首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In many species, endometrial gland adenogenesis occurs neonatally in an ovary- and steroid-independent manner. Chronic exposure of the developing neonatal ovine uterus to norgestomet (NOR) from birth permanently ablates endometrial gland morphogenesis or adenogenesis, creating an adult ovine uterine gland knockout (UGKO) phenotype. This study was conducted to determine the mechanism(s) whereby NOR inhibits adenogenesis in the neonatal ewe. Ewe lambs received no implant or a NOR implant at birth and on postnatal day (PND) 14, and they were necropsied on PND28. Histological analyses of the tracts indicated NOR exposure specifically inhibited endometrial adenogenesis, but no histoarchitectural differences were observed in the oviduct, cervix, or vagina. No effect of NOR treatment was detected on proliferating cell nuclear antigen (PCNA) expression in the endometrial luminal epithelium (LE), stroma, or myometrium. In control (CX) ewes, estrogen receptor alpha (ER-alpha) and progesterone receptor (PR) mRNA and protein were expressed strongly in nascent and proliferating glandular epithelium (GE) but were undetected in epithelium of NOR uteri. Expression of c-met and fibroblast growth factor receptor 2IIIb (FGFR2IIIb) mRNA was detected in the LE and GE of CX uteri. In NOR uteri, c-met was expressed in the LE similar to CX uteri, but FGFR2IIIb mRNA levels were lower than in the LE of CX uteri. Uterine hepatocyte growth factor (HGF), the ligand for c-met, and FGFR2IIIb mRNA expression was substantially lower in NOR ewes, but expression of FGF-7 and FGF-10 mRNAs, ligands for FGFR2IIIb, was unaffected. These results indicate that NOR disrupts endometrial adenogenesis by ablating epithelial ER-alpha expression and altering expression of paracrine growth factors and/or receptors involved in epitheliomesenchymal interactions. Likewise, these mechanisms are proposed to be important regulators of normal uterine gland morphogenesis in the neonate.  相似文献   

3.
Uterine glands and their secretions are required for conceptus (embryo/fetus and associated placenta) survival and development. In most mammals, uterine gland morphogenesis or adenogenesis is a uniquely postnatal event; however, little is known about the mechanisms governing the developmental event. In sheep, progestin treatment of neonatal ewes permanently ablated differentiation of the endometrial glands. Similarly, progesterone (P4) inhibits adenogenesis in neonatal mouse uterus. Thus, P4 can be used as a tool to discover mechanisms regulating endometrial adenogenesis. Female pups were treated with sesame vehicle alone as a control or P4 from Postnatal Day 2 (PD 2) to PD 10, and reproductive tracts were examined on PD 5, 10, or 20. Endometrial glands were fully developed in control mice by PD 20 but not in P4-treated mice. All other uterine cell types appeared normal. Treatment with P4 stimulated proliferation of the stroma but suppressed proliferation of the luminal epithelium. Microarray analysis revealed that expression of genes were reduced (Car2, Fgf7, Fgfr2, Foxa2, Fzd10, Met, Mmp7, Msx1, Msx2, Wnt4, Wnt7a, Wnt16) and increased (Hgf, Ihh, Wnt11) by P4 in the neonatal uterus. These results support the idea that P4 inhibits endometrial adenogenesis in the developing neonatal uterus by altering expression of morphoregulatory genes and consequently disrupting normal patterns of cell proliferation and development.  相似文献   

4.
In the pig, appearance of endometrial glands between birth (postnatal day [PND] 0) and PND 14 involves development of estrogen receptor-alpha-positive (ER+) phenotype by, and increased DNA synthesis in, nascent glandular epithelium (GE). To determine whether ER activation is required for this process, gilts were treated daily with either vehicle, the antiestrogen ICI 182,780 (ICI), estradiol-17beta valerate (EV), or both ICI and EV. Treatments began on PND 0, before onset of adenogenesis, or on PND 7, after onset of gland proliferation. Uteri obtained on PNDs 7 and 14 (study one) or on PND 14 (study two) were weighed; uterine histology was evaluated; DNA synthesis in luminal epithelium and GE was characterized by determining 5-bromo-2'-deoxyuridine (BrdU) labeling index; and patterns of ER mRNA expression were evaluated in situ (study one). Gland genesis was inhibited by ICI, which decreased gland penetration depth by PND 14 in study one, both endometrial thickness and BrdU-labeling index in GE in study two, and increased stromal cell compaction in both studies. Uterotropic effects of EV included increased gland development and epithelial BrdU labeling and decreased stromal compaction. These effects were inhibited by coadministration of ICI. Treatments did not alter ER mRNA expression, which remained limited to stroma and GE. Data indicate that endometrial maturation and adenogenesis in the neonatal pig require expression and activation of a functional ER system.  相似文献   

