首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biomolecules have evolved to perform specific and sophisticated activities in a highly coordinated manner organizing into multi-component complexes consisting of proteins, nucleic acids, cofactors or ligands. Understanding such complexes represents a task in earnest for modern bioscience. Traditional structural techniques when extrapolating to macromolecules of ever increasing sizes are confronted with limitations posed by the difficulty in enrichment, solubility, stability as well as lack of homogeneity of these complexes. Alternative approaches are therefore prompted to bridge the gap, one of which is native mass spectrometry. Here we demonstrate the strength of native mass spectrometry, used alone or in combination with other biophysical methods such as analytical ultracentrifugation, small-angle neutron scattering, and small-angle X-ray scattering etc., in addressing dynamic aspects of protein complexes including structural reorganization, subunit exchange, as well as the assembly/disassembly processes in solution that are dictated by transient non-covalent interactions. We review recent studies from our laboratories and others applying native mass spectrometry to both soluble and membrane-embedded assemblies. This article is part of a Special Issue entitled “Biophysical Exploration of Dynamical Ordering of Biomolecular Systems” edited by Dr. Koichi Kato.  相似文献   

2.
Trinkle-Mulcahy L 《Proteomics》2012,12(10):1623-1638
Label-based quantitative mass spectrometry analysis of affinity purified complexes, with its built-in negative controls and relative ease of use, is an increasingly popular choice for defining protein-protein interactions and multiprotein complexes. This approach, which differentially labels proteins/peptides from two or more populations and combines them prior to analysis, permits direct comparison of a protein pulldown (e.g. affinity purified tagged protein) to that of a control pulldown (e.g. affinity purified tag alone) in a single mass spectrometry (MS) run, thus avoiding the variability inherent in separate runs. The use of quantitative techniques has been driven in large part by significant improvements in the resolution and sensitivity of high-end mass spectrometers. Importantly, the availability of commercial reagents and open source identification/quantification software has made these powerful techniques accessible to nonspecialists. Benefits and drawbacks of the most popular labeling-based approaches are discussed here, and key steps/strategies for the use of labeling in quantitative immunoprecipitation experiments detailed.  相似文献   

3.
Oeffinger M 《Proteomics》2012,12(10):1591-1608
Cellular functions are defined by the dynamic interactions of proteins within macromolecular networks. Deciphering these complex interplays is the key to getting a comprehensive picture of cellular behavior and to understanding biological systems, from a simple bacterial cell to highly regulated neuronal cells or cancerous tissue. In the last decade, affinity purification (AP) coupled to mass spectrometry has emerged as a powerful tool to comprehensively study interaction networks and their macromolecular assemblies. This review discusses recent advances in AP approaches, from cell lysis to the importance of sample preparation and the choice of AP matrix as well as the development of different epitope tags and strategies to study dynamic interactions, with an emphasis on RNA-protein interaction networks.  相似文献   

4.
The discovery of functional protein complex and the interrogation of the complex structure-function relationship (SFR) play crucial roles in the understanding and intervention of biological processes. Affinity purification-mass spectrometry (AP-MS) has been proved as a powerful tool in the discovery of protein complexes. However, validation of these novel protein complexes as well as elucidation of their molecular interaction mechanisms are still challenging. Recently, native top-down MS (nTDMS) is rapidly developed for the structural analysis of protein complexes. In this review, we discuss the integration of AP-MS and nTDMS in the discovery and structural characterization of functional protein complexes. Further, we think the emerging artificial intelligence (AI)-based protein structure prediction is highly complementary to nTDMS and can promote each other. We expect the hybridization of integrated structural MS with AI prediction to be a powerful workflow in the discovery and SFR investigation of functional protein complexes.  相似文献   

5.
Nakamura T  Dohmae N  Takio K 《Proteomics》2004,4(9):2558-2566
We describe a new approach for the characterization of a digested protein complex with quantitative aspects. Accurate masses of tryptic peptides in the digested complex were acquired by nano-liquid chromatography Fourier transform-ion cyclotron resonance mass spectrometry (MS). The conditions of the electrospray ion source were alternated to acquire normal and fragment-ion-rich mass spectra concurrently. This, alternating-scan method, which includes no tandem mass spectrometry (MS/MS), allowed us to retain the integrity of the mass chromatograms and averted missed peptides due to MS and MS/MS switching. Tentative assignments of accurate peptide masses were verified with the concurrently acquired fragment-ion-rich spectra, and the identities of the protein components were established. For each identified protein component, mass chromatograms attributable to the validated accurate peptide masses were extracted, and the peak areas of multiple mass chromatograms were standardized. The standardized peak areas appeared to reasonably reflect the molar ratio of the protein components in standard mixtures. This new approach was successfully applied to the characterization of a cyanobacterial photosystem II complex preparation. A clear difference in the standardized peak areas was observed between the two groups of identified components, namely eight stoichiometric photosystem II proteins and two minor copurified phycobiliproteins.  相似文献   

