首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The need to inject FSH twice daily for superstimulation of ovarian follicular development in cattle necessitates frequent attention by farm-personnel and increases the possibility of failures due to mishandling and errors in administration of treatments. A series of three experiments were designed to evaluate the feasibility of superstimulation in beef cattle with a single intramuscular (IM) injection of Folltropin-V diluted in a hyaluronan-based slow-release formulation (SRF). In Experiment 1, cows were assigned to one of three treatment groups to compare two methods of injection as compared to the twice daily IM injection protocol. Superovulatory response of cows (n=6) treated with twice daily IM injections over 4 days (Control) was greater than of cows treated with a single subcutaneous (SC) injection in SRF (n=6), while superovulatory response of cows treated with a single IM injection in SRF (n=6) was intermediate. Experiment 2 was designed to compare two concentrations of SRF (20mg/mL hyaluronan, 100% compared to 10mg/mL hyaluronan, 50%) in a single IM injection protocol. The mean number of corpora lutea (CL) were not significantly different (P≥0.05), but the numbers of total ova/embryos (P<0.05), fertilized ova (P<0.01) and transferable embryos (P<0.001) were greater in cows treated with FSH in 100% SRF (n=20) than cows treated with FSH in 50% SRF (n=20). Experiment 3 was designed to compare superovulatory response in Red Angus donor cows treated with a single IM injection of Folltropin-V diluted in 100% solution of SRF with those treated with the traditional twice-daily IM injection protocol over 4 days. Mean (±SEM) numbers of CL (13.7±1.2 compared to 13.8±1.2), total ova/embryos (12.3±1.5 compared to 13.7±2.1), fertilized ova (7.2±1.1 compared to 8.4±1.4) and transferable embryos (4.9±0.8 compared to 6.4±1.3) were not significantly different between Control (n=29) and Single injection (n=29) groups, respectively. In summary, superstimulation of beef donor cows with a single IM injection of Folltropin-V diluted in 100% solution of SRF resulted in a comparable superovulatory response to the traditional twice-daily IM administration of Folltropin-V diluted in saline over 4 days.  相似文献   

2.
This study determined if lengthening the superstimulation protocol from 4 to 7 days would result in an increase in the superovulatory response with no adverse effects on oocyte/embryo competence in beef cows. Follicular ablation was performed, a progesterone-releasing intravaginal device (PRID) was inserted, and cows were assigned to one of two treatment groups 5 to 8 days after ovulation: Control (4 days of follicle stimulating hormone (FSH)) or Long (7 days of FSH; n = 12 per group). The FSH treatments were initiated 1.5 days later (Day 0). A dose of 400 mg NIH-FSH-P1 (Folltropin-V) was distributed equally over 8 (Control) or 14 (Long) im injections at 12-h intervals. Prostaglandin F2α (PGF) was administered twice, 12 h apart, on Day 2 (Control) or Day 5 (Long), and PRID were removed 12 h after the second PGF. Both groups were given 25 mg pLH (lutropin-V) im 24 h after PRID removal and AI was done 12 and 24 h later. Ova/embryos were collected 7 days after the pLH injection. The mean (± SEM) number of ≥ 9 mm follicles at the time of first AI did not differ (P = 0.24) between groups, but more ovulations (30.9 ± 3.9 vs. 18.3 ± 2.9, P = 0.01) and CL (27.2 ± 2.1 vs. 20.8 ± 2.2, P = 0.04) occurred in the Long group. A higher proportion of the ≥ 9 mm follicles ovulated between 12 and 36 h after pLH in the Long group (93 vs. 69%; P = 0.001). Although numerically higher in the Long group, mean numbers of total ova/embryos, fertilized ova, transferable or freezable embryos did not differ. In conclusion, a lengthened superstimulatory treatment protocol resulted in more follicles acquiring the capacity to ovulate with an increased number of ovulations, and without a decrease in oocyte/embryo competence.  相似文献   