5.
Developmental biology of uterine glands.   总被引:6,自引:0,他引:6  
All mammalian uteri contain endometrial glands that synthesize or transport and secrete substances essential for survival and development of the conceptus (embryo/fetus and associated extraembryonic membranes). In rodents, uterine secretory products of the endometrial glands are unequivocally required for establishment of uterine receptivity and conceptus implantation. Analyses of the ovine uterine gland knockout model support a primary role for endometrial glands and, by default, their secretions in peri-implantation conceptus survival and development. Uterine adenogenesis is the process whereby endometrial glands develop. In humans, this process begins in the fetus, continues postnatally, and is completed during puberty. In contrast, endometrial adenogenesis is primarily a postnatal event in sheep, pigs, and rodents. Typically, endometrial adenogenesis involves differentiation and budding of glandular epithelium from luminal epithelium, followed by invagination and extensive tubular coiling and branching morphogenesis throughout the uterine stroma to the myometrium. This process requires site-specific alterations in cell proliferation and extracellular matrix (ECM) remodeling as well as paracrine cell-cell and cell-ECM interactions that support the actions of specific hormones and growth factors. Studies of uterine development in neonatal ungulates implicate prolactin, estradiol-17 beta, and their receptors in mechanisms regulating endometrial adenogenesis. These same hormones appear to regulate endometrial gland morphogenesis in menstruating primates and humans during reconstruction of the functionalis from the basalis endometrium after menses. In sheep and pigs, extensive endometrial gland hyperplasia and hypertrophy occur during gestation, presumably to provide increasing histotrophic support for conceptus growth and development. In the rabbit, sheep, and pig, a servomechanism is proposed to regulate endometrial gland development and differentiated function during pregnancy that involves sequential actions of ovarian steroid hormones, pregnancy recognition signals, and lactogenic hormones from the pituitary or placenta. That disruption of uterine development during critical organizational periods can alter the functional capacity and embryotrophic potential of the adult uterus reinforces the importance of understanding the developmental biology of uterine glands. Unexplained high rates of peri-implantation embryonic loss in humans and livestock may reflect defects in endometrial gland morphogenesis due to genetic errors, epigenetic influences of endocrine disruptors, and pathological lesions.  相似文献   

6.
Ovine endometrial gland development is a postnatal event that can be inhibited epigenetically by chronic exposure of ewe lambs to a synthetic progestin from birth to puberty. As adults, these neonatally progestin-treated ewes lack endometrial glands and display a uterine gland knockout (UGKO) phenotype that is useful as a model for study of endometrial function. Here, objectives were to determine: 1) length of progestin exposure necessary from birth to produce the UGKO phenotype in ewes; 2) if UGKO ewes display normal estrous cycles; and 3) if UGKO ewes could establish and/or maintain pregnancy. Ewe lambs (n = 22) received a Norgestomet (Nor) implant at birth and every two weeks thereafter for 8 (Group I), 16 (Group II), or 32 (Groups III and IV) weeks. Control ewe lambs (n = 13) received no Nor treatment (Groups V and VI). Ewes in Groups I, II, III, and VI were hemihysterectomized (Hhx) at 16 weeks of age. After puberty, the remaining uterine horn in Hhx ewes was removed on either Day 9 or 15 of the estrous cycle (Day 0 = estrus). Histological analyses of uteri indicated that progestin exposure for 8, 16, or 32 weeks prevented endometrial adenogenesis and produced the UGKO phenotype in adult ewes. Three endometrial phenotypes were consistently observed in Nor-treated ewes: 1) no glands, 2) slight glandular invaginations into the stroma, and 3) limited numbers of cyst- or gland-like structures in the stroma. Overall patterns of uterine progesterone, estrogen, and oxytocin receptor expression were not different in uteri from adult cyclic control and UGKO ewes. However, receptor expression was variegated in the ruffled luminal epithelium of uteri from UGKO ewes. Intact UGKO ewes displayed altered estrous cycles with interestrous intervals of 17 to 43 days, and they responded to exogenous prostaglandin F(2 approximately ) (PGF) with luteolysis and behavioral estrus. During the estrous cycle, plasma concentrations of progesterone in intact control and UGKO ewes were not different during metestrus and diestrus, but levels did not decline in many UGKO ewes during late diestrus. Peak peripheral plasma concentrations of PGF metabolite, in response to an oxytocin challenge on Day 15, were threefold lower in UGKO compared to control ewes. Intact UGKO ewes bred repeatedly to intact rams did not display evidence of pregnancy based on results of ultrasound. Collectively, results indicate that 1) transient, progestin-induced disruption of ovine uterine development from birth alters both structural and functional integrity of the adult endometrium; 2) normal adult endometrial integrity, including uterine glands, is required to insure a luteolytic pattern of PGF production; and 3) the UGKO phenotype, characterized by the absence of endometrial glands and a compact, disorganized endometrial stroma, limits or inhibits the capacity of uterine tissues to support the establishment and/or maintenance of pregnancy.  相似文献   

