首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Lipopolysaccharides have been isolated from ;smooth' (S) strains of Salmonella friedenau and Salmonella poona by the phenol-water method and purified in the preparative ultracentrifuge. 2. These lipopolysaccharides are serologically indistinguishable and on partial acid hydrolysis the same series of oligosaccharides was obtained in each instance. 3. The results of quantitative micro-analysis, borohydride reduction, periodate oxidation, Morgan-Elson reactions and enzymic hydrolysis with beta-galactosidase on the isolated oligosaccharides indicate that the O-specific side chains of these lipopolysaccharides have a repeating pentasaccharide unit that is beta-d-galactosyl-(1-->3)-N-acetylgalactosaminyl-(1-->3)-N-acetylgalactosaminyl-(1-->4)-l-fucose with a d-glucose residue bound at an undetermined point on this structure. 4. Two oligosaccharides, a glucosyl-galactose and an N-acetylglucosaminylglucose, have also been isolated and these seem to be identical with oligosaccharides obtained from ;rough' (R) Salmonella lipopolysaccharides. These findings are in accordance with the view that Salmonella S-lipopolysaccharides have a core that consists of R-lipopolysaccharide.  相似文献   

2.
Amylose was oxidized with 0.1–0.2 mol of periodate per glucose residue (G), and then reduced with sodium borohydride or borotritide to give an oxidized-reduced amylose of low degree of modification. Mild acid hydrolysis gave erythritol, 2-O-α-d-glucosyl-l-erythritol, higher homologs, and other products. Extensive action of porcine-pancreatic amylase on the polymer gave, besides d-glucose and maltose, oligosaccharides containing one or more oxidized-reduced (modified, M), acyclic residues. The enzymic products containing only one oxidized-reduced residue were identified as a modified tetrasaccharide (MG3) and a modified pentasaccharide (MG4). Structures of MG3 and MG4 were identified by a combination of enzymic and chemical approaches. With glucoamylase, MG4 was converted into MG plus d-glucose, whereas MG3 was totally resistant. On mild acidic hydrolysis, MG3 was converted into 2-O-α-d-glucosyl-d-erythritol plus maltose. These results indicate that MG3 is G-M-G-G and that MG4 is G-G-M-G-G. In principle, MG4 could occupy the five d-glucose residue, substrate-binding site of porcine-pancreatic amylase in such a way that M, the acyclic structure replacing a d-glucose residue, is placed just to the “left” of the catalytic site. The modified structure, being very vulnerable to acidic hydrolysis, might then be expected to be very readily attacked by the amylase, but in fact, it is not.  相似文献   

3.
Depolymerization of bacterial, capsular polysaccharides by phage enzymes is a convenient method of preparing oligosaccharides that correspond to one, or several, repeating unit(s). Thus, the capsular polysaccharide from Klebsiella K21 yields a linear pentasaccharide, and that from Klebsiella K32, a linear tetrasaccharide. Both oligosaccharides contain acetal substituents, but, whereas the 4,6-O-(1-carboxyethylidene)-D-galactosyl residue in the K21 structure is relatively acid-stable, the corresponding 3,4-O-(1-carboxyethylidene)-l-rhamnosyl residue in K32 is extremely acid-labile. Phage degradation may, therefore, be the only way by which an oligosaccharide corresponding to an intact repeating-unit may be obtained in such circumstances.  相似文献   

4.
R M Pope  C S Raska  S C Thorp  J Liu 《Glycobiology》2001,11(6):505-513
A highly sensitive method to identify and quantify heparan sulfate (HS) oligosaccharides by using nano-electrospray ionization mass spectrometry (nESI-MS) is described. The new approach allows us to detect approximately 50 nM of a chemically synthesized pentasaccharide with a structure of GlcNS6S-GlcA-GlcNS6S-IdoA2S-GlcNS6SOMe (3-OH pentasaccharide). Typically, solutions were infused for a total of 5 min, at an average flow rate of 30 nl/min, and the remaining sample was recovered from the nanovial. The spectra shown were obtained by summing scans for 1--3 min. Hence, our data indicated that as little as 3 x 10(-15) mole of the pentasaccharide was consumed to obtain a reasonable spectrum at the concentration as low as 50 nM. In addition, we found a linear relationship between the relative response of the molecular ion and the concentration of the analyzed 3-OH pentasaccharide, demonstrating that this approach can be used to determine the amount of HS oligosaccharides. To this end, a 3-O-sulfated pentasaccharide was prepared by incubating the 3-OH pentasaccharide with purified HS 3-O-sulfotransferase-1 and 3'-phosphoadenosine-5'-phospho[(35)S]sulfate. The resulting 3-O-sulfated pentasaccharide was purified and analyzed by nESI-MS. Based on the standard curve constructed with the 3-OH pentasaccharide, we calculated the concentration of the 3-O-sulfated pentasaccharide by the relative response. The result indicates that this value is very close to the value measured by [(35)S]sulfate radioactivity. In conclusion, nESI-MS provides both high sensitivity and the capacity to quantify HSs. This approach is likely to become a very important tool for structural analysis and sequencing of HS and heparin oligosaccharides.  相似文献   

