首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies have shown that Gardnerella vaginalis can utilize human hemoglobin as a sole source of iron. In this study, the interaction between human hemoglobin and G. vaginalis cells was investigated. With a solid phase dot blot assay, G. vaginalis cells were shown to bind digoxigenin (DIG)-labeled human hemoglobin. A human hemoglobin-binding protein with an estimated molecular weight of 124 kilodaltons (kDa) was detected by Western blot analysis of G. vaginalis proteins. The hemoglobin-binding activity of this protein was found to be heat stable and was observed in G. vaginalis cells grown under iron-restrictive and iron-replete conditions. The 124-kDa hemoglobin-binding protein was not detected from intact G. vaginalis cells treated with trypsin prior to Western blot analysis, suggesting that this protein was surface exposed. Received: 26 June 2000 / Accepted: 21 July 2000  相似文献   

2.

Background  

Host parasitism by Trichomonas vaginalis is complex. Adherence to vaginal epithelial cells (VECs) is mediated by surface proteins. We showed before that antisense down-regulation of expression of adhesin AP65 decreased amounts of protein, which lowered levels of T. vaginalis adherence to VECs. We now perform antisense down-regulation of expression of the ap33 gene to evaluate and confirm a role for AP33 in adherence by T. vaginalis. We also used an established transfection system for heterologous expression of AP33 in T. foetus as an additional confirmatory approach.  相似文献   

3.
4.

Background  

Trichomonosis, caused by Trichomonas vaginalis, is the number one, nonviral sexually transmitted infection that has adverse consequences for the health of women and children. The interaction of T. vaginalis with vaginal epithelial cells (VECs), a step preparatory to infection, is mediated in part by the prominent surface protein AP65. The bovine trichomonad, Tritrichomonas foetus, adheres poorly to human VECs. Thus, we established a transfection system for heterologous expression of the T. vaginalis AP65 in T. foetus, as an alternative approach to confirm adhesin function for this virulence factor.  相似文献   

5.
The enzymes pyruvate ferredoxin oxidoreductase (PFO), malic enzyme (ME), and the α‐ and β‐subunits of succinyl‐CoA synthetase (SCS) catalyze key steps of energy metabolism in Trichomonas vaginalis hydrogenosomes. These proteins have also been characterized as the adhesins AP120 (PFO), AP65 (ME), AP33, and AP51 (α‐ and β‐SCS), which are localized on the cell surface and mediate the T. vaginalis cytoadherence. However, the mechanisms that facilitate the targeting of these proteins to the cell surface via the secretory pathway and/or to hydrogenosomes are not known. Here we adapted an in vivo biotinylation system to perform highly sensitive tracing of protein trafficking in T. vaginalis. We showed that α‐ and β‐SCS are biotinylated in the cytosol and imported exclusively into the hydrogenosomes. Neither α‐ nor β‐SCS is biotinylated in the endoplasmic reticulum and delivered to the cell surface via the secretory pathway. In contrast, two surface proteins, tetratricopeptide domain‐containing membrane‐associated protein and tetraspanin family surface protein, as well as soluble‐secreted β‐amylase‐1 are biotinylated in the endoplasmic reticulum and delivered through the secretory pathway to their final destinations. Taken together, these results demonstrate that the α‐ and β‐SCS subunits are targeted only to the hydrogenosomes, which argues against their putative moonlighting function.  相似文献   

6.
In this study, binding of hemoglobin to Actinobacillus actinomycetemcomitans was characterized. The ability of A. actinomycetemcomitans to utilize hemoglobin as an iron source was examined by growth studies. Although the bacterial growth was limited almost completely by adding 400 microM 2, 2'-dipyridyl to culture medium, addition of hemoglobin recovered the growth in a dose-dependent manner, revealing that hemoglobin can be utilized effectively as an iron source by A. actinomycetemcomitans. Binding of A. actinomycetemcomitans to hemoglobin was examined by dot-blot assay. Optimal hemoglobin-binding activity occurred at pH 6 and activity under acidic conditions was found to be higher than that under alkaline conditions. Hemoglobin-binding activity was higher under anaerobic conditions than under aerobic conditions, and iron restriction in culture medium decreased the activity by 55%. Heat and trypsin treatments of the bacterial components reduced the activity by 28% and 60%, respectively. Globin inhibited the activity by 49%, while transferrin, lactoferrin and tested amino acids and sugars had little or no inhibitory effects. These results indicate that proteinaceous components of the bacterial cells may be involved in hemoglobin binding and that globin moiety of the hemoglobin molecule may be essential for the binding. In order to identify hemoglobin-binding proteins, the bacterial cell components extracted with n-octyl-beta-D-thioglucoside were subjected to SDS-PAGE and transferred to a nitrocellulose membrane. The membrane was incubated with hemoglobin and bound hemoglobin was detected with anti-hemoglobin antibodies. About 40- and 65-kDa proteins from A. actinomycetemcomitans reacted with hemoglobin. The 65-kDa protein was detected despite the iron concentration in culture medium, whereas expression of the 40-kDa protein was enhanced only when the organism was grown in iron-restricted culture medium. From these results, it is suggested that 40- and 65-kDa proteins of A. actinomycetemcomitans may be involved in hemoglobin binding.  相似文献   