7.
Experiments were conducted using female golden hamsters to identify the presence of nerve growth factor (NGF) and its receptors NTRK1 and TNFRSF1B in the uteri of female animals and regulation on their expression by estrogen and progesterone. NGF and its receptor NTRK1 were immunolocalized to luminal epithelial cells, glandular cells, and stromal cells. TNFRSF1B was immunolocalized in luminal epithelial and glandular cells, with no staining found in stromal cells of the uterine horns of normal cyclic golden hamsters. Strong immunostaining of NGF and its receptors NTRK1 and TNFRSF1B was observed in uteri on the day of proestrus as compared to the other stages of the estrous cycle. Results of immunoblot analysis of NGF revealed that there was a positive correlation between uterine NGF expression and plasma concentrations of estradiol-17beta. To clarify the effects of estrogen and progesterone on NGF, NTRK1, and TNFRSF1B expression, adult female golden hamsters were ovariectomized and treated with estradiol-17beta and/or progesterone. Immunoblot analysis and immunohistochemistry indicated that estradiol-17beta stimulated expression of NGF and its two receptors in the uterus. Treatment with progesterone also increased NGF and NTRK1 expression in the uterus. However, no additive effect of these steroids on expression of NGF and its receptors was observed. Changes in uterine weights induced by estradiol-17beta and/or progesterone showed the same profile with that of NGF, suggesting that a proliferative act of NGF may be involved in uterine growth. These results suggest that NGF may play important roles in action of steroids on uterine function.  相似文献   

8.
Uterine gland formation occurs postnatally in an ovary- and steroid-independent manner in many species, including humans. Uterine glands secrete substances that are essential for embryo survival. Disruption of gland development during the postnatal period prevents gland formation, resulting in infertility. Interestingly, stabilization of beta-catenin (CTNNB1) in the uterine stroma causes a delay in gland formation rather than a complete absence of uterine glands. Thus, to determine if a critical postnatal window for gland development exists in mice, we tested the effects of extending the endocrine environment of pregnancy on uterine gland formation by treating neonatal mice with estradiol, progesterone, or oil for 5 days. One uterine horn was removed before puberty, and the other was collected at maturity. Some mice were also ovariectomized before puberty. The hormone-treated mice exhibited a delay in uterine gland formation. Hormone-treatment increased the abundance of uterine CTNNB1 and estrogen receptor alpha (ESR1) before puberty, indicating possible mechanisms for delayed gland formation. Despite having fewer glands, progesterone-treated mice were fertile, suggesting that a threshold number of glands is required for pregnancy. Mice that were ovariectomized before puberty did not undergo further uterine growth or gland development. Finally, to establish the role of the ovary in postpartum uterine gland regeneration, mice were either ovariectomized or given a sham surgery after parturition, and uteri were evaluated 1 wk later. We found that the ovary is not required for uterine growth or gland development following parturition. Thus, uterine gland development occurs continuously in mice and requires the ovary after puberty, but not after parturition.  相似文献   

