首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S. Tsai 《Theriogenology》2009,71(8):1226-1233
Cryopreservation of germplasm of aquatic species offers many benefits to the fields of aquaculture, conservation and biomedicine. Although successful fish sperm cryopreservation has been achieved with many species, there has been no report of successful cryopreservation of fish embryos and late stage oocytes which are large, chilling sensitive and have low membrane permeability. In the present study, cryopreservation of early stage zebrafish ovarian follicles was studied for the first time using controlled slow freezing. The effect of cryoprotectant, freezing medium, cooling rate, method for cryoprotectant removal, post-thaw incubation time and ovarian follicle developmental stage were investigated. Stages I and II ovarian follicles were frozen in 4 M methanol and 3 M DMSO in either L-15 medium or KCl buffer. Ovarian follicle viability was assessed using trypan blue, FDA + PI staining and ADP/ATP assay. The results showed that KCl buffer was more beneficial than L-15 medium, methanol was more effective than DMSO, optimum cooling rates were 2-4 °C/min, stepwise removal of cryoprotectant improved ovarian follicle viability significantly and stage I ovarian follicles were more sensitive to freezing. The results also showed that FDA + PI staining and ADP/ATP assay were more sensitive than TB staining. The highest follicle viabilities after post-thaw incubation for 2 h obtained with FDA + PI staining were 50.7 ± 4.0% although ADP/ATP ratios of the cryopreserved follicles were significantly increased indicating increased cell damage. Studies are currently being carried out on in vitro maturation of these cryopreserved ovarian follicles.  相似文献   

2.
Guan M  Rawson DM  Zhang T 《Cryobiology》2008,56(3):204-208
Cryopreservation of gametes provides a promising method to preserve fish genetic material. Previously we reported some preliminary results on cryopreservation of zebrafish (Danio rerio) oocytes using controlled slow cooling and determined the optimum cryoprotective medium and cooling rate for stage III zebrafish oocytes. In the present study, the effects of two different cryopreservation media, cryoprotectant removal method, final sample freezing temperature before LN2 plunge, warming rate, and the post-thaw incubation time on oocyte viability were investigated. Commonly used cryoprotectant methanol and glucose were used in this study. Stage III zebrafish oocytes were frozen in standard culture medium 50% L-15 or in a sodium-free KCl buffer medium. Oocyte viability was assessed using trypan blue staining and ATP assay. The viability of oocytes frozen in KCl buffer was significantly higher than oocytes frozen in L-15 medium. The results also showed that fast thawing and stepwise removal of cryoprotectant improved oocyte survival significantly, with highest viability of 88.0 ± 1.7% being obtained immediately after rapid thawing when assessed by trypan blue staining. However, after 2 h incubation at 22 °C the viability of freeze-thawed oocytes decreased to 29.5 ± 5.1%. Results also showed that the ATP level in oocytes decreased significantly immediately after thawing. All oocytes became translucent after freezing which complicated the use of GVBD test (in vitro maturation of oocytes followed by observation of germinal vesicle breakdown which results in oocytes becoming translucent). New oocyte viability assessment methods are urgently needed.  相似文献   