7.
The present study was undertaken to investigate the role of cysteine proteinase of Trichomonas vaginalis in escaping from host defense mechanism. A cysteine proteinase of T. vaginalis was purified by affinity chromatography and gel filtration. Optimum pH for the purified proteinase activity was 6.0. The proteinase was inhibited by cysteine and serine proteinase inhibitors such as E-64, NEM, IAA, leupeptin, TPCK and TLCK, and also by Hg2+, but not affected by serine-, metallo-, and aspartic proteinase inhibitors such as PMSF, EDTA and pepstatin A. However, it was activated by the cysteine proteinase activator, DTT. The molecular weight of a purified proteinase was 62 kDa on gel filtration and 60 kDa on SDS-PAGE. Interestingly, the purified proteinase was able to degrade serum IgA, secretory IgA, and serum IgG in time- and dose-dependent manners. In addition, the enzyme also degraded hemoglobin in a dose-dependent manner. These results suggest that the acidic cysteine proteinase of T. vaginalis may play a dual role for parasite survival in conferring escape from host humoral defense by degradation of immunoglobulins, and in supplying nutrients to parasites by degradation of hemoglobin.  相似文献   

8.
Trichomoniasis caused by the parasitic protozoan Trichomonas vaginalis is the most common sexually transmitted disease in the world. Dendritic cells are antigen presenting cells that initiate immune responses by directing the activation and differentiation of naïve T cells. In this study, we analyzed the effect of Trichomonas vaginalis-derived Secretory Products on the differentiation and function of dendritic cells. Differentiation of bone marrow-derived dendritic cells in the presence of T. vaginalis-derived Secretory Products resulted in inhibition of lipopolysaccharide-induced maturation of dendritic cells, down-regulation of IL-12, and up-regulation of IL-10. The protein components of T. vaginalis-derived Secretory Products were shown to be responsible for altered function of bone marrow-derived dendritic cells. Chromatin immunoprecipitation assay demonstrated that IL-12 expression was regulated at the chromatin level in T. vaginalis-derived Secretory Productstreated dendritic cells. Our results demonstrated that T. vaginalis-derived Secretory Products modulate the maturation and cytokine production of dendritic cells leading to immune tolerance. [BMB Reports 2015; 48(2): 103-108]  相似文献   

9.
The serum of the channel catfish (Ictalurus punctatus) was examined for heme- and hemoglobin-binding proteins. Electrophoretic mobility retardation assays failed to detect a hemoglobin-binding material similar to mammalian haptoglobin; however, a heme-binding component (not previously described) was identified in catfish seru. The heme-binding component was purified by gel filtration chromatography; electrophoretic analyses suggested it to be composed of two polypeptide subunits of molecular masses about 115 and 98 kDa. This composition is inconsistent with hemopexin, the known heme-binding serum protein of mammals. Although it was not fully saturated with heme, the catfish component contained detectable heme in normal sera. When complexed by the binding material, heme was used as an iron source by isolates of the bacterial Gram-negative genusAeromonas; the capacity of other bacteria to use the complex was not tested. The physiological function of the catfish heme-binding serum protein is presently not clear.  相似文献   