9.
Postnatal development of the ovine uterus between birth and Postnatal Day (PND) 56 involves differentiation of the endometrial glandular epithelium from the luminal epithelium followed by tubulogenesis and branching morphogenesis. Previous results indicated that ovariectomy of ewes at birth did not affect uterine growth or initial stages of endometrial gland genesis on PND 14 but did affect uterine growth after PND 28. Available evidence from a number of species supports the hypothesis that the ovary does not affect endometrial gland morphogenesis in the postnatal uterus. To test this hypothesis in our sheep model, ewes were assigned at birth to a sham surgery as a control or bilateral ovariectomy (OVX) on PND 7. Uteri were removed and weighed on PND 56. Ovariectomy did not affect circulating levels of estradiol-17beta. Uterine weight was 52% lower in OVX ewes. Histomorphological analyses indicated that the thickness of the endometrium and myometrium, total number of endometrial glands, and endometrial gland density in the stratum spongiosum stroma was reduced in uteri of OVX ewes. In contrast, the number of superficial ductal gland invaginations and gland density in the stratum compactum stroma was not affected by ovariectomy. The uteri of OVX ewes contained lower levels of betaA subunit, activin receptor (ActR) type IA, ActRIB, and follistatin protein expression but higher levels of betaB subunit. In the neonatal ovary, follistatin, inhibin alpha subunit, betaA subunit, and betaB subunit were expressed in antral follicles between PNDs 0 and 56. These results led to rejection of the hypothesis that the ovary does not influence endometrial adenogenesis. Rather, the ovary and, thus, an ovarian-derived factor regulates, in part, the coiling and branching morphogenetic stage of endometrial gland development after PND 14 and expression of specific components of the activin-follistatin system in the neonatal ovine uterus that appear to be important for that critical process.  相似文献   

10.
Endometrial glands are present in all mammalian uteri and produce secretions that are hypothesized to support conceptus (i.e., embryo/fetus and placental membranes) survival and development. In sheep, endometrial gland morphogenesis occurs postnatally and can be epigenetically ablated by chronic neonatal exposure to a progestin from birth, thereby producing an adult uterine gland knock-out (UGKO) phenotype. This study determined the long-term effects of neonatal progestin exposure on adult ovine reproductive tract structure and function. Neonatal ewes were exposed to norgestomet (Nor) from birth to 32 wk of age. Unexposed ewes served as controls. After puberty, adult Nor-treated (n = 6) and control (n = 6) ewes were repeatedly bred at estrus (Day 0) to intact rams of proven fertility. In contrast to a pregnancy rate of 80% for control ewes, pregnancy was never detected on Day 25 after mating (or thereafter) in bred UGKO ewes. Control and Nor-treated ewes were then bred and necropsied on Day 9. Similar numbers of hatched blastocysts were present in uterine flushings from control and Nor-treated ewes. Weights of the ovaries and cervices were not affected by treatment. No histoarchitectural differences between control and Nor-treated ewes were detected for ovaries, oviducts, cervices, or vaginae. However, uterocervical and uterine weight as well as uterine horn length were less for Nor-treated ewes. The uteri of Nor-treated ewes were devoid of endometrial glands and lacked the stromal delineation characteristic of intercaruncular endometrium in control ewes. Endometrial width, area, and lumenal epithelial length were decreased in uteri from Nor-treated ewes, but myometrial width and morphology were not affected. Expression of a number of mRNAs that are expressed predominantly in the endometrial epithelia was not different between uteri from control and from Nor-treated ewes. Collectively, these results indicate that neonatal exposure of ewes to a progestin from birth appears to only affect development of the uterus and not any extrauterine reproductive tract tissues. The infertility of the UGKO ewes appears to result from a lack of endometrial glands and, by extension, of their secretions that are required to support growth and development of peri-implantation conceptuses.  相似文献   

11.
The canine endometrium is frequently affected by severe alterations with unclear pathogenesis and is, therefore, an important subject of research in veterinary gynecology. Therefore, the aim of our study was to establish a three-dimensional in vitro system of the canine endometrium suitable for experimental approaches. For this reason, intact uterine glands were isolated from canine uteri and placed together with stromal cells on culture dishes coated with several extracellular matrix components (collagen I, IV, fibronectin, laminin, gelatin, Matrigel?) for up to 4 d to support differentiation of cultured cells. Immunohistochemical detection of laminin on freshly isolated glands showed a partial preservation of the basement membrane—an important factor for epithelial differentiation. Glandular structures were differentiated and polarized during culture time as shown by electron microscopy. Signs of degeneration and loss of cell–cell adhesions as seen occasionally on day 4 depended on the individual dog. In general, morphology was best preserved on Matrigel? matrix. No significant changes of cultured glandular explants were observed concerning proliferation and steroid receptor (estrogen, progesterone) expression when compared with the original uterine tissue as assessed by immunohistochemical staining. Lectin histochemistry revealed comparable results for the in vivo endometrial glands and the cultured glandular explants during the whole culture period. This in vitro reconstitution of the canine endometrium is a promising tool to study the cyclic events in the normal endometrium as well as alterations in the affected uterus.  相似文献   