5.
This paper describes the phosphorylase-catalyzed enzymatic N-formyl-α-glucosaminylation of maltooligosaccharides for direct incorporation of 2-deoxy-2-formamido-α-d-glucopyranose units into maltooligosaccharides. When the reaction of 2-deoxy-2-formamido-α-d-glucopyranose-1-phosphate (GlcNF-1-P) as the glycosyl donor and maltotetraose as a glycosyl acceptor was performed in the presence of phosphorylase, the N-formyl-α-d-glucosaminylated pentasaccharide was produced, as confirmed by MALDI-TOF MS. Furthermore, the glucoamylase-catalyzed reaction of the crude products supported that the 2-deoxy-2-formamido-α-d-glucopyranoside unit was positioned at the non-reducing end of the pentasaccharide. The pentasaccharide was isolated from the crude products and its structure was further determined by the 1H NMR analysis. On the other hand, when the phosphorylase-catalyzed reactions of maltotriose and maltopentaose using GlcNF-1-P were conducted, no N-formyl-α-glucosaminylation took place in the former system, whereas the latter system gave N-formyl-α-d-glucosaminylated oligosaccharides with various degrees of polymerization. These results could be explained by the recognition behavior of phosphorylase toward maltooligosaccharides.  相似文献   

6.
Blood group H-active polysaccharide has been prepared from “smooth” strain Escherichia coli 2B-V by Freeman's method. a-Fucosidase derived from Bacillus fulminans caused the liberation of fucose from this polysaccharide, together with concomitant loss of blood group H activity. The results of quantitative microanalysis, borohydride reduction, the Morgan-Elson reaction and enzymic hydrolysis with β-galactosidase using isolated oligosaccharides obtained by partial acid hydrolysis indicated that the O-specific side chain of the polysaccharide has a pentasaccharide unit which is β-d-Gal-(1→3)-d-GalNAc-(1→3)-d-GalNAc-Fuc with a D -glucose residue bound at some undetermined point on this structure. It was considered that terminal non-reducing fucose of the polysaccharide was liberated by partial acid hydrolysis.  相似文献   

7.
1. A series of oligosaccharides was isolated from Salmonella milwaukee lipopolysaccharide by partial acid hydrolysis. 2. Structural studies on these oligosaccharides indicated that the O-specific side chain of this lipopolysaccharide has a repeating pentasaccharide unit that is probably alpha-d-galactosyl-(1-->3)-beta-d-galactosyl- (1-->3)-N-acetylgalactosaminyl-(1-->3)-N-acetyl- d-glucosaminyl-(1-->4)-l-fucose. 3. Another oligosaccharide, which is not structurally related to the repeating pentasaccharide unit, has also been isolated and it is indistinguishable from an oligosaccharide obtained from Salmonella ;rough' (R) lipopolysaccharides. The isolation of this and similar core oligosaccharides from all chemotype VI lipopolysaccharides supports the view that Salmonella S-lipopolysaccharides have a common core that is probably identical with RII lipopolysaccharide.  相似文献   

8.
The type-specific substance from Pneumococcus type 29   总被引:8,自引:4,他引:4       下载免费PDF全文
1. A pentasaccharide, corresponding to the dephosphorylated repeating unit of the specific substance, S.29, from Pneumococcus type 29, was obtained by hydrolysis with alkali followed by enzymic dephosphorylation. 2. The pentasaccharide was shown to be O-2-acetamido-2-deoxy-beta-d-galactopyranosyl-(1-->6)-O-beta-d-galactofuranosyl-(1-->3)-O-beta-d-galactopyranosyl-(1-->6)-O-beta-d-galactofuranosyl-(1-->1)-ribitol. 3. The phosphodiester linkages in S.29 join the hydroxyl group at position 5 of ribitol and the hydroxyl group at position 3 or 4 of a 2-acetamido-2-deoxy-d-galactose residue in the next repeating unit. 4. A partial structure for S.29 was deduced from these experiments.  相似文献   

