首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The current study was undertaken to investigate the aneuploidy rates in in vitro-matured meiosis II (MII) oocytes and corresponding first polar bodies in two dairy cattle (Bos taurus) breeds by using dual-color fluorescent in situ hybridization (FISH). A total of 159 and 144 in vitro-matured MII oocytes of the Italian Friesian and Italian Brown breeds, respectively, were obtained according to the standard methods and analyzed by FISH using “Xcen” and “5” chromosome-specific painting probes, produced by chromosome microdissection and Degenerate Oligonucleotide Primer- Polymerase Chain Reaction (DOP-PCR). Oocytes with unreduced chromosome number were 10.1% and 16.7% in the two breeds, respectively. To avoid bias due to possible artifacts, the aneuploidy rates were determined by analyzing only oocytes with the corresponding polar bodies. In the Italian Friesian, 100 of 143 (69.9%) secondary MII oocytes showed clear MII plates with corresponding first polar bodies and were scored for aneuploidy detection; one oocyte was “nullisomic” for chromosome X (1.0%) and one “disomic” for chromosome 5 (1.0%). In the Italian Brown, 100 of 120 (83.3%) MII oocytes with corresponding first polar bodies were analyzed; one oocyte was nullisomic (1.0%) and one was disomic (1.0%), both for chromosome 5. Totally, 303 oocytes were analyzed, 40 of which showed an unreduced chromosome complement (13.2%); of 200 MII oocytes with the corresponding first polar bodies, the aneuploidy rate (nullisomy + disomy) for the two chromosomes scored was 2%. Assuming that each chromosome is equally involved in aneuploidy, it results that in cattle oocytes matured in vitro, at least 30% of the oocytes (1 × 30 haploid chromosomes) should be aneuploid. Premature separation of sister chromatids (PSSC) was also observed in 2% of the oocytes in the Italian Friesian breed involving chromosome 5 and in 1% of the Italian Brown breed involving the X chromosome. Estimation of the “baseline” level of aneuploidy in the in vitro-matured oocytes of the various domestic animal species and breeds is, to our opinion, a useful reference for improving the in vitro production of embryos as well as for monitoring future trends of the reproductive health of the species/breeds engaged in zootechnical productions, especially in relation to management errors and environmental hazards.  相似文献   

2.
The present study reports on the frequency of X-Y aneuploidy in the sperm population of two minor cattle breeds reared in Italy, namely Modicana and Agerolese, which are listed in the "Anagraphic Register of autochthonous cattle populations with limited distribution". More than 50 000 sperm nuclei from 11 subjects (5 and 6, respectively for each breed) have been analyzed by the fluorescent in situ hybridization with the Xcen and Y-chromosome specific painting probes. The fraction of X- and Y-bearing sperm was close to the 1:1 ratio in the Modicana breed, whereas in the Agerolese the Y-fraction was significantly higher (P < 0.002) compared to the X-counterpart. The mean rates of X-Y aneuploidy were 0.510 and 0.466%, respectively, in the two breeds; no significant differences were found among individual bulls within each breed. Average frequencies of disomic and diploid sperm were 0.425 and 0.085% in the former and 0.380 and 0.086% in the latter. In both breeds, (a) disomy was significantly more frequent than diploidy (P < 0.01), (b) YY disomy was significantly (P < 0.001) more frequent than XY or XX; (c) MI errors (XY disomy) were significantly (P < 0.01) less represented than MII (XX + YY disomy). Compared to the dairy (Italian Friesian and Brown) and meat (Podolian and Maremmana) breeds previously analyzed, the "minor" breeds investigated in the present study showed a significantly (P < 0.002) higher rate of X-Y aneuploidy (0.486 vs. 0.159 and 0.190%, respectively). Considering all the breeds analyzed -so far- and assuming no significant interchromosomal effect, the baseline level of aneuploidy in the sperm population of the species Bos taurus was estimated as 5.19%. Establishing the baseline level of aneuploidy in the sperm population of the various livestock species/breeds engaged in animal production could reveal useful for monitoring future trends of their reproductive health, especially in relation to management errors and/or environmental hazards.  相似文献   

