首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
This study was designed to evaluate the reproductive performance of lactating dairy cows (Holstein Friesian) after the injection of PGF analogue on Day 15 postpartum, and GnRH analogue on Day 23 after artificial insemination (AI) with Presynch (two injections of PGF, administered 14 days apart starting at 30–35 days postpartum) + Ovsynch-based (GnRH–7 days–PGF–2 days–GnRH–16–20 hours–timed artificial insemination) treatments, during the warm and cold periods of the year. All the cows (n = 313) were assigned to one of the four groups including: M1 (n = 72) in which the cows were treated with PGF on Day 15 postpartum + Presynch-Ovsynch + GnRH on Day 23 post-AI; M2 (n = 41) in which the cows received PGF on Day 15 postpartum + Presynch-Ovsynch; M3 (n = 100) including the cows that got Presynch-Ovsynch; and control group (n = 100) including the cows that were not treated and were inseminated at natural estrus. Pregnancy diagnosis was performed 28 to 35 days post-insemination by means of ultrasound. The results showed that treatment with PGF on Day 15 postpartum significantly decreased the days to conception and the number of services per conception (P < 0.01) and it also improved the first service conception rate (P < 0.1) only in cows that were treated with M2 protocol. Whereas, the days to first service was not influenced by the treatment of PGF on Day 15 postpartum (P > 0.05). In contrast, administration of GnRH on Day 23 post-AI increased the days to conception and the number of service per conception (P < 0.01) and tended to decrease the first service conception rate (P < 0.1) in cows that were treated with M1 compared with M2 protocol. Therefore, it was concluded that Presynch-Ovsynch protocol could be more reproductive and beneficial when a single treatment with PGF was administered at 15 days postpartum (15 days after the PGF, Presynch-Ovsynch protocol was initiated). Interestingly, the administration of a GnRH agonist on Day 23 post-AI not only did not improve the reproductive performance of the cows receiving first postpartum timed artificial insemination after Presynch-Ovsynch protocol but also reduced that.  相似文献   

2.
The objectives were (1) to determine the effects of gonadorelin hydrochloride (GnRH) injection at controlled internal drug release (CIDR) insertion on Day 0 and the number of PGF2α doses at CIDR removal on Day 5 in a 5-day CO-Synch + CIDR program on pregnancy rate (PR) to artificial insemination (AI) in heifers; (2) to examine how the effect of systemic concentration of progesterone and size of follicles influenced treatment outcome. Angus cross beef heifers (n = 1018) at eight locations and Holstein dairy heifers (n = 1137) at 15 locations were included in this study. On Day 0, heifers were body condition scored (BCS), and received a CIDR. Within farms, heifers were randomly divided into two groups: at the time of CIDR insertion, the GnRH group received 100 μg of GnRH and No-GnRH group received none. On Day 5, all heifers received 25 mg of PGF2α at the time of CIDR insert removal. The GnRH and No-GnRH groups were further divided into 1PGF and 2PGF groups. The heifers in 2PGF group received a second dose of PGF2α 6 hours after the administration of the first dose. Beef heifers underwent AI at 56 hours and dairy heifers at 72 hours after CIDR removal and received 100 μg of GnRH at the time of AI. Pregnancy was determined approximately at 35 and/or 70 days after AI. Controlling for herd effect (P < 0.06), the treatments had significant effect on AI pregnancy in beef heifers (P = 0.03). The AI-PRs were 50.3%, 50.2%, 59.7%, and 58.3% for No-GnRH + PGF + GnRH, No-GnRH + 2PGF + GnRH, GnRH + PGF + GnRH, and GnRH + 2PGF + GnRH groups, respectively. The AI-PRs were ranged from 50% to 62.4% between herds. Controlling for herd effects (P < 0.01) and for BCS (P < 0.05), the AI pregnancy was not different among the treatment groups in dairy heifers (P > 0.05). The AI-PRs were 51.2%, 51.9%, 53.9%, and 54.5% for No-GnRH + PGF + GnRH, No-GnRH + 2PGF + GnRH, GnRH + PGF + GnRH, and GnRH + 2PGF + GnRH groups, respectively. The AI-PR varied among locations from 48.3% to 75.0%. The AI-PR was 43.5%, 50.4%, and 64.2% for 2.5 or less, 2.75 to 3.5, and greater than 3.5 BCS categories. Numerically higher AI-PRs were observed in beef and dairy heifers that exhibited high progesterone concentrations at the time of CIDR insertion (>1 ng/mL, with a CL). In addition, numerically higher AI-PRs were also observed in heifers receiving CIDR + GnRH with both high and low progesterone concentration (<1 ng/mL) initially compared with heifers receiving a CIDR only with low progesterone. In dairy heifers, there were no differences in the pregnancy loss between 35 and 70 days post-AI among the treatment groups (P > 0.1). In conclusion, GnRH administration at the time of CIDR insertion is advantageous in beef heifers, but not in dairy heifers, to improve AI-PR in the 5-day CIDR + CO-Synch protocol. In addition, in this study, both dairy heifers that received either one or two PGF2α doses at CIDR removal resulted in similar AI-PR in this study regardless of whether they received GnRH at CIDR insertion.  相似文献   

3.

