissues release ATP as well, there is no clearly defined physiological function of extracellular ATP in plants. Here, we show that extracellular ATP is essential for maintaining plant cell viability. Its removal by the cell-impermeant traps glucose-hexokinase and apyrase triggered death in both cell cultures and whole plants. Competitive exclusion of extracellular ATP from its binding sites by treatment with beta,gamma-methyleneadenosine 5'-triphosphate, a nonhydrolyzable analog of ATP, also resulted in death. The death response was observed in Arabidopsis thaliana, maize (Zea mays), bean (Phaseolus vulgaris), and tobacco (Nicotiana tabacum). Significantly, we discovered that fumonisin B1 (FB1) treatment of Arabidopsis triggered the depletion of extracellular ATP that preceded cell death and that exogenous ATP rescues Arabidopsis from FB1-induced death. These observations suggest that extracellular ATP suppresses a default death pathway in plants and that some forms of pathogen-induced cell death are mediated by the depletion of extracellular ATP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号