3.
Cytogenetics of unfertilized human oocytes   总被引:5,自引:0,他引:5  
During an in-vitro fertilization programme 150 oocytes from 62 women with a mean age of 31 years (range 24-39) remained unfertilized. Successful chromosome analysis was carried out on 96 oocytes by Q-banding: 59 (61.5%) oocytes bore a normal haploid complement, 8 (8.3%) were diploid and 3 (3.1%) tetraploid. In 26 (27.1%) oocytes aneuploidy was observed; these included 9 (9.4%) nullisomic, 5 (5.2%) double nullisomic, 4 (4.2%) triple nullisomic and 2 (2.1%) disomic oocytes. The remaining 54 (36.0%) oocytes could not be evaluated. A nearly uniform rate of aneuploidy was found for unfertilized oocytes among different donor age groups.  相似文献   

4.
The developmental competence (quality) of oocytes is affected by several factors linked to their intrinsic properties and also to growth and maturation environment. Donor puberty and chromosomal complement are one of the main factors influencing oocyte quality. A high rate of porcine oocytes matured in vitro is chromosomally imbalanced. Moreover, there is no published data on chromosomal aberrations in oocytes selected by the brilliant cresyl blue (BCB) test. Therefore, the aim of this study was to analyze whether BCB positive (BCB+) oocytes derived from ovaries of peripubertal gilts (prepubertal NCL and cyclic CL) differ with respect to the incidence of numerical chromosome aberrations. COCs collected from NCL and CL ovaries were selected by the BCB test. Only BCB+ oocytes were matured in vitro and subjected to FISH analysis using molecular probes for chromosome pairs 1 and 10. The rate of BCB+ oocytes was similar for both groups of ovaries (NCL 80%, CL 92%). Altogether 554 oocytes were fixed and 471 oocytes at the MII stage were analyzed cytogenetically. Diploid (2MII) and aneuploid oocytes were detected. The contribution of MII oocytes was similar for NCL (85%) and CL (90%) group. Chromosomally aberrant BCB+ oocytes accounted for 18.0% and ranged from 13.7% for CL and 22.2% for NCL ovaries. Diploidy was a predominant anomaly observed (11.2%) with a significantly higher frequency in BCB+ oocytes of pre-pubertal (16.7%) than cyclic gilts (5.6%, P < 0.05). Aneuploid oocytes occurred with similar rate in NCL (6.7%) and CL (8.5%) females. The majority of aneuploid spreads (72.2%; P < 0.01) concerned the chromosome pair 10. The overall rate of disomy (56%) and nullisomy (44.4%) was similar. We have shown that donor puberty affects the incidence of chromosomal abnormalities in porcine oocytes matured in vitro. Significantly more diploid oocytes was derived from prepubertal ovaries, whereas the frequency of aneuploidy was similar in NCL and CL gilts.  相似文献   

5.
Analysis of sperm aneuploidy in 11 healthy men using two-or three-color FISH permitted to determine the average frequency of disomy for chromosomes 13 and 21 (0.11% and 0.2%, respectively), disomy for chromosome 18 (0.05%) and to reveal gonosomal aneuploidy variants and their frequency. The frequency of XX disomy was 0.04%; XY, 0.17%; YY, 0.06%; and gonosomal nullisomy, 0.29%. We assessed the frequency of meiotic nondisjunction of 13, 21, 18, X, and Y chromosomes and the frequency of XX, XY, and YY diploid spermatozoa. The XY variant prevailed in gonosomal aneuploidy and diploidy and was associated with abnormal chromosomal segregation in meiotic anaphase I. The contribution of human sperm chromosomal imbalance to early embryonic lethality and to some forms of chromosomal abnormalities in the off-spring is discussed.  相似文献   