3.
S. Tsai  F.W. Kuo  C. Lin 《Theriogenology》2010,73(5):605-611
The objective was to examine the effects of cryoprotectants on oocytes of hard corals (Echinopora spp.) to obtain basic knowledge for cryopreservation procedures. Oocytes were exposed to various concentrations of cryoprotectants (0.25 to 5.0 M) for 20 min at room temperature (25 °C). Two tests were used to assess ovarian follicle viability: fluorescein diacetate (FDA) + propidium iodide (PI) staining, and adenosine triphosphate (ATP) assay. Both FDA + PI staining and ATP assay indicated that cryoprotectant toxicity to oocytes increased in the order methanol, dimethyl sulfoxide (DMSO), propylene glycol (PG), and ethylene glycol (EG). The no observed effect concentrations for Echinopora spp. oocytes were 1.0, 0.5, 0.25, and 0.25 M for methanol, DMSO, PG, and EG, respectively, when assessed with FDA + PI. The ATP assay was more sensitive than FDA + PI staining (P < 0.05). Oocyte viability after 1.0 M methanol, DMSO, EG, or PG treatment for 20 min at room temperature assessed with FDA + PI tests and ATP assay were 88.9 ± 3.1% and 72.2 ± 4.4%, 66.2 ± 5.0% and 23.2 ± 4.9%, 58.9 ± 5.4% and 1.1 ± 0.7%, and 49.1 ± 5.1% and 0.9 ± 0.5%, respectively. We inferred that the ATP assay was a valuable measure of cellular injury after cryoprotectant incubation. The results of this study provided a basis for development of protocols to cryopreserve coral oocytes.  相似文献   

4.
S. Tsai  D.M. Rawson  T. Zhang   《Cryobiology》2009,58(3):279-286
Cryopreservation of fish gametes is of great importance in aquaculture, conservation and human genomic research. The creation of gamete cryobanks allows the storage of genetic material of targeted species for almost unlimited time periods. Cryopreservation has been successfully applied to fish sperm of many species, but there has been no success with fish embryos and oocytes. One of the obstacles to fish oocyte cryopreservation is their high chilling sensitivity and especially at subzero temperatures. Although studies on late stage oocyte cryopreservation has been carried out, there have been no reported studies on cryopreservation of early stage ovarian follicles. The aim of this study is to investigate the chilling sensitivity of early stage zebrafish ovarian follicles before developing protocols for their cryopreservation. Experiments were conducted with stage I (primary growth), stage II (cortical alveolus) and stage III (vetillogenesis) ovarian follicles, which were chilled in KCl buffer and L-15 medium for up to 144 h at −1 °C in a low temperature bath. Ovarian follicles were also exposed to 2 M methanol or 2 M DMSO in L-15 medium for up to 168 h at −1 and −5 °C, respectively. Control follicles were kept at 28 °C. Ovarian follicle viability was assessed using trypan blue staining. The results showed that stage I and II ovarian follicles are less sensitive to chilling than stage III follicles. These results were also confirmed following in vitro maturation of the chilled ovarian follicles. The results also showed that L-15 medium is more beneficial than KCl buffer for ovarian follicles at all stages. The presence of both methanol and DMSO reduced chilling sensitivity of ovarian follicles at all stages with methanol being the most effective. The study indicated that stage I and II follicles are less sensitive to chilling than stage III follicles, and that early stage zebrafish ovarian follicles may be better candidates for cryopreservation.  相似文献   

5.
Stoops MA  O'Brien JK  Roth TL 《Theriogenology》2011,76(7):1258-1265
Mortality rates are high among captive African black rhinoceroses (Diceros bicornis), due to increased susceptibility to disease. The ability to rescue genetic material from individuals that die unexpectedly represents a practical approach to assist ex situ conservation efforts. The objectives of the present study were to attempt postmortem oocyte recovery from ovaries of African black rhinoceroses (N = 6) and to test the efficacy of equine protocols for rhinoceros oocyte IVM and IVF using cryopreserved rhinoceros sperm. The interval from ovary removal to oocyte recovery was 25.3 ± 13.9 h (mean ± SD). Ovaries were transported at 4 °C or 22 °C and effects of temperature on postmortem oocyte competence was evaluated. Numbers of oocytes collected per female averaged 15.8 ± 6.9. In total, 95 oocytes were recovered. Of these, 85 were inseminated using homologous sperm and 10 were inseminated using heterologous sperm. Overall, substantial numbers of viable oocytes were retrieved from African black rhinoceros ovaries 1 to 2 days postmortem from ovaries stored at ambient temperature. A proportion of these oocytes matured and underwent penetration and fertilization by heterologous or homologous frozen-thawed rhinoceros sperm. The reproductive competence of postmortem oocytes was further demonstrated by development of a single two-cell embryo. Despite the need for further refinements, gamete rescue in the rhinoceros has promise for producing rhinoceros embryos, as well as testing sperm functions in vitro.  相似文献   