3.
A series of 4 experiments were designed to evaluate the feasibility of superstimulation in beef cattle with a single sc injection of the porcine pituitary extract, Folltropin-V. In the preliminary study (Experiment 1), superovulatory response of cows (n=7) treated with a single sc injection of 400 mg NIH-FSH-P1 Folltropin-V was not different than that of cows (n=8) superstimulated with twice daily im injections over 4 d, or a single sc injection plus an injection of eCG (n=12). Experiments 2 and 3 were designed to determine the optimal site of a single sc injection. In Experiment 2, cows (n=25) with body condition scores (BCS) of 1 to 2 were used. The mean number of CL counted and ova/embryos collected was lower (P<0.05) in cows treated with the single sc injection in the neck region than in cows treated with a single sc injection behind the shoulder, or with the twice daily im injection treatment. In Experiment 3, cows (n=49) with BCS of 3 to 5 were used. There were no differences in the number of CL, total ova/embrvos collected, fertilized ova and transferable embryos whether treatments were given in the neck region or behind the shoulder, or whether the cows were implanted or not implanted with Syncro-Mate-B. Experiment 4 was designed to determine the optimal superstimulatory dosage of Folltropin-V administered by a single sc injection. Superovulatory response of cows treated with the higher doses (400 mg, 600 mg or 800 mg NIH-FSH-P1) was higher (P<0.05) than those treated with 200 mg NIH-FSH-P1. The number of unovulated (>/=10 mm) follicles at the time of ova/embryo collection was higher (P<0.05) in the 600 and 800 mg groups, and progesterone concentration at estrus was higher (P<0.05) in cows treated with 800 mg than with 400 or 200 mg. It was concluded that a single, bolus sc injection of 400 mg NIH-FSH-P1 of Folltropin-V is as efficacious as the 4-d, twice daily im treatment protocol for inducing superovulation in beef cows. The amount of subcutaneous fat and site of injection appeared to affect the efficacy of a single sc injection; a single bolus sc injection of Folltropin-V behind the shoulder resulted in the most predictable superovulatory response.  相似文献   

4.
Objective of the present study was to investigate the effect of season and dose of FSH on superovulatory responses in Iranian Bos indicus beef cattle (Sistani). Cyclic cows, in summer (n=16) and winter (n=16), were assigned randomly to three dose-treatment groups of 120 (n=10), 160 (n=12) and 200 (n=10) total mg of Folltropin-V with injections given twice daily for 4 days in decreasing doses. Estrous cycles were synchronized with two prostaglandin F2alpha injections given 14 days apart. From day 5 after the ensuing cycle, daily ovarian ultrasonography was conducted to determine emergence of the second follicular wave at which time superovulation was initiated. Relative humidity, environmental and rectal temperatures were measured at 08:00, 14:00 and 20:00 h for the 3 days before and 2 days after the estrus of superovulation. Non-surgical embryo recovery was performed on day 7 after estrus. The effects of season, dose, time of estrous expression and all two-way interactions were evaluated on superovulatory responses: total numbers of CL, unovulated follicles (10 mm), ova/embryo, transferable and non-transferable embryos. Season (summer or winter), doses of Folltropin-V (120, 160 or 200 mg NIH) and time of estrous expression (08:00, 14:00 or 20:00 h) did not affect the number of transferable embryos (3.1+/-0.58). When superovulatory estrus was detected at 08:00, a FSH dose effect was detected with the greatest numbers of CL (12.2+/-0.87) and total ova/embryos (12.2+/-1.46) occurring with 200 mg FSH (dosextime of estrous expression; P<0.01).  相似文献   

5.
The objective of this study was to investigate the effects of eCG and temporary calf removal (TCR) associated with progesterone (P4) treatment on the dynamics of follicular growth, CL size, and P4 concentrations in cyclic (n = 36) and anestrous (n = 30) Nelore cows. Cyclic (C) and anestrous (A) cows were divided into three groups. The control group received 2 mg of estradiol benzoate via intramuscular (IM) injection and an intravaginal device containing 1.9 g of P4 on Day 0. On Day 8, the device was removed, and the animals received 12.5 mg of dinoprost tromethamine IM. After 24 hours, the animals received 1 mg of estradiol benzoate IM. In the eCG group, cows received the same treatment described for the control group but also received 400 UI of eCG at the time of device removal. In the TCR group, calves were separated from the cows for 56 hours after device removal. Ultrasound exams were performed every 24 hours after device removal until the time of ovulation and 12 days after ovulation to measure the size of the CL. On the same day as the CL measurement, blood was collected to determine the plasma P4 level. Statistical analyses were performed with a significance level of P ≤ 0.05. In cyclic cows, the presence of the CL at the beginning of protocol resulted in a smaller follicle diameter at the time of device removal (7.4 ± 0.3 mm in cows with CL vs. 8.9 ± 0.4 mm in cows without CL; P = 0.03). All cows ovulated within 72 hours after device removal. Anestrous cows treated with eCG or TCR showed follicle diameter at fixed-timed artificial insemination (A-eCG 10.2 ± 0.3 and A-TCR 10.3 ± 0.5 mm) and follicular growth rate (A-eCG 1.5 ± 0.2 and A-TCR 1.3 ± 0.1 mm/day) similar to cyclic cows (C-eCG 11.0 ± 0.6 and C-TCR 12.0 ± 0.5 mm) and (C-eCG 1.4 ± 0.2 and C-TCR 1.6 ± 0.2 mm/day, respectively; P ≤ 0.05). Despite the similarities in CL size, the average P4 concentration was higher in the A-TCR (9.6 ± 1.4 ng/mL) than in the A-control (4.0 ± 1.0 ng/mL) and C-TCR (4.4 ± 1.0 ng/mL) groups (P < 0.05). From these results, we conclude that eCG treatment and TCR improved the fertility of anestrous cows by providing follicular growth rates and size of dominant follicles similar to cyclic cows. Additionally, TCR increases the plasma concentrations of P4 in anestrous cows.  相似文献   