9.
The O-specific polysaccharide obtained from Shigella dysenteriae type-2 lipopolysaccharide by mild acid hydrolysis consisted of N-acetylgalactosamine, N-acetylglucosamine, D-galactose, D-glucose, and O-acetyl group in the ratio of 2:1:1:1:1. A number of oligosaccharides were obtained by deamination of the N-deacetylated polysaccharide and by Smith degradation of the both native and O-deacetylated polysaccharides. The identification of oligosaccharides along with methylation analysis and chromic anhydride oxidation showed that the polysaccharide was built up of the repeating pentasaccharide units whose proposed structure is given below: (see article) Serological properties of Sh. dysenteriae O-specific polysaccharides are discussed.  相似文献   

10.
Heparin-antithrombin interaction is one of the most documented examples of heparin/protein complexes. The specific heparin sequence responsible for the binding corresponds to a pentasaccharide sequence with an internal 3-O-sulfated glucosamine residue. Moreover, the position of the pentasaccharide along the chain as well as the structure of the neighbor units affects the affinity to antithrombin. The development of separation and purification techniques, in conjunction with physico-chemical approaches (mostly NMR), allowed to characterize several structural variants of antithrombin-binding oligosaccharides, both in the free state and in complex with antithrombin. The article provides an overview of the studies that lead to the elucidation of the mechanism of interaction as well as acquiring new knowledge in heparin biosynthesis.  相似文献   

11.
1. The enzymic activity which catalyzes transfer of sulfate ester group from 3'-phosphoadenosine-5'-phosphosulfate to mucus glycoprotein was found associated with Golgi-rich membrane fraction of rat submandibular salivary gland. 2. Optimum enzyme activity was obtained with 0.5% Triton X-100, 4 mM MgCl2 and 25 mM NaF at a pH of 6.8 using desulfated submandibular salivary mucus glycoprotein. The apparent Km of the enzyme for mucus glycoprotein was 11.1 mg/ml. 3. Alkaline borohydride reductive cleavage of the synthesized 35S-labeled glycoprotein led to the liberation of the label into reduced oligosaccharides. A 75.4% of the label was found incorporated in four oligosaccharides. These were identified in order of abundance as sulfated penta-, tri-, hepta- and nonsaccharides. 4. Based on the results of chemical and enzymatic analyses of the intact and desulfated compounds the pentasaccharide was characterized as SO3H----GlcNAc beta----Gal beta----GlcNAc(NeuAc alpha----)GalNAc-ol and the trisaccharide as SO3H----GlcNAc beta----Gal beta----GalNAc-ol.  相似文献   

12.
Oligosaccharides were prepared through mild hydrochloric acid hydrolysis of kappa-carrageenan from Kappaphycus striatum carrageenan. Three oligosaccharides were purified by strong-anion exchange high-performance chromatography. Their structure was elucidated using mass spectral and NMR data. Negative-ion electrospray ionization (ESI) mass spectra at different fragmentor voltages provided the molecular weight of the compounds and unraveled the fragmentation pattern of the kappa-carrageenan oligosaccharides. 2D NMR techniques, including 1H-(1)H COSY, 1H-(1)H TOCSY and 13C-(1)H HMQC, were performed to determine the structure of a trisulfated pentasaccharide. 1D NMR and ESIMS were used to determine the structures of a kappa-carrageenan-derived pentasaccharide, heptasaccharide, and an undecasaccharide. All the oligosaccharides characterized have a 4-O-sulfo-D-galactopyranose residue at both the reducing and nonreducing ends.  相似文献   