6.
The present study examined the effect of vitrification on oocyte aneuploidy and centromere cohesion. Firstly, germinal vesicle (GV) and in vitro matured oocytes (metaphase II, MII) were vitrified by open-pulled straw method. Secondly, thawed GV oocytes were matured in vitro to detect the aneuploidy rate and the sister inter-kinetochore (iKT) distance (in situ spreading and immunofluorescent staining). The results revealed that the sister iKT distance and the aneuploidy rate in eggs matured from vitrified-thawed GV oocytes were higher than that from in vivo matured, in vitro matured, and in vitro matured frozen oocytes (0.47 ± 0.03 vs. 0.33 ± 0.01 vs. 0.33 ± 0.02 vs. 0.34 ± 0.01 μm; P < 0.01 and 22.9% vs. 6.5% vs. 5.8% vs. 11.8%; P < 0.05, respectively). Furthermore, the percentage of sister chromosome pairs whose sister iKT distances were higher than 0.9 μm in eggs matured from vitrified-thawed GV oocytes (8.7%) was higher than that from in vivo matured (1.6%), in vitro matured (1.6%), and in vitro matured frozen oocytes (2.3%) (P < 0.05). The sister iKT distance was associated with centromere cohesion. To investigate whether vitrification of GV oocytes deteriorated centromere cohesion by affecting cohesin complex formation, thawed and fresh GV oocytes were used to detect the cohesin subunits (SMC1β, STAG3, SMC3, and REC8) mRNA expression (quantitative real-time polymerase chain reaction). The relative expression of three cohesin subunits (SMC1β, STAG3, and SMC3) was significantly decreased in GV oocytes after vitrification. In conclusion, vitrification of GV oocytes may result in the subsequent deterioration of centromere cohesion and an increase in the aneuploidy rate. MII oocytes may be the ideal candidate to avoid aneuploidy for fertility cryopreservation.  相似文献   

7.
Despite recent efforts to improve in vitro maturation (IVM) systems for porcine oocytes, developmental competence of in vitro-matured oocytes is still suboptimal compared with those matured in vivo. In this study, we compared oocytes obtained from large (≥8 mm; LF) and medium (3–7 mm; MF) sized follicles in terms of nuclear maturation, intracellular glutathione and reactive oxygen species levels, gene expression, and embryo developmental competence after IVM. In the control group, cumulus-oocyte complexes (COCs) were aspirated from MF and matured for 22 hours with hormones and subsequently matured for 18 to 20 hours without hormones at 39 °C, 5% CO2in vitro. In the LF group, COCs were obtained from follicles larger than 8 mm and were subjected to IVM for only 18 hours. The ovaries have LF were averagely obtained with 1.7% per day during 2012 and it was significantly higher in the winter season. The results of the nuclear stage assessment of the COCs from the LFs are as follows: before IVM (0 hours); germinal vesicle stage (15.2%), metaphase I (MI) stage (55.4%), anaphase and telophase I stages (15.8%), and metaphase II (MII) stage (13.6%). After 6 hours IVM; germinal vesicle (4.2%), MI (43.6%), anaphase and telophase I (9.4%), and MII (42.8%). After 18-hour IVM; MI (9.7%) and MII (90.3%). Oocytes from LF showed a significant (P < 0.001) increase in intracellular glutathione (1.41 vs. 1.00) and decrease in reactive oxygen species (0.8 vs. 1.0) levels compared with the control. The cumulus cells derived from LFs showed lower (P < 0.1) mRNA expression of COX-2 and TNFAIP6, and higher (P < 0.1) mRNA expression of PCNA and Nrf2 compared with the control group-derived cumulus cells. After parthenogenetic activation, in vitro fertilization and somatic cell nuclear transfer (SCNT) using matured oocytes from LFs, the embryo development was significantly improved (greater blastocyst formation rates and total cell numbers in blastocysts) compared with the control group. In conclusion, oocytes from LFs require only 18 hours to complete oocyte maturation in vitro and their developmental competence is significantly greater than those obtained from MFs. Although their numbers are limited, oocytes from LFs might offer an alternative source for the efficient production of transgenic pigs using SCNT.  相似文献   