6.
The objectives were to compare: (1) preovulatory serum LH concentrations, and (2) synchronization of ovulation, after im or iu administration of the second GnRH treatment of Ovsynch in lactating dairy cows. Lactating cows (N = 23) were presynchronized with two injections of PGF given 14 days apart (starting at 34 ± 3 days in milk), followed by Ovsynch (GnRH-7 d-PGF-56 h-GnRH) 12 days later. At the time of the second GnRH of Ovsynch (Hour 0), cows were blocked by parity and randomly assigned to 1 of 3 groups: (1) control group (CON; N = 7) were given 2 mL sterile water im; (2) intramuscular group (IM; N = 8) received 100 μg of GnRH im; and (3) intrauterine group (IU; N = 8) had 100 μg GnRH infused in the uterus (2 mL). Blood samples for serum LH concentrations were collected at Hours 0, 0.5, 1, 1.5, 2, 3, and 4. Furthermore, ultrasonography was performed twice daily (12-h intervals) from Hours 0 to 60 to confirm ovulation. The LH concentrations were greater (P < 0.05) in the IM than IU and CON groups at Hours 0, 0.5, 1, 1.5, 2, 3, and 4. Although LH concentrations were numerically higher in the IU group, LH concentrations within the IU and CON groups did not change over time. More cows ovulated in the IM (8/8) and IU (7/8) groups within 60 h after the second GnRH administration compared with the CON (2/7) group. In summary, serum LH concentrations were lower in the IU versus IM group, but the proportion of cows that ovulated within 60 h was similar between these two groups. Therefore, iu administration of GnRH may be an alternative route of delivery to synchronize ovulation in beef and dairy cattle.  相似文献   

7.
In the present study we investigated the effect of hCG administration on Day 7 (Day 0 = day of standing estrus) to ovulate the dominant follicle of the first wave and the associated increase in progesterone concentration on subsequent superovulatory response in dairy cows. Twenty cyclic lactating cows were allocated at random to 2 groups: control (n = 10) and hCG-treated (n = 10). The ovaries of each cow were scanned using an ultrasound scanner on Day 7, to confirm the presence of the dominant follicle and thereafter every other day until embryo recovery. All cows received a total dose of 400 mg Folltropin-V in decreasing amounts for 5 days (Days 9 to 13) and 35 mg PGF(2alpha) on Day 12. In addition, the treated cows received 1000 IU hCG on Day 7. All cows were inseminated twice during estrus, and the embryos were collected 7 days later by a nonsurgical procedure. Blood smaples were taken at different times of the treatment period for progesterone determination. All cows possessed a dominant follicle at Day 7, and all but one of the hCG-treated cows ovulated the dominant follicle and formed an accessory corpus luteum. Plasma progesterone concentrations were significantly higher (P<0.01) in hCG-treated cows than control cows on the first day of Folltropin treatment and on the day of PGF(2alpha) injection. The mean number of follicles at estrus, the number of ovulations, the total number of embryos and the number of transferable embryos were not different (P>0.05) between control and hCG-treated cows.  相似文献   

8.
The objective of this study was to determine the effects of different doses of porcine luteinizing hormone (pLH) versus 100 μg gonadotropin-releasing hormone (GnRH) on ovulatory response (during diestrus and proestrus) and corpus luteum (CL) development in nonlactating cows. In Experiment 1, 75 cows received an intravaginal insert containing 1.9 g progesterone (P4) for 10 d to synchronize estrus (Day 0), with prostaglandin F (PGF) at insert removal. On Day 5, all follicles ≥8 mm were ablated, and on Day 12, cows received 8, 12.5, or 25 mg pLH or 100 μg GnRH. Mean (±SEM) plasma P4 concentrations on Day 12 did not differ among treatments (5.6 ± 0.2 ng/mL). Mean plasma LH concentration was greatest (P < 0.01) in cows given 25 mg pLH (4.3 ± 0.4 ng/mL). The ovulatory response to 25 mg pLH (84%) or 100 μg GnRH (72%) was greater (P < 0.05) than that to 8 mg pLH (32%), but not different from that of 12.5 mg pLH (58%). In Experiment 2, 68 cows were given two injections of PGF 10 d apart to synchronize estrus (Day 0). On Day 7, cows received PGF, and, 36 h later, pLH or GnRH (as in Experiment 1). The interval from treatment to ovulation was most variable in cows given 8 mg pLH; only 65% of these cows ovulated during the initial 27 h versus 88% of cows given 25 mg pLH (P < 0.05). Cows given 25 mg pLH or 100 μg GnRH had larger CL area and greater plasma P4 concentrations (P < 0.05) than that of those given 8 mg pLH. In summary, diestrous cows given 25 mg pLH had the greatest plasma luteinizing hormone concentrations, but ovulatory response did not differ from that of those given 100 μg GnRH. Proestrous cows given 25 mg pLH or 100 μg GnRH had greater CL area and P4 concentrations than that of those given 8 mg pLH.  相似文献   