6.
In vitro techniques for production of bovine embryos including in vitro oocyte maturation (IVM), fertilization (IVF) and culture (IVC) are becoming increasingly employed for a variety of research purposes. However, decreased viability following cryopreservation by conventional methods has limited commercial applications of these technologies. A practical alternative to facilitate transport would be to arrest development by chilling without freezing. The present research was undertaken to evaluate chilling sensitivity of IVM-IVF embryos at different stages of development, and to determine possible beneficial effects of cysteamine treatment during IVM, previously shown to enhance embryo development in culture, on survival following chilling at different stages. Embryos produced by standard IVM-IVF-IVC methods were chilled to 0 degrees C for 30 min at 2-cell (30-34 h post-insemination, hpi), 8-cell (48-52 hpi) or blastocyst (166-170 hpi) stages. Viability after chilling was assessed by IVC with development to expanded blastocyst stage determined on days 7 and 8 post-insemination (pi) and hatching blastocyst stage determined on days 9 and 10 pi. Control embryos at the same stages were handled similarly, but without chilling, and development during culture similarly assessed. The effect of cysteamine supplementation (100 microM) of the IVM medium was determined for both chilled and non-chilled (control) embryos. Cysteamine supplementation during IVM had no significant effect on oocyte maturation or fertilization, but increased the proportions of oocytes developing to blastocyst stage by day 7 (13.7+/-0.9% versus 7.2+/-0.9%; P<0.05), total blastocysts (20.5+/-0.9% versus 15.3+/-1.3%; P<0.05), and hatching blastocysts (16.8+/-1.6% versus 12.0+/-1.5%; P<0.05). The greater survival in terms of hatching (78.6+/-7.0) following chilling of blastocysts produced by IVM-IVF of oocytes matured in media supplemented with cysteamine offers promise for applications requiring short-term storage to facilitate transport of in vitro produced bovine embryos.  相似文献   

7.
As a step to develop a cryopreservation method for zebrafish oocytes, we investigated the cryobiological properties of immature oocytes at stage III by examining their ability to mature and to develop into hatching embryos after fertilization. When oocytes were chilled at −5 °C for 30 min, the maturation rate decreased, but the rates of fertilization and hatching were not significantly different from those of controls. When oocytes were exposed to hypotonic solutions for 60 min at 25 °C, the rates of maturation, fertilization, and hatching decreased in a solution with 0.16 Osm/kg or below. When oocytes were exposed to hypertonic solutions (containing sucrose) at 25 °C for 30 min, the maturation rate decreased in solution with 0.51 Osm/kg, whereas the hatching rate decreased with lower osmolality (0.40 Osm/kg). In an experiment on the toxicity of cryoprotectants (∼10%, at 25 °C), it was found that glycerol and ethylene glycol were toxic both by the assessment of maturation and hatching. Propylene glycol, DMSO and methanol were less toxic by the assessment of maturation, but were found to be toxic by the assessment of hatching. Methanol was the least toxic, but it was less effective to make a solution vitrify than propylene glycol. Therefore, a portion of methanol was replaced with propylene glycol. The replacement increased the toxicity, but could be effective to reduce chilling injury at −5 °C. These results clarified the sensitivity of immature oocytes to various cryobiological properties accurately, which will be useful for realizing cryopreservation of zebrafish oocytes.  相似文献   