8.
The present study reports on the incidence of X-Y aneuploidy in the sperm population of two indigenous cattle breeds reared in Italy for beef purposes, the Podolian and Maremmana. Totally, more than 50 000 sperm nuclei from 10 subjects (5 from each breed) have been fluorescent in situ hybridization (FISH) analyzed by using Xcen- and Y-chromosome-specific painting probes. In both breeds, the fraction of Y-bearing sperm was significantly higher (P < 0.01) compared with the X-counterpart. The rates of X-Y aneuploidy were 0.180% and 0.200%, respectively, in the Podolian and Maremmana. No significant interindividual differences were found. Average frequencies of disomic and diploid sperm were 0.149% and 0.031% in the former and 0.098% and 0.102% in the latter. Significant differences (P < 0.05) were found among the XX-XY and YY-disomy classes in both breeds, while diploidy classes were uniformly represented. In the Podolian breed, disomies were more frequent than diploidies (P < 0.05), whereas in the Maremmana they showed similar frequencies. In both breeds disomies arising from errors in meiosis I (X-Y disomies) were more represented than those arising in meiosis II (XX and YY), while this difference was not detected for diploidies. The present study provides specific information on the incidence of X-Y sperm aneuploidy in two indigenous breeds of cattle, in order to establish a breed-specific ‘aneuploidy data-base' that could be used as reference for genetic improvement and future monitoring of the reproductive health of the breed.  相似文献   

9.
10.
To examine interindividual differences in sperm chromosome aneuploidy, repeated semen specimens were obtained from a group of ten healthy men, aged 20-21 at the start of the study, and analyzed by multi-color fluorescence in situ hybridization (FISH) analysis to determine the frequencies of sperm aneuploidy for chromosomes X, Y, 8, 18 and 21 and of diploidy. Semen samples were obtained three times over a five-year period. Statistical analysis examining the stability of sperm aneuploidy over time by type and chromosome identified two men who consistently exhibited elevated frequencies of sperm aneuploidy (stable variants): one with elevated disomy 18 and one with elevated MII diploidy. Differences among frequencies of aneuploidy by chromosome were also seen. Overall, disomy frequencies were lower for chromosome X, 8 and 18 than for chromosomes 21 or Y and for XY aneuploidy. The frequency of chromosome Y disomy did not differ from XY sperm frequency. Also, the frequency of meiosis I (XY) and II (YY + XX) sex chromosome errors did not differ in haploid sperm, but the frequency of MII errors was lower than MI errors in diploid sperm. Frequencies of sperm aneuploidy were similar between the first sampling period and the second, two years later. However, the frequency of some types of aneuploidy (XY, disomy Y, disomy 8, total autosomal disomies, total diploidy, and subcategories of diploidy) increased significantly between the first sampling period and the last, five years later, while others remained unchanged (disomy X, 21 and 18). These findings confirm inter-chromosome differences in the frequencies of disomy and suggest that some apparently healthy men exhibit consistently elevated frequencies of specific sperm aneuplodies. Furthermore, time/age-related changes in sperm aneuploidy may be detected over as short a period as five years in a repeated-measures study.  相似文献   