9.
Three experiments were conducted to evaluate the effects of exogenous progesterone on superovulatory response and ova/embryo quality in Bos indicus donors superstimulated during the first follicular wave (FFW). We hypothesized that exogenous progesterone during gonadotropin treatments would improve ova and embryo quality. In Experiment 1, 18 Nelore cows were randomly allocated to three groups: (1) FFW; (2) FFW plus a progesterone-releasing device (FFW+P4); and (3) control (E2+P4). Cows in the FFW groups were superstimulated beginning at synchronized ovulation, whereas cows in the control group were superstimulated after synchronization of follicular wave emergence with estradiol plus progesterone (E2+P4). There were no differences in mean (± SD) numbers of transferable embryos between FFW+P4 (8.0 ± 4.5) and control (6.7 ± 4.8) groups, but both were higher (P = 0.006) than the FFW group (0.2 ± 0.4). In Experiment 2, FFW and FFW+P4 were compared in 20 Nelore donors; exogenous progesterone increased the number of transferable embryos (3.9 ± 3.4 vs. 1.3 ± 4.1, P = 0.003). In Experiment 3, FFW and FFW+P4 were compared in 10 Nelore donors except that cows were slaughtered 12 h after pLH (Lutropin-V®, Bioniche Animal Health, Belleville, ON, Canada) treatment. More mature cumulus oocyte complex (COC) (expanded cumulus cell layers) were collected in the FFW+P4 group than in the FFW group (21.8 ± 13.1 vs. 10.8±14.7; P = 0.003). In summary, superovulatory response was satisfactory when FSH (Folltropin-V®, Bioniche Animal Health) treatment was initiated at emergence of the first follicular wave in Nelore (Bos indicus) donors, and the hypothesis that administration of exogenous progesterone during the treatment will improve oocyte and embryo quality was supported.  相似文献   

10.
The aim of this study was to determine the influence of follicular profiles over 4 days prior to superovulation on superovulatory responses. Eighty-eight Holstein cows were synchronized by two prostaglandin F(2)α injections given 11 days apart and conventionally superovulated between days 8 and 12 of the estrous cycle with 400 mg Folltropin-V given in decreasing doses over 4 days. Luteolysis was induced by 2 im injections of cloprostenol (2 ml) with the sixth and seventh injections of Folltropin-V. The ovaries of all cows were examined by ultrasonography with a real-time linear scanning ultrasound diagnostic system (Ls-300-A: Tokyo Keiki Co., Tokyo, Japan; 7.5 MHz Transducer) on days -3, -2, -1, 0 (initiation day of the superovulatory treatment=day 0). Data were analyzed by the GLM procedure of the SAS. Animals with a greater diameter of the largest follicle (F1; 13.4 vs 9.8 and 10.1 mm; p<0.007) and with a greater difference in the diameter of the first and second largest follicles (7.6 vs 4.5 and 3.8 mm; p<0.001) had the greater superovulatory response and produced the greater number of quality I embryos. In conclusion, the diameter of the F1 and the F1-F2 follicles were higher over a 4-day period prior to superovulation in animals yielding a high than a medium and a low number of quality I and I+II embryos.  相似文献   

11.
A series of 3 experiments were conducted to evaluate superovulatory response following exogenously controlled follicular wave emergence in cattle. In Experiment 1 the hypothesis was tested that treatments with progestogen plus estradiol-17beta (E-17beta) would result in the emergence of a wave of ovarian follicles that are as responsive to exogenous gonadotropins as those of a spontaneous follicular wave. Beef cows and heifers either received a progestogen ear implant on Day 0 (ovulation) plus 5 mg im E-17beta on Day 1 and were superstimulated on Day 5, or did not receive implants but were superstimulated on Day 8 (expected day of emergence of the second follicular wave). The cattle received 400 mg NIH-FSH-P1 of Folltropin-V, given in a single subcutaneous injection or twice daily as intramuscular injections over 4 d. No significant differences were detected between the 2 groups in the number of corpora lutea (CL), ova/embryos collected, fertilized ova and transferable embryos. In Experiment 2 superstimulatory responses to a single subcutaneous injection of Folltropin-V were compared between heifers in which follicle wave emergence was synchronized with progestogen plus E-17beta at unknown stages of the estrous cycle with those treated following a conventional method of superstimulation at middiestrus. Superstimulation 4 d after E-17beta treatment in heifers with progestogen implants resulted in a similar superovulatory response and higher fertilization rates than those initiated 8 to 12 d after estrus. In Experiment 3 the ovarian response to a single- versus multiple-injection superstimulatory treatment protocol was compared in heifers given progestogen plus E-17beta to induce synchronous wave emergence. The number of CL, ova/embryos collected, fertilized ova and viable embryos were not different between groups. Superstimulatory treatments initiated 4 d after E-17beta treatment of cattle with progestogen implants resulted in comparable ovulatory responses to treatments initiated at the time of spontaneous wave emergence or during middiestrus. Synchronizing wave emergence in a group of randomly cycling cattle obviated the need of estrus detection and synchronization prior to superstimulation.  相似文献   