8.
This study investigated enzymatic activity of cathepsins and the membrane integrity of zebrafish (Danio rerio) oocytes after freezing to −196 °C using controlled slow cooling. Stage III oocytes (>0.5 mm), obtained through dissection of anaesthetised female fish and desegregation of ovarian cumulus, were exposed to 2M methanol or 2 M DMSO (both prepared in Hank’s medium) for 30 min at 22 °C before being loaded into 0.5 ml plastic straws and placed into a programmable cooler. After controlled slow freezing, samples were plunged into liquid nitrogen (LN) and held for at least 10 min, and thawed by immersing straws into a 27 °C water bath for 10 s. Thawed oocytes were washed twice in Hank’s medium. Cathepsin activity and membrane integrity of oocytes were assessed both after cryoprotectant treatment at 22 °C and after freezing in LN. Cathepsin B and L colorimetric analyses were performed using substrates Z-Arg-ArgNNap and Z-Phe-Arg-4 MβNA-HCl, respectively, and 2-naphthylamine and 4-methoxy-2-naphthylamine were used as standards. Cathepsin D activity was performed by analysing the level of hydrolytic action on haemoglobin. Oocytes membrane integrity was assessed using 0.2% Trypan blue staining for 5 min. Analysis of cathepsin activities showed that whilst the activity of cathepsin B and D was not affected by 2 M DMSO treatment, their activity was lowered when treated with 2M methanol. Following freezing to −196 °C, the activity of all cathepsins (B, D and L) was significantly decreased in both 2 M DMSO and 2 M methanol. Trypan blue staining showed that 63.0 ± 11.3% and 72.7 ± 5.2% oocytes membrane stayed intact after DMSO and methanol treatment for 30 min at 22 °C, respectively, whilst 14.9 ± 2.6% and 1.4 ± 0.8% stayed intact after freezing in DMSO and methanol to −196 °C. The results indicate that cryoprotectant treatment and freezing modified the activities of lysosomal enzymes involved in oocyte maturation and yolk mobilisation.  相似文献   

9.
C Lin  LH Wang  TY Fan  FW Kuo 《PloS one》2012,7(7):e38689
Our previous studies have suggested that chilling sensitivity of coral oocytes may relate to their relatively high lipid intracellular content and lipid composition. The distribution of lipids during the oocyte development was determined here for the first time in two gorgonian species (Junceella juncea and Junceella fragilis). The main lipid classes in the two gorgonian oocytes were total lipid, wax ester, triacylglycerol, total fatty acid, phosphatidylethanolamine and phosphatidylcholine. The results indicated that early stage oocytes of J. juncea and J. fragilis were found to have increased lipid content than late stage oocytes. The content of wax ester was significantly higher in the early stage oocytes of two gorgonian corals (51.0±2.5 and 41.7±2.9 μg/mm(3)/oocyte) than those of late stage oocytes (24.0±1.4 and 30.4±1.2 μg/mm(3)/oocyte, respectively). A substantial amount of phosphatidylethanolamine and total fatty acid was detected at each stage of oocyte development in two gorgonian ranges from 107 to 42 μg/mm(3)/oocyte and 106 to 48 μg/mm(3)/oocyte, whilst low levels of phosphatidylcholine were found in two gorgonian oocytes. The levels of total lipid in the late stage oocytes of J. juncea were significantly higher than those of J. fragilis. The observed differences may partially be related to different habitat preferences as higher lipid levels in J. juncea, a deeper-water coral species exposed to lower temperature seawater, might relate to adjustments of cell membranes in order to increase membrane fluidity.  相似文献   