10.
To evaluate the biological and biochemical characteristics of Trichomonas vaginalis KT9 isolate, the growth and size of trichomonads, pathogenicity in mouse, protein profiles and proteinase activity were examined after shifting the medium from TPS-1 into TYM. Generation time of trichomonads in TYM medium was 4.5 hr in comparison to TPS-1 with 7.1 hr. Size of trichomonads cultured in TPS-1 medium (8.5 ± 0.9 × 6.0 ± 0.9 µm) was significantly smaller than those in TYM medium (10.9 ± 1.4 × 8.2 ± 0.9 µm). Trichomonads cultured in TYM medium produced subcutaneous abscess in 9 out of 10 mice, whereas those in TPS-1 medium produced abscesses in 2 out of 10 mice. In SDS-PAGE, trichomonad lysates from both media showed ten common bands. However, trichomonads in TYM medium showed additional bands of 136 kDa, 116 kDa and 40 kDa in comparison to those in TPS-1 with 100 kDa. By immunoblot with T. vaginalis-immunized rabbit sera, T. vaginalis cultivated in both TYM and TPS-1 media showed 5 common bands, and unique bands of 116 kDa, 105 kDa, and 86 kDa were observed in trichomonads in TYM while a 140 kDa band in those in TPS-1. In gelatin SDS-PAGE, trichomonads in TYM degraded gelatin stronger than those in TPS-1. Also protease activity of trichomonads in TYM was significantly higher than that of trichomonads in TPS-1 using Bz-Pro-Phe-Arg-Nan as a substrate. According to the results, it is assumed that the shift from TPS-1 into TYM medium for cultivation of T. vaginalis might modulate the biological and biochemical properties of T. vaginalis in vitro.  相似文献   

11.
Trichomonas vaginalis is a flagellate protozoan parasite and commonly infected the lower genital tract in women and men. Iron is a known nutrient for growth of various pathogens, and also reported to be involved in establishment of trichomoniasis. However, the exact mechanism was not clarified. In this study, the author investigated whether the 120 kDa protein of T. vaginalis may be involved in pathogenicity of trichomonads. Antibodies against 120 kDa protein of T. vaginalis, which was identified as pyruvate:ferredoxin oxidoreductase (PFOR) by peptide analysis of MALDI-TOF-MS, were prepared in rabbits. Pretreatment of T. vaginalis with anti-120 kDa Ab decreased the proliferation and adherence to vaginal epithelial cells (MS74) of T. vaginalis. Subcutaneous tissue abscess in anti-120 kDa Ab-treated T. vaginalis-injected mice was smaller in size than that of untreated T. vaginalis-infected mice. Collectively, the 120 kDa protein expressed by iron may be involved in proliferation, adhesion to host cells, and abscess formation, thereby may influence on the pathogenicity of T. vaginalis.  相似文献   

12.
In the present study, genomic DNAs were purified from Korean isolates (KT8, KT6, KT-Kim and KT-Lee) and foreign strains (CDC85, IR78 and NYH 286) of Trichomonas vaginalis, and hybridized with a probe based on the repetitive sequence cloned from T. vaginalis to observe the genetic differences. By Southern hybridization, all isolates of T. vaginalis except the NYH286 strain had 11 bands. Therefore all isolates examined were distinguishable into 3 groups according to their banding patterns; i) KT8, KT6 and KT-Kim isolates had 11 identical bands such as 1 kb, 1.2 kb, 1.6 kb, 1.9 kb, 2.3 kb, 2.7 kb, 3.2 kb, 3.4 kb, 3.8 kb, 4.9 kb and 6.0 kb. ii) The metronidazole-resistant IR78 strain had the same bands as KT-Lee isolate at bands of 1 kb, 1.2 kb, 1.6 kb, 1.8 kb, 2.1 kb, 2.5 kb, 2.7 kb, 2.9 kb, 3.4 kb, 5.0 kb and 6.0 kb. Bands of CDC85, metronidazole-resistant strain, were similar to those of IR78 and KT-Lee, except that 3.2 kb replaced 2.9 kb. iii) NYH286 particularly had 12 bands and band patterns were similar to IR78 with a few exceptions as follows: i) 6.2 kb in place of 6.0 kb, ii) 2.0 kb and 2.2 kb instead of 2.1 kb. Through the results obtained, genetic variance of T. vaginalis isolates was demonstrated by Southern hybridization.  相似文献   