12.
To evaluate ovarian response in Angus cows previously treated with progesterone (P4), animals were randomly assigned to two groups: T600 group (n=14), 600 mg of P4/day. P4 was injected from days 3 to 7 of the estrous cycle. On day 7, superovulatory treatments began. The control group (n=12) was given vehicle only. The superovulatory treatments in the control group began on days 7-9 of the estrous cycle. The superovulatory total treatment dose of 400mg NIH FSH P1 was given twice a day over a 4-day period. Ultrasonography of the ovaries was conducted 3 days preceding the initiation of superovulatory treatment, every 24h. In both groups, an additional ultrasonographic evaluation was made at 24h after the end of superovulatory treatment. Blood samples were collected 4 days preceding the initiation of superovulatory treatment, every 24h. Additional samples were taken from the P600 group for 12 day after of initiation of superovulatory treatment every 24h, except on the fifth day after the initiation of superovulatory treatment. In the P600 group, P4 concentrations were greater than in the control group (P<0.01) and remained over 1 ng/ml up to day 11 after beginning of superovulatory treatment. The diameter of the dominant follicle was larger in the animals of the control group (P<0.01). Cows of the P600 group had a greater number of Class I (3-4mm) follicles (P<0.01). A significant day and treatment effect (P<0.01) were observed in Class II (5-9 mm) follicles. Effects due to treatment on the number of Class III follicles (P<0.05) were observed. In the P600 group, no estrous post-superovulatory was observed and there were no ovulations that occurred. Conversely, 100% of the cows of the control group showed estrous. In the P600 group, there were a greater number of Class III follicles (P<0.01) and a lesser number of Class II follicles (P<0.05) at 24h after the end of superovulatory. In the control group, 66.7% of the cows responded to superovulatory treatments. In conclusion, the daily administration of 600 mg of P4, from days 3 to 7 of the estrous cycle, produces an increase of plasma concentrations of this hormone from day 4, resulting in changes in follicular dynamics (absence of follicles greater than 10mm of diameter and an increase of the population of Class I follicles). As to the ovarian stimulation using Folltropin V in animals receiving a daily injection of 600 mg of P4 from days 3 to 7 of the estrous cycle, a greater population of follicles>or=10mm developed by 24h after superovulatory treatments were completed.  相似文献   

13.
The objectives of these studies were to evaluate the efficacy of a PGF(2alpha) (PGF) analog given through different routes on causing luteal regression in lactating dairy cows. In Experiment 1, lactating Holstein cows (n=118) at random stages of lactation were blocked by parity and days in milk (DIM) and, within each block, randomly assigned to receive PGF as an intra-muscular (IM) injection in the semimembranous/semitendinous muscle (CON), subcutaneous (SC) injection in the cervical area (SCN), or SC injection in the ischio-rectal fossa (IRF). Blood was sampled at 0, 12, 24, 36, and 48 h after treatment for assessment of progesterone concentration. In Experiment 2, a total of 379 lactating Holstein cows, 46+/-7 DIM, were blocked by DIM and, within each block, randomly assigned to receive treatment similar to CON or IRF groups from Experiment 1. Blood was sampled 0 and 48 h after treatment for assessment of progesterone concentration. Cows were classified as experiencing luteal regression when progesterone concentration was <1.0 ng/mL or <40% of initial concentration (0 h=100%). In Experiment 1, there was no effect of route of PGF treatment on decline in progesterone concentration and on the proportion of cows experiencing luteal regression by 12, 24, 36, and 48 h after treatment. Similarly, in Experiment 2, route of treatment did not affect either the decline in progesterone concentration or the proportion of cows that had luteal regression by 48 h after treatment. Treatment of lactating dairy cows with 25mg of PGF given SC in the ischio-rectal fossa did not affect either the decline in progesterone concentration or the proportion of cows that experienced luteal regression by 12, 24, 36, and 48 h after PGF treatment.  相似文献   