Background  

Delayed uterine involution has negative effects on the fertility of cows; use of prostaglandin F2alpha alone as a single treatment has not been shown to consistently improve fertility. Combined administration of PGF2alpha and PGE2 increased uterine pressure in healthy cows. We hypothesized, that the combination of both prostaglandins would accelerate uterine involution and have, therefore, a positive effect on fertility variables. In commercial dairy farming, the benefit of a single post partum combined prostaglandin treatment should be demonstrated.  相似文献   

4.
In female mammals, including humans, deviations from normal androgenic or estrogenic exposure during fetal development are detrimental to subsequent adult ovarian function. Androgen deficiency, without accompanying estrogen deficit, has little apparent impact on ovarian development. Fetal estrogen deficiency, on the other hand, results in impaired oocyte and follicle development, immature and abnormal adult ovaries, and excessive ovarian stimulation from endogenous gonadotropins ultimately generating hemorrhagic follicles. Complete estrogen deficiency lasting into adulthood results in partial ovarian masculinization. Fetal androgen excess, on the other hand, mediated either by direct androgen action or following androgen aromatization to estrogen, reprograms ovarian development and reproductive neuroendocrinology to mimic that found in women with polycystic ovary syndrome: enlarged, polyfollicular, hyperandrogenic, anovulatory ovaries with accompanying LH hypersecretion. Oocyte developmental competence is also compromised. Insulin is implicated in the mechanism of both anovulation and deficient oocyte development. Fetal estrogen excess induces somewhat similar disruption of adult ovarian function to fetal androgen excess. Understanding the quality of the fetal female sex steroid hormone environment is thus becoming increasingly important in improving our knowledge of mechanisms underlying a variety of female reproductive pathologies.  相似文献   

5.
The early corpus luteum (CL) (before Day 6) does not regress after a single PGF treatment. We hypothesized that increasing PGF dose or number of treatments would allow regression of the early CL (Day 5). Nonlactating Holstein cows (N = 22) were synchronized using the Ovsynch protocol. On Day 5 (Day 0 = second GnRH treatment), cows were assigned to: (1) control (N = 5): no further treatment; (2) 1PGF (N = 6): one dose of 25 mg PGF; (3) 2PGF (N = 5): two doses of 25 mg PGF (50 mg) given 8 hours apart (second PGF on Day 5 at the same time as the other PGF treatments); (4) DPGF (N = 6): double dose of 25 mg PGF (50 mg) given on Day 5. Blood samples were collected to monitor progesterone (P4) profiles in two periods. In the first period (0 to 24 hours), there were effects of treatment (P = 0.01), time (P < 0.01), and an interaction of treatment and time (P = 0.02). Group 1PGF versus control was different only at 12 hours (P = 0.02). Cows treated with DPGF were different than control at 4 hours (P = 0.04), 12 hours (P < 0.01), and 24 hours (P < 0.01). Only cows treated with 2PGF had lower P4 than control during the entire period and low P4 (0.37 ± 0.17 ng/mL) at 24 hours, usually indicative of luteolysis. In the second period (Day 5 to 15 of the cycle), there were effects of treatment (P < 0.01), time (P < 0.01), and interaction of treatment and time (P = 0.002). Group 1PGF was not different than control from Day 5 to 13 and P4 was greater than control on Day 14 (P = 0.01) and 15 (P < 0.01). Circulating P4 in DPGF cows was lower than control from Day 7 (P = 0.05) through 12 (P < 0.01). Likewise, there were differences between control and 2PGF from Day 7 to 13, but not on Day 14 and 15. On Day 15, all PGF-treated groups had circulating P4 consistent with an active CL. Ultrasound evaluation confirmed that no CL from any group completely regressed during the experiment and no new ovulations occurred to account for functional CL later in cycle. In summary, a double dose of PGF (twice on Day 5 or 8 hours apart) can dramatically decrease P4, consistent with classical definitions of luteolysis; however, these CL recover and become fully functional. Thus, the Day 5 CL of mature Holstein cows do not regress even to two doses of PGF.  相似文献   

6.
5β,7α-Dihydroxy-11-oxotetranor-prostane-1,16-dioic acid has been identified by gas chromatography-mass spectrometry as a urinary metabolite of [9β-3H]prostaglandin F in the rat. This tetranor prostaglandin F derivative, which is the 5β epimer of the major urinary metabolite of prostaglandin F, accounted for at least 2% of the total dose. Absence from the metabolite of tritium label at the C-5 position indicated the existence of a minor, previously unknown metabolic pathway by which prostaglandin Fα derivatives may be converted by oxido-reduction into prostaglandins of Fβ stereochemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号