11.
Oocytes derived from prepubertal gilts show reduced developmental competence when compared to oocytes collected from adult sows. Therefore, the aim of the study was to investigate whether gilts (4-5 months old) and adult sows (average age 3.5 years) of the same breed (Polish Landrace x Polish Large White crossbred) differ with regard to the rate of chromosomally unbalanced oocytes after IVM. COCs derived from individual pairs of slaughterhouse ovaries were matured in vitro and analyzed cytogenetically by conventional staining (Giemsa) and FISH methods (probes corresponding to centromeric regions of pig chromosomes 1 and 10). Altogether, 72 females (31 sows, 41 gilts) and 430 secondary oocytes (194 and 236 oocytes of sows and gilts, respectively) were investigated. Cytogenetic analysis revealed diploid (Giemsa, FISH) and aneuploid (FISH) spreads. The incidence of diploid oocytes was similar for sows (26.0%) and gilts (24.5%) whereas the rate of aneuploid oocytes (nullisomic/disomic) was eight times higher in gilts (10.8%) than in sows (1.3%). Diploid and aneuploid oocytes were observed in 64% of investigated females. Pig chromosome 10 was more frequently disomic/nullisomic compared to chromosome 1 suggesting, that like in human, small porcine chromosomes are often involved in the nondisjunction process. In conclusion, chromosomal imbalance significantly contributes to in vitro embryo production in the pig, since over 60% of females produced diploid or aneuploid gametes. The significantly higher rate of aneuploidy among oocytes derived from gilt ovaries may contribute to the reduced developmental competence of gametes collected from nonmature female pigs.  相似文献   

12.
The meiotic spindle in the oocyte is composed of microtubules and plays an important role during chromosome alignment and separation at meiosis. Polarized light microscopy (PLM) could be useful for a non-invasive evaluation of the meiotic spindle and may allow removal of nuclear structures without fluorochrome staining and ultraviolet exposure. In this study, PLM was used to assess its potential application in porcine reproductive technologies. The objectives of the present study were to assess the efficiency of PLM to detect microtubule-polymerized protein in in vitro-matured porcine oocytes; to examine its effects on the oocyte developmental competence; to select oocytes based on the presence of the meiotic spindle detected by PLM; and to assess the efficiency oocyte enucleation assisted with PLM. In the first experiment, the presence of microtubule-polymerized protein was assessed and confirmed in oocytes (n = 117) by immunostaining and chromatin detection. In the second experiment, oocytes (n = 160) were exposed or not (controls) to PLM for 10 minutes, and then parthenogenetically activated and cultured in vitro. In the third experiment, development competence of oocytes with a positive or negative signal to PLM was analyzed after in vitro fertilization. Finally, oocytes (n = 54) were enucleated using PLM as a tool to remove the meiotic spindle. A positive PLM signal was detected in 98.2 % of the oocytes, which strongly correlated (r = 1; p < 0.0001) with the presence of microtubule-polymerized protein as confirmed by immunostaining. Oocytes exposed to PLM did not differ significantly from controls on cleavage, total blastocyst, expanded blastocyst rates and total cell numbers. The percentage of oocytes at the MII stage and blastocyst formation rate in the negative PLM group significantly differed from control and PLM positive groups. Overall efficiency of spindle removal using the PLM-Oosight system was 92.6%. These results suggest that polarized light microscopy is an efficient system to detect microtubule-polymerized protein in in vitro-matured porcine oocytes and does not exert detrimental effects on porcine oocyte developmental competence. Selecting oocytes by the presence of a PLM signal provides limited improvement on IVF results. Finally, PLM appears as an efficient method to enucleate porcine oocytes.  相似文献   

13.
The meiotic segregants of male mice heterozygous for Rb(6.16)24Lub and Rb(16.17)7Bnr were viewed, for the first time, at first cleavage metaphase. Chromosomes were analyzed after G-banding, C-banding, and karyotyping. To study sperm aging effects, chromosomes of 202 one-cell zygotes derived from males mating at intervals of approximately 3,14, and 21 days were examined. At least 89.6% of sperm-derived complements were products of 2:2 segregation; at most, a possible 6.4% were 3:1 segregants. The six expected types of 2:2 segregants, both balanced and unbalanced, were equifrequent in the total zygote population derived from sperm of all ages. When the data were analyzed according to mating frequency, the 3-day sperm population considered most likely to be fresh showed a deficiency of the segregant nullisomic for chromosome 6 and disomic for chromosome 17, when compared with the reciprocal segregant (P < 0.025) as well as to all other 2:2 segregants (P < 0.05). However, these sperm fertilized in greater numbers (P < 0.01) than their reciprocal segregant (disomic for 6 and nullisomic for 17) in the 14-day sperm population. While sperm with chromosomal abnormalities are capable of fertilization, the competence of segregants nullisomic for 6 and disomic for 17 apparently depends on the prior storage period in the male. Further, the results suggest that the effect of aneuploidy on sperm function is dependent on the specific chromosome(s) involved.  相似文献   