10.
Three experiments were designed to evaluate the effects of vitrification using Cryotop method on MII porcine oocyte viability, chromosomes configuration, meiotic spindle morphology and in vitro fertilization; to do this, in vitro matured oocytes were subjected to the cryoprotectant treatment excluding the plunging into liquid nitrogen, the whole vitrification/warming/rehydration procedure or no treatment (control). In experiment 1 viable oocytes were not reduced by either cryoprotectants or vitrification when they were evaluated immediately after warming and cryoprotectant dilution. However, after a 2 h incubation, the survival rate significantly decreased (P<0.05). In experiment 2 cryoprotectant exposure significantly (P<0.05) influenced spindle morphology even if chromosome organization did not vary, while vitrification significantly (P<0.05) increased oocytes with damaged spindles and chromosomes displaced from the metaphase plate. No significant improvements in these parameters were observed after 2 h of incubation but, on the contrary, the rate of oocytes with normal chromosome configuration was reduced. In experiment 3 significant differences among the three groups in the fertilization rate but not in the percentages of monospermy fertilization were recorded; in addition, exposure to cryoprotectants and vitrification significantly (P<0.05) increased degenerated oocyte rate. Overall, these findings confirm that porcine oocytes at MII stage are very sensitive to vitrification, which reduces the rate of viable oocytes and alters microtubule organization, thus impairing fertilization; in addition, incubation of oocytes for 2 h after devitrification seems to be detrimental rather than ameliorative. Further improvements of the current protocol will be necessary in order to optimize the Cryotop method for vitrifying pig matured oocytes.  相似文献   

11.
Arnon Rikin 《Planta》1991,185(3):407-414
The relationship between the degree of chilling resistance and phase shifting caused by low-temperature pulses was examined in two circadian rhythms in cotton (Gossypium hirsutum L. cv. Deltapine 50) seedlings grown under light-dark cycles of 1212 h at 33° C. The seedlings showed a circadian rhythm of chilling resistance and of cotyledon movement. A pulse of 19° C for 12 h during the chilling-sensitive phase (light period) caused a phase delay of 6 h, while a similar temperature pulse during the chilling-resistant phase (dark period) did not cause any phase shift. Exposure to 19° C, 85% RH (relative humidity) for 12 h during the dark period induced chilling resistance in the following otherwise chilling-sensitive light period. In this light period a 12-h 19° C pulse did not cause a phase shift of chilling resistance. Pulses of low temperatures (5–19° C) were more effective in causing phase delays in the rhythm of cotyledon movement when given during the chilling-sensitive phase than when given during the chilling-resistant phase. A 12-h pulse of 5° C, 100% RH during the light period caused a phase delay of cotyledon movement of 12 h. However, when that pulse had been preceded by a chill-acclimating exposure to 19° C, 85% RH for 12 h during the dark period the phase delay was shortened to 6 h. The correlation between higher degree of chilling resistance and the prevention or shortening of the phase delay caused by low temperatures indicates that the mechanism that increases chilling resistance directly or indirectly confers greater ability for prevention of phase shifting by low temperatures in circadian rhythms.Abbreviations CT circadian time - LDC light-dark cycle of 24 h - RH relative humidity  相似文献   

12.
Successful cryopreservation of oocytes of the rhesus monkey (Macaca mulatta) would facilitate the use of this valuable animal model in research on reproduction and development, while providing a stepping stone towards human oocyte cryopreservation and the conservation of endangered primate species. To enable rational design of cryopreservation techniques for rhesus monkey oocytes, we have determined their osmotic and permeability characteristics in the presence of dimethylsulfoxide (DMSO), ethylene glycol (EG), and propylene glycol (PROH), three widely used cryoprotectants. Using nonlinear regression to fit a membrane transport model to measurements of dynamic cell volume changes, we estimated the hydraulic conductivity (L(p)) and cryoprotectant permeability (P(s)) of mature and immature oocytes at 23.5 degrees C. Mature oocyte membranes were most permeable to PROH (P(s) = 0.56 +/- 0.05 microm/sec) and least permeable to DMSO (P(s) = 0.24 +/- 0.02 microm/sec); the permeability to EG was 0.34 +/- 0.07 microm/sec. In the absence of penetrating cryoprotectants, mature oocytes had L(p) = 0.55 +/- 0.05 microm/min/atm, whereas the hydraulic conductivity increased to 1.01 +/- 0.10, 0.61 +/- 0.07, or 0.86 +/- 0.06 microm/min/atm when mature oocytes were exposed to DMSO, EG, or PROH, respectively. The osmotically inactive volume (V(b)) in mature oocytes was 19.7 +/- 2.4% of the isotonic cell volume. The only statistically significant difference between mature and immature oocytes was a larger hydraulic conductivity in immature oocytes that were exposed to DMSO. The biophysical parameters measured in this study were used to demonstrate the design of cryoprotectant loading and dilution protocols by computer-aided optimization.  相似文献   

