首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
We compared growth rate, cell glucose turnover and expression of ATP-binding-cassette (ABC) transporters in Leishmania amazonensis (LTB0016; LTB) versus LTB(160) selected for resistance against the ABC transporter blocker glibenclamide. Additionally, we evaluated the influence of drug-resistance on Leishmania sensitivity against 2-mercaptoacetate and 2-deoxyglucose. Our data demonstrate that (1) LTB(160) and LTB constitutively express ABC transporters for neutral substrates, (2) glibenclamide resistance induces the expression of organic anion ABC transporters, members of the drug resistance associated transporters subfamily, (3) LTB(160) parasites use less glucose as energy substrate and exhibit a slower glucose uptake than LTB cells, and (4) LTB(160) parasites are less sensitive to 2-mercaptoacetate and 2-deoxyglucose than the glibenclamide-sensitive Leishmania LTB. Together these and previous results indicate that the metabolic adaptations expressed in drug-resistant LTB(160) differ from those described for mammalian drug resistant cells and constitute general mechanisms that underlie drug resistance in Leishmania and may be helpful for identifying alternative strategies to circumvent drug resistance in leishmaniasis.  相似文献   

2.
Extracellular translocation of the polysaccharide, hyaluronan (HA) has been thought to be mediated via its transmembrane synthetic enzyme, hyaluronan synthase (HAS) but recent studies have indicated that the ATP-Binding-Cassette (ABC) transporter, MRP5 contributes to this process. Liberated and cell-associated HA contributes to breast cancer initiation and progression, and therefore the inhibition of ABC transporters and consequently HA transport could provide therapeutic benefit in the treatment of breast cancer. Quantitation of ABC transporter genes, MRP1-5, BCRP and MDR1 were determined in six breast cancer cell lines selected for their differential HA synthetic rates. Low endogenous expression of transporters was detected but no significant correlation existed between ABC transporter and HAS gene expression or HA production. A dose titration of up to ten times the IC50 of ten small molecule ABC transporter inhibitors did not significantly inhibit HA export in four breast cancer cell lines. Unlike the changes observed after inhibition of HA synthesis by the characterised inhibitor 4-MU, inhibition of ABC transporters did not alter the cell morphology, HA glycocalyx or the intracellular quantity or localisation of HA. Collectively these data indicate that ABC transporters do not contribute to the extracellular transport of HA in breast cancer, supporting a role for the hyaluronan synthase in translocation.  相似文献   

3.
4.
ATP-binding cassette (ABC) transporters have often been refractory to over-expression. Using the C41(DE3) E. coli as a host strain, membrane vesicles highly enriched (>50%) in YvcC, a previously uncharacterized ABC transporter from Bacillus subtilis homologous to P-glycoprotein multidrug transporters, were obtained. The functionality of YvcC was assessed by its high vanadate-sensitive ATPase activity and its ability to transport a fluorescent drug, the Hoechst 33342.  相似文献   

5.
Parasitic flatworms of the genus Schistosoma cause schistosomiasis, a neglected tropical disease that affects hundreds of millions. Treatment of schistosomiasis depends almost entirely on the drug praziquantel (PZQ). Though essential to treating and controlling schistosomiasis, a major limitation of PZQ is that it is not active against immature mammalian-stage schistosomes. Furthermore, there are reports of field isolates with heritable reductions in PZQ susceptibility, and researchers have selected for PZQ-resistant schistosomes in the laboratory. P-glycoprotein (Pgp; ABCB1) and other ATP binding cassette (ABC) transporters remove a wide variety of toxins and xenobiotics from cells, and have been implicated in multidrug resistance (MDR). Changes in ABC transporter structure or expression levels are also associated with reduced drug susceptibility in parasitic helminths, including schistosomes. Here, we show that the activity of PZQ against schistosome adults and juveniles ex vivo is potentiated by co-administration of either the highly potent Pgp inhibitor tariquidar or combinations of inhibitors targeting multiple ABC multidrug transporters. Adult worms exposed to sublethal PZQ concentrations remain active, but co-administration of ABC transporter inhibitors results in complete loss of motility and disruption of the tegument. Notably, juvenile schistosomes (3–4 weeks post infection), normally refractory to 2 µM PZQ, become paralyzed when transporter inhibitors are added in combination with the PZQ. Experiments using the fluorescent PZQ derivative (R)-PZQ-BODIPY are consistent with the transporter inhibitors increasing effective intraworm concentrations of PZQ. Adult worms in which expression of ABC transporters has been suppressed by RNA interference show increased responsiveness to PZQ and increased retention of (R)-PZQ-BODIPY consistent with an important role for these proteins in setting levels of PZQ susceptibility. These results indicate that parasite ABC multidrug transporters might serve as important targets for enhancing the action of PZQ. They also suggest a potentially novel and readily-available strategy for overcoming reduced PZQ susceptibility of schistosomes.  相似文献   