6.
7.
Since the early 1990s, electrospray-ionization mass spectrometry (ESI-MS) has encountered growing interest as a complementary tool to established biochemical and biophysical methods for investigating protein structure and conformation. Nowadays, applications of ESI-MS to protein investigation span from the area of analytical biochemistry to that of structural biology. This review focuses on applications of this technique to the analysis of protein conformational properties and molecular interactions, underscoring their possible relevance for molecular biotechnology, although representing a still very young field. An introductive section presents the major issues related to theoretical and technical aspects of ESI-MS under non-denaturing conditions. Examples from our work and from the literature illustrate which kind of information can be obtained concerning key issues in biotechnology such as stability and aggregation of proteins under both near-native and challenging conditions, and interactions with other proteins, ligands and cofactors.  相似文献   

8.
A method for the determination of the stoichiometry of protein complexes has been developed, which is based on proteolytic digestion of the complex, labeling with a fluorescent reagent, specific for amino or sulfhydryl groups, and separation by liquid chromatography with fluorescence and mass spectrometric detection. The intensity of the fluorescence signal of the labeled peptides resulting from different proteins is directly proportional to the stoichiometry of these proteins in the complex. The performance of the method was evaluated with standard peptides and proteins to ensure that accurate molar ratios can be obtained from the fluorescence chromatogram. Standard deviations of the measured molar ratio from the expected molar ratio were below 10% for both peptides and proteins. The method was finally employed for the determination of the stoichiometry of the 1:1 complex of sFc gamma RIII and hFc1. Using the described methodology, a stoichiometry of 1:1.1 was measured, which agrees well with a 1:1 complex.  相似文献   

9.
10.
Analysis of protein glycosylation by mass spectrometry   总被引:1,自引:0,他引:1  
There is a growing pharmaceutical market for protein-based drugs for use in therapy and diagnosis. The rapid developments in molecular and cell biology have resulted in production of expression systems for manufacturing of recombinant proteins and monoclonal antibodies. These proteins are glycosylated when expressed in cell systems with glycosylation ability. For glycoproteins intended for therapeutic administration it is important to have knowledge about the structure of the carbohydrate side chains to avoid cell systems that produce structures, which in humans can cause undesired reactions, e.g., immunological and unfavorable serum clearance rate. Structural analysis of glycoprotein oligosaccharides requires sophisticated instruments like mass spectrometers and nuclear magnetic resonance spectrometers. However, before the structural analysis can be conducted, the carbohydrate chains have to be released from the protein and purified to homogeneity, and this is often the most time-consuming step. Mass spectrometry has played and still plays an important role in analysis of protein glycosylation. The superior sensitivity compared to other spectroscopic methods is its main asset. Structural analysis of carbohydrates faces several problems, however, due to the chemical nature of the constituent monosaccharide residues. For oligosaccharides or glycoconjugates, the structural information from mass spectrometry is essentially limited to monosaccharide sequence, molecular weight, and only in exceptional cases glycosidic linkage positions can be obtained. In order to completely establish an oligosaccharide structure, several other structural parameters have to be determined, e.g., linkage positions, anomeric configuration and identification of the monosaccharide building blocks. One way to address some of these problems is to work on chemical pretreatment of the glycoconjugate, to specifically modify the carbohydrate chain. In order to introduce specific modifications, we have used periodate oxidation and trifluoroacetolysis with the objective of determining glycosidic linkage positions by mass spectrometry.  相似文献   