14.
The aim was to design a protocol combining eCG followed by hCG for estrus induction in the bitch. In Experiment 1, three ovariohysterectomized bitches received 10 000 IU of eCG iv, and 15 days later 10 000 IU of eCG im. Blood samples were taken up to 144 h after each injection to measure eCG concentrations. In Experiment 2, 25 healthy, intact late anestrous bitches were assigned to one of five doses of eCG (5, 10, 15, 20, 44, or 50 IU/kg eCG im; [TRT5-TRT50]). Sexual behavior (SB), clinical signs of estrus (CSE) and vaginal cytology (VC) samples were obtained and scored before eCG administration and every other day until onset of estrus, or for 14 days. In Experiment 3, intact late anestrous bitches were assigned to a treatment group (TRT; n = 16) and received eCG (50 IU/kg im) followed by hCG (500 IU im) 7 days later; or to a placebo group (PLA; n = 8) where they received 1 mL saline solution im. All bitches that were induced in estrus were mated or AI with fresh semen. In Experiment 1, maximum observed concentration (Cmax) eCG were similar between im and iv routes (6.1 ± 0.9 vs. 8.6 ± 0.5 IU/mL, P > 0.08), whereas time for maximum observed concentration (Tmax.) was longer for im compared to iv routes (17.5 ± 0.5 vs. 11.6 ± 0.3 h, P < 0.01). The area under the curve (AUC) was similar for im and iv routes (P > 0.48), and eCG was detectable in serum for at least 144 h for both routes. In Experiment 2, 3 days or 3 to 5 days after treatment, all bitches in TRT50 had higher scores compared to TRT5-44 animals (P < 0.01). In TRT50, the mean interval from treatment to estrus was 4.0 ± 0.4 days. In Experiment 3, the mean interval from treatment to estrus was shorter in the TRT group compared to the PLA group (4.1 ± 3.3 vs. 68.5 ± 4.4 days, P < 0.01). The previous interestrus interval was similar for TRT and PLA groups (199.6 ± 7.2 vs. 197.5 ± 10.2 days), but the new interestrus interval was shorter for the TRT compared to the PLA group (164.0 ± 7.2 vs. 212.2 ± 10.2 days; treatment by interval interaction, P < 0.007). Serum P4 concentrations increased on the first day of cytologic diestrus after treatment in bitches in TRT (0.7 ± 0.3 vs. 22.8 ± 4.2 ng/mL; P < 0.01); but did not change in PLA (P > 0.84). Ninety-four percent of animals were bred (15/16; AI, n = 7; natural mating, n = 8), and 80% (12/15) became pregnant. None of the bitches had any side effects from the eCG and hCG therapy. We concluded that 50 IU/kg of eCG combined 7 days later with 500 IU of hCG was effective to induce normal and fertile estrus in bitches at 164 days post estrus, with an 80% pregnancy rate, with no side effects, and with a reduction of 48 days of the interestrus interval.  相似文献   

15.
Two experiments evaluated the effects of timing of the induction of ovulation in superstimulated lactating Holstein donor cows that were fixed-time artificially inseminated. Secondary objectives were to evaluate the effects of the timing of progesterone (P4) device removal (Experiment 1) or the addition of a second norgestomet implant (Experiment 2) during superstimulation. In Experiment 1, 12 cows were allocated to one of four treatment groups with the timing of P4 device removal (24 or 36 h) and pLH treatment (48 or 60 h), after the first PGF as main factors, in a Latin Square (cross-over) design. There was an interaction (P = 0.03) between time of P4 device removal and time of pLH treatment. Mean (± SEM) numbers of transferable embryos were higher when the P4 device was removed at 36 h and pLH was administered at 60 h after the first PGF (P36LH60 =6.3 ± 1.4) compared to other treatments (P24LH60 =3.7 ± 1.1; P24LH48 =2.4 ± 0.8; or P36LH48 =2.2 ± 0.7). In Experiment 2, 40 cows were randomly allocated into one of four treatments with the number of norgestomet implants (one or two) and the time of induction of ovulation with GnRH relative to the first PGF (48 vs. 60 h) as main effects. The mean number of transferable embryos was higher (P = 0.02) when GnRH was administered at 60 h (4.2 ± 1.3) compared to at 48 h (2.7 ± 0.8), and the number of freezable embryos was increased (P = 0.01) in cows receiving two (3.0 ± 1.0) rather than one norgestomet implant (1.5 ± 0.5). In summary, embryo production in lactating Holstein cows was increased when the ovulatory stimulus (pLH or GnRH) was given 60 h after the first PGF, particularly when the P4 device was removed 36 h after the first PGF and when two norgestomet ear implants were used during the superstimulation protocol.  相似文献   