6.
This paper reports the characterization of a new ABC transporter (LtrABC1.1), related to the human ABCA subfamily, in the protozoan parasite Leishmania tropica. LtrABC1.1 is a tandem duplicated gene flanked by inverted repeats. LtrABC1.1 is expressed mainly in the flagellar pocket of the parasite. Drug resistance studies in Leishmania overexpressing LtrABC1.1 showed the transporter not to confer resistance to a range of unrelated drugs. LtrABC1.1 appears to be involved in lipid movements across the plasma membrane of the parasite since overexpression reduces the accumulation of fluorescent phospholipid analogues. The activity of this protein may also affect membrane movement processes since secreted acid phosphatase (SAP) activity was significantly lower in promastigotes overexpressing LtrABC1.1. In vitro infection experiments with macrophages indicated LtrABC1.1-transfected parasites to be significantly less infective. Together, these results suggest that this new ABC transporter could play a role in lipid movements across the plasma membrane, and that its activity might influence vesicle trafficking. This is the first ABCA-like transporter described in unicellular eukaryotes.  相似文献   

7.
8.
The ATP-binding cassette (ABC) transporter superfamily is a large gene family that has been highly conserved throughout evolution. The physiological importance of these membrane transporters is highlighted by the large variety of substrates they transport, and by the observation that mutations in many of them cause heritable diseases in human. Likewise, overexpression of certain ABC transporters, such as P-glycoprotein and members of the multidrug resistance associated protein (MRP) family, is associated with multidrug resistance in various cells and organisms. Understanding the structure and molecular mechanisms of transport of the ABC transporters in normal tissues and their possibly altered function in human diseases requires large amounts of purified and active proteins. For this, efficient expression systems are needed. The methylotrophic yeast Pichia pastoris has proven to be an efficient and inexpensive experimental model for high-level expression of many proteins, including ABC transporters. In the present review, we will summarize recent advances on the use of this system for the expression, purification, and functional characterization of P-glycoprotein and two members of the MRP subfamily.  相似文献   

9.
ATP-binding cassette (ABC) transporters are a family of transmembrane proteins that can transport a wide variety of substrates across biological membranes in an energy-dependent manner. Many ABC transporters such as P-glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1) and breast cancer resistance protein (BCRP) are highly expressed in bronchial epithelium. This review aims to give new insights in the possible functions of ABC molecules in the lung in view of their expression in different cell types. Furthermore, their role in protection against noxious compounds, e.g. air pollutants and cigarette smoke components, will be discussed as well as the (mal)function in normal and pathological lung. Several pulmonary drugs are substrates for ABC transporters and therefore, the delivery of these drugs to the site of action may be highly dependent on the presence and activity of many ABC transporters in several cell types. Three ABC transporters are known to play an important role in lung functioning. Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene can cause cystic fibrosis, and mutations in ABCA1 and ABCA3 are responsible for respectively Tangier disease and fatal surfactant deficiency. The role of altered function of ABC transporters in highly prevalent pulmonary diseases such as asthma or chronic obstructive pulmonary disease (COPD) have hardly been investigated so far. We especially focused on polymorphisms, knock-out mice models and in vitro results of pulmonary research. Insight in the function of ABC transporters in the lung may open new ways to facilitate treatment of lung diseases.  相似文献   

10.
ATP-binding cassette (ABC) transporters are integral membrane proteins that actively transport molecules across cell membranes. In Escherichia coli they consist primarily of import systems that involve in addition to the ABC transporter itself a substrate binding protein and outer membrane receptors or porins, and a number of transporters with varied functions. Recent crystal structures of a number of ATPase domains, substrate binding proteins, and full-length transporters have given new insight in the molecular basis of transport. Bioinformatics approaches allow an approximate identification of all ABC transporters in E. coli and their relation to other known transporters. Computational approaches involving modeling and simulation are beginning to yield insight into the dynamics of the transporters. We summarize the function of the known ABC transporters in E. coli and mechanistic insights from structural and computational studies.  相似文献   