11.
In this article, we describe a general approach to modeling the structure of binary protein complexes using structural mass spectrometry data combined with molecular docking. In the first step, hydroxyl radical mediated oxidative protein footprinting is used to identify residues that experience conformational reorganization due to binding or participate in the binding interface. In the second step, a three-dimensional atomic structure of the complex is derived by computational modeling. Homology modeling approaches are used to define the structures of the individual proteins if footprinting detects significant conformational reorganization as a function of complex formation. A three-dimensional model of the complex is constructed from these binary partners using the ClusPro program, which is composed of docking, energy filtering, and clustering steps. Footprinting data are used to incorporate constraints-positive and/or negative-in the docking step and are also used to decide the type of energy filter-electrostatics or desolvation-in the successive energy-filtering step. By using this approach, we examine the structure of a number of binary complexes of monomeric actin and compare the results to crystallographic data. Based on docking alone, a number of competing models with widely varying structures are observed, one of which is likely to agree with crystallographic data. When the docking steps are guided by footprinting data, accurate models emerge as top scoring. We demonstrate this method with the actin/gelsolin segment-1 complex. We also provide a structural model for the actin/cofilin complex using this approach which does not have a crystal or NMR structure.  相似文献   

12.
Host cell proteins (HCPs) must be adequately removed from recombinant therapeutics by downstream processing to ensure patient safety, product quality, and regulatory compliance. HCP process clearance is typically monitored by enzyme-linked immunosorbent assay (ELISA) using a polyclonal reagent. Recently, mass spectrometry (MS) has been used to identify specific HCP process impurities and monitor their clearance. Despite this capability, ELISA remains the preferred analytical approach due to its simplicity and throughput. There are, however, inherent difficulties reconciling the protein-centric results of MS characterization with ELISA, or providing assurance that ELISA has acceptable coverage against all process-specific HCP impurities that could pose safety or efficacy risks. Here, we describe efficient determination of ELISA reagent coverage by proteomic analysis following affinity purification with a polyclonal anti-HCP reagent (AP-MS). The resulting HCP identifications can be compared with the actual downstream process impurities for a given process to enable a highly focused assessment of ELISA reagent suitability. We illustrate the utility of this approach by performing coverage evaluation of an anti-HCP polyclonal against both an HCP immunogen and the downstream HCP impurities identified in a therapeutic monoclonal antibody after Protein A purification. The overall goal is to strategically implement affinity-based mass spectrometry as part of a holistic framework for evaluating HCP process clearance, ELISA reagent coverage, and process clearance risks. We envision coverage analysis by AP-MS will further enable a framework for HCP impurity analysis driven by characterization of actual product-specific process impurities, complimenting analytical methods centered on consideration of the total host cell proteome.  相似文献   

13.
Complexes formed between transthyretin and retinol-binding protein prevent loss of retinol from the body through glomerular filtration. The interactions between these proteins have been examined by electrospray ionization combined with time-of-flight mass analysis. Conditions were found whereby complexes of these proteins, containing from four to six protein molecules with up to two ligands, are preserved in the gas phase. Analysis of the mass spectra of these multimeric species gives the overall stoichiometry of the protein subunits and provides estimates for solution dissociation constants of 1.9 ± 1.0 × 10−7 M for the first and 3.5 ± 1.0 × 10−5 M for the second retinol-binding protein molecule bound to a transthyretin tetramer. Dissociation of these protein assemblies within the gas phase of the mass spectrometer shows that each retinol-binding protein molecule interacts with three transthyretin molecules. Mass spectral analysis illustrates not only a correlation with solution behavior and crystallographic data of a closely related protein complex but also exemplifies a general method for analysis of multi-protein assemblies. Proteins Suppl. 2:3–11, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

14.
15.
Knowledge of structure and dynamics of proteins and protein complexes is important to unveil the molecular basis and mechanisms involved in most biological processes. Protein complex dynamics can be defined as the changes in the composition of a protein complex during a cellular process. Protein dynamics can be defined as conformational changes in a protein during enzyme activation, for example, when a protein binds to a ligand or when a protein binds to another protein. Mass spectrometry (MS) combined with affinity purification has become the analytical tool of choice for mapping protein–protein interaction networks and the recent developments in the quantitative proteomics field has made it possible to identify dynamically interacting proteins. Furthermore, hydrogen/deuterium exchange MS is emerging as a powerful technique to study structure and conformational dynamics of proteins or protein assemblies in solution. Methods have been developed and applied for the identification of transient and/or weak dynamic interaction partners and for the analysis of conformational dynamics of proteins or protein complexes. This review is an overview of existing and recent developments in studying the overall dynamics of in vivo protein interaction networks and protein complexes using MS-based methods.  相似文献   