14.
To correlate the chromosomal constitution of meiotic cells with possible disturbances in spindle function and the etiology of nondisjunction, we examined the spindle apparatus and chromosome behavior in maturing oocytes and analyzed the chromosomal constitution of metaphase II-arrested oocytes of CD/Cremona mice, which are heterozygous for a large number of Robertsonian translocation chromosomes (18 heterobrachial metacentrics in addition to two acrocentric chromosomes 19 and two X chromosomes). Spreading of oocytes during prometaphase 1 revealed that nearly all oocytes of the heterozygotes contained one large ring multivalent, apart from the bivalents of the two acrocentric chromosomes 19 and the X chromosomes, indicating that proper pairing and crossing-over between the homologous chromosome arms of all heterobrachial chromosomes took place during prophase. A large proportion of in vitro-matured oocytes arrested in metaphase II exhibited numerical chromosome aberrations (26.5% hyperploids, 40.8% hypoploids, and 6.1% diploids). In addition, some of the oocytes with euploid chromosome numbers (26.5% of the total examined) appeared to be nullisomic for one chromosome and disomic for another chromosome, so that aneuploidy levels may even be higher than expected on the basis of chromosome counts alone. Although oocytes of the complex heterozygous mice seemed able initially to form a bipolar spindle during first prometaphase, metaphase I spindles were frequently asymmetrical. Chromosomes in the multivalent did not align properly at the equator, centromeres of neighboring chromosomes in the multivalent remained maloriented, and pronounced lagging of chromosomes was observed at telophase I in oocytes obtained from the Robertsonian translocation heterozygotes. Therefore, disturbance in spindle structure and chromosome behavior appear to correlate with the chromosomal constitution in these oocytes and, ultimately, with failures in proper chromosome separation. In particular, reorientation appears to be a rare event, and malorientation of chromosomes may remain uncorrected throughout prometaphase, as we could not find many typical metaphase I stages in heterozygotes. This, in turn, could be the basis for malsegregation at anaphase and may ultimately induce a high rate of nondisjunction and aneuploidy in the oocytes of CD/Cremona mice, leading to total sterility in heterozygous females.  相似文献   

15.
With increasing availability of drugs for impotence and advanced reproductive technologies for the treatment of subfertility, more men are fathering children at advanced ages. We conducted a study of the chromosomal content of sperm of healthy men aged 24-57 years to (a) determine whether father's age was associated with increasing frequencies of aneuploid sperm including XY, disomy X, disomy Y, disomy 21, and sperm diploidy, and (b) examine the association between the frequencies of disomy 21 and sex-chromosomal aneuploidies. The study group consisted of 38 fathers of boys with Klinefelter syndrome (47, XXY) recruited nationwide, and sperm aneuploidy was assessed using multicolor X-Y-21 sperm FISH ( approximately 10,000 sperm per donor). Paternal age was significantly correlated with the sex ratio of sperm (Y/X; P=.006) and with the frequency of XY sperm (P=.02), with a clear trend with age by decades (P<.006). Compared with fathers in their 20s (who had an average frequency of 7.5 XY sperm per 10,000), the frequencies of XY sperm were 10% higher among fathers in their 30s, 31% higher among those in their 40s, and 160% higher among those in their 50s (95% CI 69%-300%). However, there was no evidence for age effects on frequencies of sperm carrying nullisomy sex; disomies X, Y, or 21; or meiosis I or II diploidies. The frequencies of disomy 21 sperm were significantly associated with sex-chromosomal aneuploidy (P=.04)-in particular, with disomy X (P=.004), but disomy 21 sperm did not preferentially carry either sex chromosome. These findings suggest that older fathers produce higher frequencies of XY sperm, which may place them at higher risk of fathering boys with Klinefelter syndrome, and that age effects on sperm aneuploidy are chromosome specific.  相似文献   