11.
About a 100 years ago, the Drosophila white mutant marked the birth of Drosophila genetics. The white gene turned out to encode the first well studied ABC transporter in arthropods. The ABC gene family is now recognized as one of the largest transporter families in all kingdoms of life. The majority of ABC proteins function as primary-active transporters that bind and hydrolyze ATP while transporting a large diversity of substrates across lipid membranes. Although extremely well studied in vertebrates for their role in drug resistance, less is known about the role of this family in the transport of endogenous and exogenous substances in arthropods. The ABC families of five insect species, a crustacean and a chelicerate have been annotated in some detail. We conducted a thorough phylogenetic analysis of the seven arthropod and human ABC protein subfamilies, to infer orthologous relationships that might suggest conserved function. Most orthologous relationships were found in the ABCB half transporter, ABCD, ABCE and ABCF subfamilies, but specific expansions within species and lineages are frequently observed and discussed. We next surveyed the role of ABC transporters in the transport of xenobiotics/plant allelochemicals and their involvement in insecticide resistance. The involvement of ABC transporters in xenobiotic resistance in arthropods is historically not well documented, but an increasing number of studies using unbiased differential gene expression analysis now points to their importance. We give an overview of methods that can be used to link ABC transporters to resistance. ABC proteins have also recently been implicated in the mode of action and resistance to Bt toxins in Lepidoptera. Given the enormous interest in Bt toxicology in transgenic crops, such findings will provide an impetus to further reveal the role of ABC transporters in arthropods.  相似文献   

12.
This study examines the roles of anion channels and ATP binding cassette (ABC) protein transporters in mediating elicitor-induced ATP release in Salvia miltiorrhiza hairy root cultures. The elicitor-induced ATP release was effectively blocked by two putative membrane anion channel blockers, niflumic acid and Zn2+, but not by a specific Cl channel blocker, phenylanthranilic acid. The elicitor-induced ATP release was also significantly suppressed by two ABC inhibitors, glibenclamide and ethacrynic acid. Notable ATP release from the hairy roots was also induced by verapamil (2 mM), an ABC activator in animal cells. The verapamil-induced ATP release was effectively blocked by niflumic acid, but only slightly inhibited by the ABC inhibitors. Another notable effect of verapamil was the induction of exocytosis, the secretion of vesicle-like particles to the root surface. The verapamil-induced exocytosis was not inhibited by nifulumic acid and YE did not induce the exocytosis. Overall, the results suggest a significant role of anion channels, a possible involvement of ABC proteins and no significant involvement of exocytosis in mediating the ATP efflux in hairy root cells.  相似文献   

13.
The role of ATP-binding cassette (ABC) transporters in the efflux of the insecticide, temephos, was assessed in the larvae of Aedes aegypti. Bioassays were conducted using mosquito populations that were either susceptible or resistant to temephos by exposure to insecticide alone or in combination with sublethal doses of the ABC transporter inhibitor, verapamil (30, 35 and 40 μM). The best result in the series was obtained with the addition of verapamil (40 μM), which led to a 2x increase in the toxicity of temephos, suggesting that ABC transporters may be partially involved in conferring resistance to the populations evaluated.  相似文献   

14.
Streptococcus mutans has a large number of transporters apparently involved in the uptake of carbohydrates. At least two of these, the multiple sugar metabolism transporter, MsmEFGK, and the previously uncharacterized MalXFGK, are members of the ATP-binding cassette (ABC) superfamily. Mutation analysis revealed that the MsmEFGK and MalXFGK transporters are principally involved in the uptake of distinct disaccharides and/or oligosaccharides. Furthermore, the data also indicated an unusual protein interaction between the components of these two related transporters. Strains lacking msmE (which encodes a solute binding protein) can no longer utilize raffinose or stachyose but grow normally on maltodextrins in the absence of MalT, a previously characterized EIImal phosphotransferase system component. In contrast, a mutant of malX (which encodes a solute binding protein) cannot utilize maltodextrins but grows normally on raffinose or stachyose. Radioactive uptake assays confirmed that MalX, but not MsmE, is required for uptake of [U-14C]maltotriose and that MalXFGK is principally involved in the uptake of maltodextrins with as many as 7 glucose units. Surprisingly, inactivation of the corresponding ATPase components did not result in an equivalent abolition of growth: the malK mutant can grow on maltotetraose as a sole carbon source, and the msmK mutant can utilize raffinose. We propose that the ATPase domains of these ABC transporters can interact with either their own or the alternative transporter complex. Such unexpected interaction of ATPase subunits with distinct membrane components to form complete multiple ABC transporters may be widespread in bacteria.  相似文献   