13.
The primary structure of a lectin, designated Oscillatoria agardhii agglutinin (OAA), isolated from the freshwater cyanobacterium O. agardhii NIES-204 was determined by the combination of Edman degradation and electron spray ionization-mass spectrometry. OAA is a polypeptide (Mr 13,925) consisting of two tandem repeats. Interestingly, each repeat sequence of OAA showed a high degree of similarity to those of a myxobacterium, Myxococcus xanthus hemagglutinin, and a marine red alga Eucheuma serra lectin. A systematic binding assay with pyridylaminated oligosaccharides revealed that OAA exclusively binds to high mannose (HM)-type N-glycans but not to other N-glycans, including complex types, hybrid types, and the pentasaccharide core or oligosaccharides from glycolipids. OAA did not interact with any of free mono- and oligomannoses that are constituents of the branched oligomannosides. These results suggest that the core disaccharide, GlcNAc-GlcNAc, is also essential for binding to OAA. The binding activity of OAA to HM type N-glycans was dramatically decreased when alpha1-2 Man was attached to alpha1-3 Man branched from the alpha1-6 Man of the pentasaccharide core. This specificity of OAA for HM-type oligosaccharides is distinct from other HM-binding lectins. Kinetic analysis with an HM heptasaccharide revealed that OAA possesses two carbohydrate binding sites per molecule, with an association constant of 2.41x10(8) m-1. Furthermore, OAA potently inhibits human immunodeficiency virus replication in MT-4 cells (EC50=44.5 nm). Thus, we have found a novel lectin family sharing similar structure and carbohydrate binding specificity among bacteria, cyanobacteria, and marine algae.  相似文献   

14.
An N-acetylglucosaminyltransferase has been partially purified from Novikoff tumor cell ascites fluid by affinity chromatography on concanavalin A-Sepharose. The enzyme was obtained in a highly concentrated form after lyophilization. The enzyme appeared to be highly specific for acceptor oligosaccharides and glycoproteins carrying a terminal Gal beta 1----4GlcNAc beta 1----R unit. Characterization of products formed by the enzyme in vitro by methylation analysis and 1H NMR spectroscopy revealed that the enzyme catalyzed the formation of a GlcNAc beta 1----3Gal beta 1----4GlcNAc beta-R sequence. The enzyme therefore could be described as an UDP-GlcNAc:Gal beta 1----4GlcNAc beta-R beta 1----3-N-acetylglucosaminyltransferase. Acceptor specificity studies with oligosaccharides that form part of N-glycans revealed that the presence of a Gal beta 1----4GlcNAc beta 1----2(Gal beta 1----4GlcNAc beta 1----6)Man pentasaccharide in the acceptor structure is a requirement for optimal activity. Studies on the branch specificity of the enzyme showed that the branches of this pentasaccharide structure, when contained in tri- and tetraantennary oligosaccharides, are highly preferred over other branches for attachment of the 1st and 2nd mol of GlcNAc into the acceptor molecule. The enzyme also showed activity toward oligosaccharides related to blood group I- and i-active polylactosaminoglycans. In addition the enzyme together with calf thymus UDP-Gal:GlcNAc beta-R beta 1----4-galactosyltransferase was capable of catalyzing the synthesis of a series of oligomers of N-acetyllactosamine. Competition studies revealed that all acceptors were acted upon by a single enzyme species. It is concluded that the N-acetylglucosaminyltransferase functions in both the initiation and the elongation of polylactosaminoglycan chains of N-glycoproteins and possibly other glycoconjugates.  相似文献   

15.
Four oligosaccharides (penta-, hexa-, hepta- and octa-saccharide) derived from Paris polyphylla var. yunnanensis have been synthesized efficiently using a convergent glycosylation strategy. The tobacco (Nicotiana tabacum L.) growth bioactivities of the synthesized oligosaccharides were examined, using tissue-cultured seedlings grown on solid MS medium. After 2 or 3 weeks, all four oligosaccharides had stimulated tobacco seedling growth at 1.0 ppm and the pentasaccharide showed the most significant stimulus effects. Further experiments showed that the effects of pentasaccharide on tobacco growth had an obvious concentration-dependent relationship in the range of 0.1–1.0 ppm. This stimulus effect showed some decrease when the pentasaccharide concentration was higher than 1.0 ppm. At 1.0 ppm, pentasaccharide had the most significant effects, which caused a 520% fresh weight increase of tobacco. The bioactivity of these synthesized oligosaccharides suggested that they may be good prospects for the application in the control of plant growth and development.  相似文献   

16.
Escherichia coli C is an R-strain, and hence its lipopolysaccharide consists only of lipid A joined to a basal core. Intact core-polysaccharides have been prepared from this strain, and from mutants of the same strain defective in various stages of core biosynthesis. Using sugar and methylation analyses, and chemical and enzymic degradations, the hexose region of the core of the parent strain has been shown to be a pentasaccharide for which the following structure is proposed:
  相似文献   