16.
In 1964, Gustavsson and Rockborn first described the 1/29 Robertsonian translocation in cattle. Since then, several studies have demonstrated the negative effect of this particular chromosomal rearrangement on the fertility of carrier animals. During the last decade, meiotic segregation patterns have been studied on human males carrying balanced translocations using FISH on decondensed sperm nuclei. In this work, we have applied the 'Sperm-FISH' technique to determine the chromosomal content of spermatozoa from two bulls heterozygous for the 1/29 translocation and one normal bull (control). 5425 and 2702 sperm nuclei were scored, respectively, for the two heterozygous bulls, using whole chromosome painting probes of chromosomes 1 and 29. Very similar proportions of normal (or balanced) spermatozoa resulting from alternate segregation were observed (97.42% and 96.78%). For both heterozygous bulls, the proportions of nullisomic and disomic spermatozoa did not follow the theoretical 1:1 ratio. Indeed, proportions of nullisomic spermatozoa were higher than those of disomic sperma tozoa (1.40% vs 0.09% (bull 1) and 1.29% vs 0.15% (bull 2) for BTA1, and 0.65% vs 0.40% (bull 1) and 1.11% vs 0.63% (bull 2) for BTA29). The average frequencies of disomic and diploid spermatozoa in the normal bull were 0.11% and 0.05%, respectively.  相似文献   

17.
Phase Transition Temperature and Chilling Sensitivity of Bovine Oocytes   总被引:1,自引:0,他引:1  
A limiting factor for achieving cryopreservation of oocytes is direct chilling injury (DCI), which occurs during cooling. DCI, or cold shock, is defined as an irreversible damage expressed shortly after exposure to low, but not freezing, temperatures. The primary target of DCI is thought to be the plasma membrane. Recently, an association between DCI in sperm and the thermotropic phase transition of their membrane lipids was demonstrated. In the present study, we examined the phase transition of the membrane lipids of immature andin vitro-matured bovine oocytes during cooling, using Fourier transform infrared spectroscopy (FTIR). The phase transition of the membrane lipids of oocytes at the germinal vesicle (GV) stage occurred between 13 and 20°C, while a very broad phase transition, which centered around 10°C, was observed for mature oocytes (MII) stage. Thermotropic phase transitions were demonstrated to be related to the temperature at which DCI affected the integrity of the oocyte membranes. When immature oocytes were cooled to 13°C, fewer oocytes (40%) retained their membrane integrity than after exposure to 4°C (51%) or holding them at 38°C (78%), (as determined by the Fluorescein Diacetate-FDA test). This finding might suggest that holding immature oocytes at the phase transition temperature is more damaging to their membranes than exposure to lower temperatures. By contrast, no significant differences in membrane integrity were observed whenin vitro-matured oocytes were cooled to the same temperatures. Subsequently, GV oocytes were cooled to 4°C, and 26% underwent maturation and 19% underwent fertilizationin vitro. In vitro-matured oocytes that were cooled to 4°C displayed a slightly decreased rate of fertilization; the overall fertilization was 60% with 24% polyspermy, rather than the 76% fertilization rate with 12% polyspermy obtained with those not subjected to cooling. The high rate of polyspermy indicates that a site(s) other than the plasma membrane is affected during cooling of bovine oocytes. Nucleated bovine GV oocytes were electrofused within vitro-matured and enucleated oocytes, and then cooled to 4°C. Evaluation of the membrane integrity of the fused oocytes showed that these oocytes are chilling resistant, which strongly suggests that alteration of the membrane composition of an oocyte can change the cell's susceptibility to low temperatures. This finding led to an improvement in the survival of oocytes after cryopreservation.  相似文献   