16.
Affinity purification coupled to mass spectrometry (AP-MS) represents a powerful and proven approach for the analysis of protein-protein interactions. However, the detection of true interactions for proteins that are commonly considered background contaminants is currently a limitation of AP-MS. Here using spectral counts and the new statistical tool, Significance Analysis of INTeractome (SAINT), true interaction between the serine/threonine protein phosphatase 5 (PP5) and a chaperonin, heat shock protein 90 (Hsp90), is discerned. Furthermore, we report and validate a new interaction between PP5 and an Hsp90 adaptor protein, stress-induced phosphoprotein 1 (STIP1; HOP). Mutation of PP5, replacing key basic amino acids (K97A and R101A) in the tetratricopeptide repeat (TPR) region known to be necessary for the interactions with Hsp90, abolished both the known interaction of PP5 with cell division cycle 37 homolog and the novel interaction of PP5 with stress-induced phosphoprotein 1. Taken together, the results presented demonstrate the usefulness of label-free quantitative proteomics and statistical tools to discriminate between noise and true interactions, even for proteins normally considered as background contaminants.  相似文献   

17.
Crosslinking mass spectrometry captures protein structures in solution. The crosslinks reveal spatial proximities as distance restraints, but do not easily reveal which of these restraints derive from the same protein conformation. This superposition can be reduced by photo-crosslinking, and adding information from protein structure models, or quantitative crosslinking reveals conformation-specific crosslinks. As a consequence, crosslinking MS has proven useful already in the context of multiple dynamic protein systems. We foresee a breakthrough in the resolution and scale of studying protein dynamics when crosslinks are used to guide deep-learning-based protein modelling. Advances in crosslinking MS, such as photoactivatable crosslinking and in-situ crosslinking, will then reveal protein conformation dynamics in the cellular context, at a pseudo-atomic resolution, and plausibly in a time-resolved manner.  相似文献   

18.
Lysine epsilon -amino group reacts with citraconic anhydride forming a derivative, which is stable on terms for trypsin cleavage. This modification changes the spectrum of peptides formed by the trypsin action; as the number of trypsin-sensitive sites is reduced, the peptides with higher molecular mass can survive in the digest. The various studies of proteins by MALDI-TOF mass spectrometry are often complicated by the low sequence coverage of the peptide chain. This paper demonstrates that the modification of proteins by citraconylation before trypsin cleavage represents a simple experimental technique, which allows a significant increase of sequence coverage in MALDI-TOF mass spectrometry. This improvement is caused both by change of trypsin fragmentation pattern and by disturbance of the protein's native tertiary structure.  相似文献   

19.
ABSTRACT

Protein–protein interactions (PPIs) lead the formation of protein complexes that perform biochemical reactions that maintain the living state of the living cell. Although therapeutic drugs should influence the formation of protein complexes in addition to PPI network, the methodology analyzing such influences remain to be developed. Here, we demonstrate that a new approach combining HPLC (high performance liquid chromatography) for separating protein complexes, and the SILAC (stable isotope labeling using amino acids in cell culture) method for relative protein quantification, enable us to identify the protein complexes influenced by a drug. We applied this approach to the analysis of thalidomide action on HepG2 cells, assessed the identified proteins by clustering data analyses, and assigned 135 novel protein complexes affected by the drug. We propose that this approach is applicable to elucidating the mechanisms of actions of other therapeutic drugs on the PPI network, and the formation of protein complexes.  相似文献   

20.
Chang IF 《Proteomics》2006,6(23):6158-6166
In recent years, MS has been widely used to study protein complex in eukaryotes. The identification of interacting proteins of a particular target protein may help defining protein-protein interaction and proteins of unknown functions. To isolate protein complexes, high-speed ultracentrifugation, sucrose density-gradient centrifugation, and coimmunoprecipitation have been widely used. However, the probability of getting nonspecific binding is comparatively high. Alternatively, by use of one- or two-step (tandem affinity purification) epitope-tag affinity purification, protein complexes can be isolated by affinity or immunoaffinity columns. These epitope-tags include protein A, hexahistidine (His), c-Myc, hemaglutinin (HA), calmodulin-binding protein, FLAG, maltose-binding protein, Strep, etc. The isolated protein complex can then be subjected to protease (i.e., trypsin) digestion followed by an MS analysis for protein identification. An example, the epitope-tag purification of the Arabidopsis cytosolic ribosomes, is addressed in this article to show the success of the application. Several representative protein complexes in eukaryotes been isolated and characterized by use of this approach are listed. In this review, the comparison among different tag systems, validation of interacting relationship, and choices of MS analysis method are addressed. The successful rate, advantages, limitations, and challenges of the epitope-tag purification are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号