16.
Based on the premise that superovulation in cattle is optimal when superstimulation is initiated at the time of follicular wave emergence, the present study was done in beef heifers to determine if the superovulatory response following a single bolus of gonadotrophin treatment after follicle ablation (induced wave) at random stages of the oestrous cycle is comparable to the same gonadotrophin treatment at mid-dioestrus (spontaneous wave). In Experiment 1, heifers were assigned to nonablation (n = 18) and ablation (n = 20) groups. In nonablated heifers, superstimulatory treatment was given as a single subcutaneous injection (Folltropin-V, 400 mg) at mid-dioestrus to coincide with emergence of the spontaneous follicular wave 8 to 12 days after oestrus. In ablated heifers, the same superstimulatory treatment was given 1 day after ablation of all follicles ≥ 5 mm at random stages of the oestrous cycle to coincide with emergence of the ablation-induced wave. In both the nonablation and ablation groups, PGF (Estrumate, 500 μg) was given 48 h after the superstimulatory treatment and artificial insemination was done 60 and 72 h later. Reproductive tracts were collected at the time of slaughter 6 or 7 days after insemination. Observations made in Experiment 1, indicated that some ablated heifers had only partial luteal regression at the time of insemination, while some others exhibited behavioral oestrus as early as 24 h after PGF treatment. The design was amended in Experiment 2 to address these problems. Heifers were assigned to nonablation (n = 17), ablation-alone (n = 20) or ablation plus progestogen (n = 20) groups. Follicle ablation, superstimulatory treatment, artificial insemination and collection of reproductive tracts were done as in Experiment 1. However, all heifers were given two doses of PGF (500 μg/dose) 48 and 60 h after superstimulatory treatment to ensure complete luteal regression, and heifers in the ablation plus progestogen group received a norgestomet ear implant at the time of follicle ablation to prevent early ovulations. The implant was removed at the time of the second PGF treatment. In Experiments 1 and 2, the means for the ovarian and superovulatory responses were not significantly different between groups. Averaged over the nonablation and all ablation groups for Experiments 1 and 2, the mean number of corpora lutea, fertilized ova and transferable embryos were 22.9 vs 18.6, 7.3 vs 7.8 and 5.4 vs 5.6, respectively. In summary, follicle ablation at random stages of the oestrous cycle followed by a single bolus of gonadotrophin treatment 1 day later resulted in a superovulatory response that was comparable to the same superstimulatory treatment administered around the time of spontaneous wave emergence at mid-dioestrus. The ablation/superstimulation method described herein offers the advantage of initiating superstimulatory treatment forthwith and assuring that treatment is concomitant with wave emergence to achieve an optimal superovulatory response. Moreover, the full extent of the oestrous cycle is available for superstimulation and the need for detecting oestrus or ovulation and waiting 8 to 12 days to initiate treatment is eliminated.  相似文献   

17.
Two experiments were conducted to determine whether addition of hyaluronan to culture medium could improve survival of bovine embryos after vitrification or following embryo transfer. In Experiment 1, embryos were produced in vitro and cultured for 7 days in modified synthetic oviductal fluid (SOF) containing one of four concentrations of hyaluronan (0, 0.1, 0.5, or 1 mg/mL), with or without 4 mg/mL of bovine serum albumin (BSA). On Day 7 after insemination, blastocysts and expanded blastocysts were vitrified using open-pulled straws. At a concentration of 1 mg/mL, hyaluronan increased (P < 0.05) the percentage of oocytes that were blastocysts and re-expansion rate at 24 h after warming. At 0.5 mg/mL, hyaluronan tended (P < 0.10) to increase re-expansion rate at 48 h after warming and increased (P < 0.05) embryo hatching rate at 24 and 72 h. Treatment with BSA caused a slight reduction in cleavage rate (P < 0.05), but only for cultures containing hyaluronan (BSA × hyaluronan, P = 0.10), an increase in the percentage of oocytes that became blastocysts (P < 0.001), and a reduction in re-expansion rates (P < 0.001) and hatching rates (P < 0.05 or P < 0.01) at all times examined. In Experiment 2, embryos were produced in vitro and cultured in modified SOF containing 4 mg/mL BSA, with or without 1 mg/mL hyaluronan. At 159-162 h after insemination, grade 1 morula, blastocysts and expanded blastocysts were harvested for embryo transfer. Harvested embryos were transferred individually to lactating Holstein recipients with a palpable corpus luteum on Day 7 after presumptive ovulation. There was an interaction (P < 0.05) between hyaluronan and embryo stage on pregnancy rate. Recipients that received morula and blastocyst stage embryos treated with hyaluronan had a higher pregnancy rate than recipients that received control embryos of the same stage. There was no effect of hyaluronan on pregnancy rates of recipients that received expanded blastocysts. In conclusion, addition of hyaluronan to embryo culture enhanced blastocyst yield, improved survival following vitrification, and enhanced the post-transfer survival of fresh morula and blastocyst stage embryos.  相似文献   