17.
A structural study of the water-soluble dextran made by Leuconostoc mesenteroides strain C (NRRL B-1298) was conducted by enzymic degradation and subsequent 13C-NMR analysis of the native dextran and its limit dextrins. The α-l,2-debranching enzyme removed almost all of the branched D-glucose residues, and gave a limit dextrin having a much longer sequence of the internal chain length (degree of linearity: n = 24.5 compared with the value of n = 3.3 for the native dextran). The degree of hydrolysis with debranching enzyme corresponded to the content of α-1,2-linkages determined by chemical methods, which suggested that most of the α-l,2-linkages in the dextran B-1298 constituted branch points of a single D-glucose residue. A synergistic increase of susceptibility of the dextran B-1299 was observed by simultaneous use of debranching enzyme and endodex-tranase. 13C-NMR spectral analysis indicated the similarity of structure of dextran B-1298 to that of B-1396, rather than that of B-1299. Occurrence of α-l,3-linkages in the limit dextrin was supported by a newly visualized chemical shift at 83.7 ppm.  相似文献   

18.
The type-specific substance from Pneumococcus type 13   总被引:3,自引:2,他引:1  
1. The type-specific substance, S.13, from Pneumococcus type 13 was subjected to hydrolysis with alkali, followed by enzymic dephosphorylation, to yield a pentasaccharide. 2. The pentasaccharide, corresponding to the dephosphorylated repeating unit of S.13, was shown to be O-beta-d-galactopyranosyl-(1-->4)-O-beta- d-glucopyranosyl-(1-->3)-O-beta-d- galactofuranosyl-(1-->4)-O-2-acetamido-2-deoxy-beta-d- glucopyranosyl-(1-->2)-ribitol. 3. The phosphodiester linkages in S.13 join the hydroxyl group at position 1 of ribitol and the hydroxyl group at position 4 of a galactopyranosyl residue in the next repeating unit. 4. Ester groups, presumably O-acetyl, are located on positions 2 or 3 of most glucopyranosyl residues in S.13. 5. A partial structure for S.13 is proposed.  相似文献   

19.
Carbohydrate ligands are important mediators of biomolecular recognition. Microcalorimetry has found the complex-type N-linked glycan core pentasaccharide beta-GlcNAc-(1-->2)-alpha-Man-(1-->3)-[beta-GlcNAc-(1-->2)-alpha-Man-(1-->6)]-Man to bind to the lectin, Concanavalin A, with almost the same affinity as the trimannoside, Man-alpha-(1-->6)-[Man-alpha-(1-->3)]-Man. Recent determination of the structure of the pentasaccharide complex found a glycosidic linkage psi torsion angle to be distorted by 50 degrees from the NMR solution value and perturbation of some key mannose-protein interactions observed in the structures of the mono- and trimannoside complexes. To unravel the free energy contributions to binding and to determine the structural basis for this degeneracy, we present the results of a series of nanosecond molecular dynamics simulations, coupled to analysis via the recently developed MM-GB/SA approach (Srinivasan et al., J. Am. Chem. Soc. 1998, 120:9401-9409). These calculations indicate that the strength of key mannose-protein interactions at the monosaccharide site is preserved in both the oligosaccharides. Although distortion of the pentasaccharide is significant, the principal factor in reduced binding is incomplete offset of ligand and protein desolvation due to poorly matched polar interactions. This analysis implies that, although Concanavalin A tolerates the additional 6 arm GlcNAc present in the pentasaccharide, it does not serve as a key recognition determinant.  相似文献   

20.
Particulate membrane fractions from Volvox carteri catalyze the transfer of mannose from GDP-mannose to dolichyl diphosphate-[14C]chitobiose to form lipid-linked oligosaccharides up to a dolichyl diphospnate-chitobiose-(mannose)5 structure. Mannosylation of the chitobiosyl lipid requires divalent cations and detergents as solubilizing agents. Depending on the nature of the detergent, the oligosaccharide pattern differs markedly: With deoxycholate or the zwitterionic detergent 314 a lipid-linked trisaccharide accumulates. The nonionic Triton X-100, however, gives rise to a spectrum of compounds up to a heptasaccharide. Enzyme digestion of the tri- and pentasaccharide structure, obtained after mild acid hydrolysis of the corresponding [14C]glycolipids, revealed that the first mannose is bound via a β-glycosidic linkage to the chitobiosyl core, whereas the outer mannose residues are linked as α-mannosides. Our studies indicate that, in agreement with recent findings in other organisms, the innermost α-mannosidic residues are donated directly from GDP-mannose. The structure of oligosaccharides synthesized by Volvox membranes is thus consistent with results from other eucaryotic species, suggesting a common pathway of N-glycosylation of glycoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号