13.
14.
Isayeva A  Zhang T  Rawson DM 《Cryobiology》2004,49(2):114-122
Human activity in the last few decades has had a devastating effect on the diversity of fresh water and marine fish. Further decline of fish population may have serious economic and ecological consequences. One of the most promising techniques to preserve fish population is to cryopreserve their germ cells. Cryopreservation has been successfully applied to fish sperm of many species, but there has been no success with fish embryo cryopreservation and fish oocyte cryopreservation has never been studied systematically. The aim of this study is to investigate the chilling sensitivity of fish oocytes. Experiments were conducted with zebrafish stage III (vitellogenic) and stage V (mature) oocytes, which were chilled at 10, 5, 0, -5 or -10 degrees C for 15 or 60 min using a low temperature bath. Control oocytes were kept at room temperature at 22 degrees C. Oocyte viability was assessed using three different methods: trypan blue staining (TB), thiazolyl blue tetrazolium bromide (MTT) staining and observation of germinal vesicle breakdown (GVBD). The results showed that zebrafish oocyte are very sensitive to chilling and their survival decreased with decreasing temperature and increasing exposure time periods. Normalised survivals assessed with TB staining after exposure to 0, -5 or -10 degrees C for 15 or 60 min were 90.1+/-6.0, 77.8+/-7.6, and 71.2+/-9.3%, and 60.2+/-3.8, 49.6+/-6.7, and 30.4+/-3.0%, respectively. The study found that the sensitivity of viability assessment methods increase in the order of MTT < TB < GVBD. It was found that stage III oocytes were more susceptible to chilling than stage V oocytes, and that individual female had a significant influence (p < 0.0001) on oocyte chilling sensitivity. Zebrafish oocyte chilling sensitivity may also be one of the limiting factors for development of protocol of their cryopreservation.  相似文献   

15.
The presence of γ-glutamyl transpeptidase (GGT) in boar spermatozoa and the potential role of the GGT at sperm penetration were examined using in vitro matured porcine oocytes. In the first experiment, GGT of boar spermatozoa was examined using a histochemical stain. GGT was detected in the midpiece and the acrosome regions of boar spermatozoa. In the second experiment, porcine oocytes matured in vitro were injected with approximately 40 pl of 10 mM HEPES solution alone or HEPES containing 0.5 U/ml GGT or 1 mM guanosine-5′-0-(3′-thiotriphosphate) (GTP-γ-S; G-protein activator). When GGT was injected into oocytes, the incidence of oocytes activated (23.7 ± 1.4%) was not different (P > 0.05) from HEPES-injected controls (24.9 ± 1.3%) at 6 h after injection. Injected GTP-γ-S, however, activated 76.0 ± 5.3% of oocytes at 6 h after injection, but extrusion of the second polar body was very low (2.8 ± 4.8%). Total content of glutathione (GSH) and glutathione disulfide (GSSG) did not differ (P > 0.05) between GTP-γ-S injected oocytes (4.2 ± 0.7 pmol/oocyte) and noninjected oocytes (4.0 ± 0.1 pmol/oocyte) at 6 h after injection. However, the total content of GSH and GSSG was lower (P < 0.01) in GGT-injected oocytes (2.1 ± 0.2 pmol/oocyte) than HEPES-injected oocytes (3.4 ± 0.2 pmol/oocyte) at 6 h after injection. In the third experiment, in vitro matured porcine oocytes were injected with about 40 pl of 10 mM HEPES solution alone or HEPES containing 0.5 U/ml GGT and then inseminated. At 12 h after insemination, the incidence of male pronuclear formation was significantly lower in oocytes injected with GGT as compared with injected control oocytes. These results demonstrated that (1) GGT was present on the surface of spermatozoa, (2) total oocyte content of GSH and GSSG was decreased by microinjection of GGT but not by that of GTP-γ-S, and (3) male pronuclear formation was inhibited in GGT-injected oocytes. These results suggest that sperm GGT may be a limiting factor for male pronuclear formation in polyspermic oocytes. © 1996 Wiley-Liss, Inc.  相似文献   