18.
用FISH技术研究人类体外未受精卵的21号染色体非整倍体   总被引:3,自引:0,他引:3  
采用荧光原位杂交技术,选用人类21号染色体端粒探针(21qter),检测人类体外未受精卵的21号染色体非整倍体发生率,并比较非整倍体率与25-30岁和31-35岁这两个女性年龄组、IVF指征、超排方案之间的关系,在54个未受精卵中,正常21号单体30枚,二体16枚,三体4枚,缺体4枚,非整倍体率为44.4%(24/54);25-30岁和31-35岁这两个年龄组、IVF指征、超排方案的患者的21号染色体非整倍体率之间的差异无显著性,卵母细胞21号染色体的非整倍性是造成体外受精失败的重要原因之一。  相似文献   

19.
The main goal of this study was to develop a comparative multi-colour Zoo-FISH on domestic ruminants metaphases using a combination of whole chromosome and sub-chromosomal painting probes obtained from the river buffalo species (Bubalus bubalis, 2n = 50,XY). A total of 13 DNA probes were obtained through chromosome microdissection and DOP-PCR amplification, labelled with two fluorochromes and sequentially hybridized on river buffalo, cattle (Bos taurus, 2n = 60,XY), sheep (Ovis aries, 2n = 54,XY) and goat (Capra hircus, 2n = 60,XY) metaphases. The same set of paintings were then hybridized on bovine secondary oocytes to test their potential use for aneuploidy detection during in vitro maturation. FISH showed excellent specificity on metaphases and interphase nuclei of all the investigated species. Eight pairs of chromosomes were simultaneously identified in buffalo, whereas the same set of probes covered 13 out 30 chromosome pairs in the bovine and goat karyotypes and 40% of the sheep karyotype (11 out of 27 chromosome pairs). This result allowed development of the first comparative M-FISH karyotype within the domestic ruminants. The molecular resolution of complex karyotypes by FISH is particularly useful for the small chromosomes, whose similarity in the banding patterns makes their identification very difficult. The M-FISH karyotype also represents a practical tool for structural and numerical chromosome abnormalities diagnosis. In this regard, the successful hybridization on bovine secondary oocytes confirmed the potential use of this set of probes for the simultaneous identification on the same germ cell of 12 chromosome aneuploidies. This is a fundamental result for monitoring the reproductive health of the domestic animals in relation to management errors and/or environmental hazards.  相似文献   

20.
The present study aimed to investigate the effect of vitrification on the expression of fertilization related genes (CD9 and CD81) and DNA methyl transferases (DNMT1 and DNMT3b) in bovine germinal vesicle (GV) oocytes and their resulting metaphase Ⅱ (MⅡ) stages after in vitro maturation culture. GV oocytes were vitrified using the open-pulled straw method; after warming, they were cultured in vitro. The vitrified-warmed GV oocytes and more developed MII oocytes were used to calculate the maturation rates (first polar body extrusion under a stereomicroscopy), and to detect mRNA expression (qRT-PCR). Fresh GV oocytes and their in vitro-derived MII oocytes served as controls. The results showed that both the maturation rate (54.23% vs. 42.93%) and the relative abundance of CD9 mRNA decreased significantly (p < 0.05) in bovine GV oocytes after vitrification, but the expression of CD81 and DNMT3b increased significantly. After in vitro maturation of vitrified GV oocytes, the resulting MII oocytes showed lower (p < 0.05) mRNA expression of genes (CD9, CD81, DNMT1 and DNMT3b) when compared to the control group (MII oocytes). Altogether, vitrification decreased the maturation rate of bovine GV oocytes and changed the expression of fertilization related genes and DNA methyl transferases during in vitro maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号