13.
The organic matrix of spicules of the alcyonarian coral, Lobophytum crassum, was studied to investigate its molecular characteristics and functional properties. The shape of the spicules was identified using scanning electron microscopy. The soluble organic matrix comprised 0.03% of the spicule weight. The SDS-PAGE analysis of the preparation showed four protein bands with apparent molecular weights of 37, 48, 67 and 102 kDa. The 67- and 102-kDa proteins appeared to be calcium binding proteins, detected as radioactive bands by 45Ca autoradiography. The 67-kDa protein appears to be glycosylated. The N-terminal amino acid sequence of the 67 kDa was determined; 7 of 20 residues were acidic. A database search for homologous proteins did not give a clear indication of the function of the 67-kDa protein. The isolated organic matrix possesses carbonic anhydrase activity which functions in calcium carbonate crystal formation, indicating that organic matrix is not only structural protein but also a catalyst. An interpretation of these results is that the spicule of alcyonarian corals has a proteinaceous organic matrix related to the calcification process.  相似文献   

14.
Trichomonas vaginalis commonly causes vaginitis and perhaps cervicitis in women and urethritis in men and women. Macrophages are important immune cells in response to T. vaginalis infection. In this study, we investigated whether human macrophages could be involved in inflammation induced by T. vaginalis. Human monocyte-derived macrophages (HMDM) were co-cultured with T. vaginalis. Live, opsonized-live trichomonads, and T. vaginalis lysates increased proinflammatory cytokines, such as TNF-α, IL-1β, and IL-6 by HMDM. The involvement of nuclear factor (NF)-κB signaling pathway in cytokine production induced by T. vaginalis was confirmed by phosphorylation and nuclear translocation of p65 NF-κB. In addition, stimulation with live T. vaginalis induced marked augmentation of nitric oxide (NO) production and expression of inducible NO synthase (iNOS) levels in HMDM. However, trichomonad-induced NF-κB activation and TNF-α production in macrophages were significantly inhibited by inhibition of iNOS levels with L-NMMA (NO synthase inhibitor). Moreover, pretreatment with NF-κB inhibitors (PDTC or Bay11-7082) caused human macrophages to produce less TNF-α. These results suggest that T. vaginalis stimulates human macrophages to produce proinflammatory cytokines, such as IL-1, IL-6, and TNF-α, and NO. In particular, we showed that T. vaginalis induced TNF-α production in macrophages through NO-dependent activation of NF-κB, which might be closely involved in inflammation caused by T. vaginalis.  相似文献   

15.
To elucidate the roles of metalloproteinases and the Bcl-2 family of proteins in Trichovaginalis. vaginalis-induced apoptosis in human cervical cancer cells (SiHa cells) and vaginal epithelial cells (MS74 cells), SiHa cells and MS74 cells were incubated with live T. vaginalis, T. vaginalis excretory and secretory products (ESP), and T. vaginalis lysates, either with or without the specific metalloproteinase inhibitor 1,10-phenanthroline (1,10-PT), and examined apoptotic events and Bcl-2 signaling. The live T. vaginalis and the T. vaginalis ESP induced the release of cytochrome c into the cytosol, the activation of caspase-3 and caspase-9, and the cleavage of PARP. Additionally, the live T. vaginalis, but not the T. vaginalis lysate, induced the cleavage of the proapoptotic Bim protein. The live T. vaginalis and the T. vaginalis ESP, but not the T. vaginalis lysate, induced the dose-dependent cleavage of the antiapoptotic Bcl-xL and Mcl-1 proteins and decreased the association levels of Bcl-xL/Bim and Mcl-1/Bim complexes. We performed gelatin zymography and casein-hydrolysis assays on the live T. vaginalis and the T. vaginalis ESP to identify the apoptosis-inducing factor. Both the live T. vaginalis and the ESP contained high levels of metalloproteinases, of which activities were significantly inhibited by 1,10-PT treatment. Furthermore, the 1,10-PT blocked the cleavage of Bcl-xL, Mcl-1, PARP, caspase-3, and caspase-9, as well as the release of cytochrome c into the cytosol, and it significantly increased the association levels of the Bcl-xL/Bim and Mcl-1/Bim protein complexes, returning them to normal levels. Our results demonstrate that T. vaginalis induces mitochondria-dependent apoptosis in SiHa cells through the dissociation of Bcl-xL/Bim and Mcl-1/Bim complexes and that the apoptosis is blocked by the metalloproteinase inhibitor 1,10-PT. These results expand our understanding of the role of metalloproteinases in T. vaginalis-induced apoptosis and the signaling pathway in trichomoniasis of the cervicovaginal epithelial cells.  相似文献   