15.
Cutaneous ATP release plays an important role in both epidermal stratification and chronic pain, but little is known about ATP release mechanisms in keratinocytes that comprise the epidermis. In this study, we analyzed ATP release from cultured human neonatal keratinocytes briefly exposed to air, a process previously demonstrated to trigger ATP release from these cells. We show that exposing keratinocytes to air by removing media for 15 seconds causes a robust, long-lasting ATP release. This air-stimulated ATP release was increased in calcium differentiated cultures which showed a corresponding increase in connexin 43 mRNA, a major component of keratinocyte hemichannels. The known connexin hemichannel inhibitors 1-octanol and carbenoxolone both significantly reduced air-stimulated ATP release, as did two drugs traditionally used as ABC transporter inhibitors (glibenclamide and verapamil). These same 4 inhibitors also prevented an increase in the uptake of a connexin permeable dye induced by air exposure, confirming that connexin hemichannels are open during air-stimulated ATP release. In contrast, activity of the MDR1 ABC transporter was reduced by air exposure and the drugs that inhibited air-stimulated ATP release had differential effects on this transporter. These results indicate that air exposure elicits non-vesicular release of ATP from keratinocytes through connexin hemichannels and that drugs used to target connexin hemichannels and ABC transporters may cross-inhibit. Connexins represent a novel, peripheral target for the treatment of chronic pain and dermatological disease.  相似文献   

16.

Background

ABC transporters have attracted considerable attention for their function as drug transporters in a broad range of tumours and are therefore considered as major players in cancer chemoresistance. However, less attention has been focused on their potential role as active players in cancer development and progression.

Scope of review

This review presents the evidence suggesting that ABC transporters might have a more active role in cancer other than the well known involvement in multidrug resistance and discusses the potential strategies to target each ABC transporter for a specific tumour setting.

Major conclusions

Emerging evidence suggests that ABC transporters are able to transport bioactive molecules capable of playing key roles in tumour development. Characterization of the effects of these transporters in specific cancer settings opens the possibility for the development of personalized treatments.

General significance

A more targeted approach of ABC transporters should be implemented that considers which specific transporter is playing a major role in a particular tumour setting in order to achieve a more successful outcome for ABC transporters inhibitors in cancer therapy.  相似文献   

17.
ABC (ATP-binding cassette) transporters form the largest family of membrane proteins in micro-organisms where they are able to transport a wide variety of substrates against a concentration gradient, in an ATP-dependent process. Two genes from the same putative Bacillus subtilis operon, yheI and yheH, encoding possibly two different ABC transporters, were overexpressed in Escherichia coli in high yield, either separately or jointly. Using membrane vesicles, it is shown here that both subunits were required to detect, (i) the transport of four structurally unrelated drugs, and (ii) a vanadate-sensitive ATPase activity. Mutation of the invariant Walker-A lysine to an alanine residue in both subunits led to an inactive transporter. Moreover, after membrane solubilization by detergent, both wild-type subunits co-purified on a Ni-Agarose affinity column while only the YheH subunit contained a hexa-histidine tag. This shows that YheI and YheH are indeed able to interact together to form a heterodimer. Importantly, expression of both yheI and yheH genes in B. subtilis could be strongly stimulated by addition of sub-inhibitory concentrations of various unrelated antibiotics. Therefore, B. subtilis YheI/YheH forms a new heterodimeric multidrug ABC transporter possibly involved in multiple antibiotic resistance in vivo.  相似文献   

18.
19.
20.
ATP-Binding Cassette transporters (ABC transporters) are protein complexes involved in the import and export of different molecules, including ions, sugars, peptides, drugs, and others. Due to the diversity of substrates, they have large relevance in physiological processes such as virulence, pathogenesis, and antimicrobial resistance. In Xanthomonas citri subsp. citri, the phytopathogen responsible for the citrus canker disease, 20% of ABC transporters components are expressed under infection conditions, including the putative putrescine/polyamine ABC transporter, PotFGHI. Polyamines are ubiquitous molecules that mediate cell growth and proliferation and play important role in bacterial infections. In this work, we characterized the X. citri periplasmic-binding protein PotF (XAC2476) using bioinformatics, biophysical and structural methods. PotF is highly conserved in Xanthomonas sp. genus, and we showed it is part of a set of proteins related to the import and assimilation of polyamines in X. citri. The interaction of PotF with putrescine and spermidine was direct and indirectly shown through fluorescence spectroscopy analyses, and experiments of circular dichroism (CD) and small-angle X-ray scattering (SAXS), respectively. The protein showed higher affinity for spermidine than putrescine, but both ligands induced structural changes that coincided with the closing of the domains and increasing of thermal stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号