16.
Indirect chilling injury commonly occurs during long-term exposure to low temperature in many organisms including insects. A previous study revealed increased rates of survival and reduced cold injury in flesh flies, Sarcophaga crassipalpis, that experienced an intermittent pulse of high temperature during a low-temperature regiment. We extended these studies by determining survival rates and ATP levels for flies that had undergone continuous long-term exposure at 0 °C versus those experiencing a 24-h warming pulse of either 15 or 20 °C. Survival among flies that had undergone a warming pulse was significantly greater than for flies that were maintained continuously at 0 °C. Furthermore, ATP levels of flies that had experienced a warming pulse were significantly higher than those of flies maintained at 0 °C. These data suggest that brief warming pulses during long-term cold storage allow regeneration of energy reserves that promote survival and reduce indirect chilling injury.  相似文献   

17.
Tian JH  Wu ZH  Liu L  Cai Y  Zeng SM  Zhu SE  Liu GS  Li Y  Wu CX 《Theriogenology》2006,66(2):439-448
The objective was to determine the effects of various methods of oocyte activation and sperm pretreatment on development of porcine embryos derived from in vitro-matured oocytes and intracytoplasmic sperm injection (ICSI). The second polar body was extruded in the majority (>78.4%) of in vitro-matured (IVM) oocytes 4h after electrical pulse activation. In embryos generated by ICSI and sham-ICSI, a combination of an electrical pulse, with various chemical activators 4 h later, improved (P < 0.05) blastocyst formation rate compared to activation only with a pulse. Treatment with 6-dimethylaminopurine (DMAP) after electrical activation significantly increased the oocyte activation rate. The effects of exposure of sperm to repeated freeze-thaw cycles (without cryoprotectant) on oocyte activation and the effects of sperm pre-incubated with dithiothreitol (DTT) or Triton X-100 on early embryo development were also examined. Blastocyst formation rates after ICSI did not differ between motile sperm and those rendered immotile by one-time freezing and thawing without cryoprotectant. However, sperm rendered immotile by three cycles of freezing/thawing without cryoprotectant had a significantly lower blastocyst formation rate. Although oocytes injected with sperm pre-incubated with Triton X-100 had a higher normal fertilization rate than those pre-incubated with DTT or one-time frozen/thawed sperm, rates of blastocyst formation and cell numbers were similar among the three groups. In conclusion, various methods of oocyte activation and sperm preparation significantly affected the developmental capacity of early porcine embryos derived from IVM and ICSI.  相似文献   

18.
Gorgonian corals are slowly declining due to human interaction and environmental impacts. Cryopreservation of gorgonian corals is an ex-situ method of conservation, ensuring future reproduction. The present study assessed the vitrification properties of cryoprotectant (CPT) mixtures using the cryotop, cryoloop and open pulled straw (OPS) cryopereservation methods prior to experimentation on gorgonian (Junceella juncea) oocytes. Investigations of the equilibration and vitrification solutions’ (ES and VS) effect on oocytes throughout different incubation periods were conducted. The cryotop method was found to be the most successful in ensuring vitrification. The most favourable VS was composed of propylene glycol (PG), ethylene glycol (EG) and methanol with concentrations of 3.5M, 1.5M and 2M respectively. Experiments were performed using the cryotop method to cryopreserve Junceella juncea oocytes using VS2, the solution had the least impact on oocytes at 5°C rather than at 26°C. The success of the vitrification procedures was determined by adenosine triphosphate (ATP) levels in cooled-thaw oocytes and the highest viability obtained from the present study was 76.6 ± 6.2%. This study provides information regarding gorgonian corals’ tolerance and viability throughout vitrification to further advance the vitrification protocol on whip corals.  相似文献   