18.
Peters MW  Pursley JR 《Theriogenology》2003,60(6):1197-1204
Synchronization of ovulation (Ovsynch) is an effective method for controlling time of first and subsequent AI in lactating dairy cows. However, validation of the original Ovsynch program did not include testing the optimal time to deliver the final treatment of GnRH. In Experiment 1, the effect of administering the final dose of GnRH on the same day as prostaglandin F2alpha (PGF2alpha) administration was tested. Lactating dairy cows (n = 218) were randomly assigned to receive either Ovsynch (OV; cows were given 100 microg GnRH, then 7 days later cows were administered 25mg PGF2alpha followed by a subsequent treatment of 100 microg GnRH 2 days after the PGF2alpha or the modified version of Ovsynch (MOV; cows were given 100 microg GnRH, then 7 days later cows were administered 25mg PGF2alpha followed immediately with 100 microg GnRH). In both treatment groups, AI took place 16 h after the final administration of GnRH. In Experiment 2, cows (n = 457) were randomly divided into four treatment groups that were administered GnRH 0, 12, 24 and 36 h following PGF(2alpha). The 36 h treatment group served as control. Pregnancy diagnoses were performed by palpation per rectum 36 days post-AI in Experiment 1 and by ultrasonography on Day 28 in Experiment 2. In Experiment 1, pregnancy rate/AI (PR/AI) was greater (P<0.025) in OV versus MOV. In a subset (n = 85), percentage of cows with both synchronized ovulations and regressed CL following administration of PGF2alpha were similar (P>0.1) between OV and MOV, respectively. All cows that became pregnant in the MOV subset group showed regression of the CL in response to the PGF2alpha. Diameter of the ovulatory follicle at the time of final GnRH administration was greater (P<0.05) in OV versus MOV. In Experiment 2, the synchronization rate was once again similar among treatments (P>0.28). There was a linear effect of treatment on follicle size (P<0.05) and PR/AI (P<0.0001) as time increased between administration of PGF2alpha and GnRH, with the greatest PR/AI at 36 h. There was a trend for a greater percentage of cows with short luteal phases in the 0 h group (P<0.10). In summary, delivering the final treatment of GnRH of the Ovsynch program at the same time as PGF2alpha, or in the 24h following PGF2alpha, resulted in lower fertility compared to controls.  相似文献   

19.
We hypothesized that: (i) repeated GnRH treatments would increase the magnitude and duration of the LH surge and would increase progesterone (P4) concentrations after ovulation; and (ii) the release of pituitary LH would be greater in response to larger doses of GnRH. In Experiment 1, ovary-intact cows were given an intravaginal P4 (1.9 g) insert (CIDR) for 10 d and 500 μg cloprostenol (PGF) at CIDR removal to synchronize estrus. On Days 7 or 8 after estrus, cows received two PGF treatments (12 h apart) and 100 μg GnRH at 36 (Control), 36 and 38 (GnRH38), or 36 and 40 h (GnRH40) after the first PGF. Mean plasma LH concentration (ng/mL) was greater (P < 0.05) in GnRH38 (8.8 ± 1.1) than in Control (5.1 ± 1.3), with that in GnRH40 (5.8 ± 1.3) being intermediate. Although the duration (h) of the LH surge was longer in GnRH40 (8.0 ± 0.4) than in either GnRH38 (P < 0.05; 7.0 ± 0.3) or Control (P < 0.09; 7.1 ± 0.4), mean postovulatory P4 (ng/mL) was greater (P < 0.01) in Control (4.2 ± 0.7) than in GnRH38 (2.9 ± 0.6) or GnRH40 (3.0 ± 0.7) cows. In Experiment 2, ovariectomized cows were given a CIDR for 10 d and 2 mg of estradiol cypionate im at CIDR insertion. Thirty-six hours after CIDR removal, cows received, 50, 100, or 250 μg of GnRH. Cows given 250 μg GnRH released more LH (9.4 ± 1.4 ng/mL) than those given 50 or 100 μg (6.1 ± 1.3 and 5.4 ± 1.4 ng/mL, respectively), and had an LH surge of longer duration than those given 50 μg (6.8 ± 0.4 vs. 5.1 ± 0.3 h). In summary, ovary-intact cows in the GnRH38 group had greater mean and peak LH concentrations, but subsequent plasma P4 concentrations were lower than in Control cows. Ovariectomized cows given 250 μg GnRH had a greater pituitary release of LH.  相似文献   

20.
Thirty superovulatory treatments were administered to 19 mixed-breed, nonlactating cows. In 10 superovulatory treatments, the cows were primed with follicle stimulating hormone (FSH) on the second and third day of the estrous cycle, and in another 10 superovulatory treatments, the cows received no priming dosage of FSH. Initiation of the superovulatory treatments in both groups was determined by ultrasonically monitoring for regression of the dominant anovulatory follicle. Still another 10 superovulatory treatments were begun on Day 10 without regard for regression of the dominant anovulatory follicle and without a priming dosage of FSH. The mean days for starting the superovulatory treatment in the FSH-primed cows, in the nonprimed cows and in the controls were 10.5, 11.9 and 10 days, respectively. All cows were treated with eight injections of FSH at 12-hour intervals in a declining dosage (36 mg total). Cows were bred naturally and embryos collected nonsurgically seven days later. There was no significant difference (P>0.05) between the total number of embryos or transferable embryos in the three treatment groups. In this study neither priming on Days 2 or 3 nor initiating the superovulatory treatment, based on the morphologic regression of the dominant anovulatory follicle, was an effective means for improving the superovulatory response in cattle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号