16.
Adherence to host cells is essential for the initiation and maintenance of infection by mucosal pathogens. The protozoan Trichomonas vaginalis colonizes the human urogenital tract via four surface proteins (AP65, AP51, AP33 and AP23). To characterize AP33 further, six cDNA clones were examined. Restriction mapping indicated that the six clones represented three similar genes. Southern analysis confirmed the existence of three single-copy AP33 genes and suggested a semi-conservative genomic arrangement between T. vaginalis isolates. Analysis of full-length sequences determined that each contained a 930 bp open reading frame encoding a protein of approximately 33 000 Da. Sequence comparisons revealed a high degree of identity at both the DNA and the protein levels. N-terminal protein sequencing established the presence of leader peptides. Each of the three full-length recombinant proteins had a predicted pI of approximately 10, which was verified experimentally for the T. vaginalis AP33 adhesin. A database search revealed that AP33 had significant identity to the succinyl-CoA synthetase α-subunit of several different organisms and virtually 100% identity to the reported T. vaginalis subunit. Unlike commercially purchased enzyme, the recombinant proteins retained adhesive properties equal to the natural T. vaginalis AP33. The characteristics of the AP33 protein are similar to those of the other adhesins and emphasize a complex host–parasite relationship.  相似文献   

17.
RAD51-associated protein 1 (RAD51AP1) is critical for homologous recombination (HR) by interacting with and stimulating the activities of the RAD51 and DMC1 recombinases. In human somatic cells, knockdown of RAD51AP1 results in increased sensitivity to DNA damaging agents and to impaired HR, but the formation of DNA damage-induced RAD51 foci is unaffected. Here, we generated a genetic model system, based on chicken DT40 cells, to assess the phenotype of fully inactivated RAD51AP1 in vertebrate cells. Targeted inactivation of both RAD51AP1 alleles has no effect on either viability or doubling-time in undamaged cells, but leads to increased levels of cytotoxicity after exposure to cisplatin or to ionizing radiation. Interestingly, ectopic expression of GgRAD51AP1, but not of HsRAD51AP1 is able to fully complement in cell survival assays. Notably, in RAD51AP1-deficient DT40 cells the resolution of DNA damage-induced RAD51 foci is greatly slowed down, while their formation is not impaired. We also identify, for the first time, an important role for RAD51AP1 in counteracting both spontaneous and DNA damage-induced replication stress. In human and in chicken cells, RAD51AP1 is required to maintain wild type speed of replication fork progression, and both RAD51AP1-depleted human cells and RAD51AP1-deficient DT40 cells respond to replication stress by a slow-down of replication fork elongation rates. However, increased firing of replication origins occurs in RAD51AP1-/- DT40 cells, likely to ensure the timely duplication of the entire genome. Taken together, our results may explain why RAD51AP1 commonly is overexpressed in tumor cells and tissues, and we speculate that the disruption of RAD51AP1 function could be a promising approach in targeted tumor therapy.  相似文献   

18.
19.

Background  

AP65 is a prominent adhesin of Trichomonas vaginalis that mediates binding of parasites to host vaginal epithelial cells (VECs). AP65 with no secretion signal sequence, membrane targeting peptide, and anchoring motif was recently found to be secreted.  相似文献   

20.
Trichomonas vaginalis is a parasitic protozoan that causes sexually transmitted infections (STIs) worldwide. The infection is dangerous and easily spreads within a community. Also, some cases of drug resistance were reported. Previously, we reported that the shrimp anti-lipopolysaccharide factor (SALF), an antimicrobial peptide of 24 amino acids, modulates inflammatory responses and inhibits T. vaginalis growth. To date, there is no report on the mechanism of SALF's actions in T. vaginalis’ adherence to HeLa cells. In this research using an ELISA, we found that the SALF downregulated the release of proinflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-1α, IL-6, IL-8, and monocyte chemoattractant protein (MCP)-1) secreted by T. vaginalis which was adhering to HeLa cells. We also performed real-time PCR experiments to determine the roles of the SALF in the expressions of several proinflammatory genes. Through a Western blot analysis, we determined that SALF treatment inhibited T. vaginalis-treated HeLa cells through the p38 and NF-κB pathways. Furthermore, we used different inhibitors to confirm the pathway by ELISA and Western blotting. Taken together, it is apparent that the SALF suppresses T. vaginalis-induced secretion of proinflammatory cytokines by HeLa cells by acting through the p38 and NF-κB pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号