19.
Lu F  Jiang J  Li N  Zhang S  Sun H  Luo C  Wei Y  Shi D 《Theriogenology》2011,76(5):967-974
The objective was to investigate the effect of recipient oocyte age and the interval from activation to fusion on developmental competence of buffalo nuclear transfer (NT) embryos. Buffalo oocytes matured in vitro for 22 h were enucleated by micromanipulation under the spindle view system, and a fetal fibroblast (pretreated with 0.1 μg/mL aphidicolin for 24 h, followed by culture for 48 h in 0.5% fetal bovine serum) was introduced into the enucleated oocyte, followed by electrofusion. Both oocytes and NT embryos were activated by exposure to 5 μM ionomycin for 5 min, followed by culture in 2 mM 6-dimethyl-aminopurine for 3 h. When oocytes matured in vitro for 28, 29, 30, 31, or 32 h were activated, more oocytes matured in vitro for 30 h developed into blastocysts in comparison with oocytes matured in vitro for 32 h (31.3 vs 19.9%, P < 0.05). When electrofusion was induced 27 h after the onset of oocyte maturation, the cleavage rate (78.0%) was higher than that of electrofusion induced at 28 h (67.2%, P < 0.05), and the blastocyst yield (18.1%) was higher (P < 0.05) than that of electrofusion induced at 25 or 26 h (7.4 and 8.5%, respectively). A higher proportion of NT embryos activated at 3 h after electrofusion developed to the blastocyst stage (18.6%) in comparison with NT embryos activated at 1 h (6.0%), 2 h (8.3%), or 4 h (10.6%) after fusion (P < 0.05). No recipient was pregnant 60 d after transfer of blastocysts developed from NT embryos activated at 1 h (0/8), 2 h (0/10), or 4 h (0/9) after fusion. However, 3 of 16 recipients were pregnant following transfer of blastocysts developed from the NT embryos activated at 3 h after fusion, and two of these recipients maintained pregnancy to term. We concluded that the developmental potential of buffalo NT embryos was related to recipient oocyte age and the interval from fusion to activation.  相似文献   

20.
Success in oocyte cryopreservation is limited and several factors as cryoprotectant type or concentration and stage of oocyte meiotic maturation are involved. The aim of the present study was to evaluate the effect of maturation stage and ethylene glycol (EG) concentration on survival of bovine oocytes after vitrification. In experiment 1, kinetics of oocyte in vitro maturation (IVM) was evaluated. Germinal vesicle (GV), germinal vesicle breakdown (GVBD), metaphase I (MI), and metaphase II (MII) oocytes were found predominantly at 0, 0–10, 10–14, and 18–24 h of IVM, respectively. In experiment 2, in vitro embryo development after in vitro fertilization (IVF) of oocytes exposed to equilibrium (ES) and vitrification solution VS-1 (EG 30%), or VS-2 (EG 40%) at 0, 12 or 18 h of IVM was evaluated. Only blastocyst rate from oocytes vitrified in SV-2 after 18 h of IVM was different from control oocytes. Hatched blastocyst rates from oocytes vitrified in VS-1 after 12 and 18 h, and SV-2 after 18 h of IVM were different from unvitrified oocytes. In experiment 3, embryo development was examined after IVF of oocytes vitrified using VS-1 or VS-2 at 0, 12 or 18 h of IVM. Rates of blastocyst development after vitrification of oocytes in VS-1 at each time interval were similar. However, after vitrification in VS-2, blastocyst rates were less at 18 h than 0 h. Both cleavage rates and blastocyst rates were significantly less in all vitrification groups when compared to control group and only control oocytes hatched. In conclusion, both EG concentration and stage of meiotic maturation affect the developmental potential of oocytes after vitrification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号