12.
The neonatal rodent appears to be an appropriate animal model for estrogen toxicity in the developing reproductive tract. Newborn rats were treated with diethylstilbestrol (DES) at human therapeutic doses (approx 1 mg/kg) during two ontogenetic periods (postnatal days 1-5 and 1-25). Treatment on days 1-5 doubled uterine wt by day 5; however, these uteri failed to grow after discontinuation of DES treatment. In contrast, uterine wt was 4-fold higher and DNA content was 2-fold higher than controls on days 10-25 with continued DES treatment. Total uterine estrogen receptor levels, depressed 60% by day 5 of DES treatment, partially recovered after discontinuation of DES treatment but remained 25% below controls on day 25. Receptor levels following DES on days 1-25 decreased to about 15% of the controls by day 15. Short-term DES treatment approximately halved uterine gland content while continued treatment almost completely inhibited gland appearance. DES effects on glands appear related to continued hypertrophy of the luminal epithelium, from which uterine glands are derived. Subsequent failure of uterine growth caused by DES treatment on days 1-5 is similar to clinical findings of hypoplastic uteri in DES-treated patients. Disruption of the normal ontogenetic patterns of estrogen receptor by DES may be involved. These data demonstrate abnormal patterns of growth, estrogen receptor levels and morphogenesis in uteri of rats treated postnatally with DES.  相似文献   

13.
14.
Progestin-binding sites in uteri and oviducts of estrogen-treated and untreated 8-day-old mice were studied by thaw-mount autoradiography with [125I]progestin. In the untreated uteri, nuclear concentration of radiolabelled progestin was observed in all tissues of the uterus, with strongest nuclear labelling in luminal and glandular epithelia and in stroma. In the estrogen-treated uteri, the degree of labelling was markedly augmented in stroma and muscle, but much reduced in the luminal and glandular epithelia, compared to untreated uteri. In untreated oviducts, nuclear labelling was observed in stroma and muscle in all regions and in epithelium in the isthmic and uterine regions. The epithelium in infundibular and ampullar regions was only scarcely labelled. The estrogen-treatment augmented the labelling in stroma and muscle of the oviduct as in the uterus, but the labelling in epithelium was not affected. These results indicate that estrogen-treatment induces progesterone receptor differentially among tissue compartments both in the uterus and oviduct.  相似文献   

15.
Postnatal development of the ovine uterus between birth and Postnatal Day (PND) 56 involves differentiation of the endometrial glandular epithelium from the luminal epithelium followed by tubulogenesis and branching morphogenesis. These critical events coincide with expression of estrogen receptor alpha (ERalpha) by nascent endometrial glands and stroma. To test the working hypothesis that estrogen and uterine ERalpha regulate uterine growth and endometrial gland morphogenesis in the neonatal ewe, ewes were treated daily from birth (PND 0) to PND 55 with 1) saline and corn oil as a vehicle control (CX), 2) estradiol-17 beta (E2) valerate (EV), an ERalpha agonist, 3) EM-800, an ERalpha antagonist, or 4) CGS 20267, a nonsteroidal aromatase inhibitor. On PND 14, ewes were hemihysterectomized, and the ipsilateral oviduct and ovary were removed. The remaining uterine horn, oviduct, and ovary were removed on PND 56. Treatment with CGS 20267 decreased plasma E2 levels, whereas EM-800 had no effect compared with CX ewes. Uterine horn weight and length were not affected by EM-800 or CGS 20267 but were decreased in EV ewes on PND 56. On PND 14 and PND 56, treatment with EV decreased endometrial thickness but increased myometrial thickness. The numbers of ductal gland invaginations and endometrial glands were not affected by CGS but were lower in EM-800 ewes on PND 56. Exposure to EV completely inhibited endometrial gland development and induced luminal epithelial hypertrophy but did not alter uterine cell proliferation. Exposure to EV substantially decreased expression of ERalpha, insulin-like growth factor (IGF) I, and IGF-II in the endometrium. Results indicate that circulating E2 does not regulate endometrial gland differentiation or development. Although ERalpha does not regulate initial differentiation of the endometrial glandular epithelium, results indicate that ERalpha does regulate, in part, coiling and branching morphogenesis of endometrial glands in the neonatal ewe. Ablation of endometrial gland genesis by EV indicates that postnatal uterine development is extremely sensitive to the detrimental effects of inappropriate steroid exposure.  相似文献   

16.
The development of lesions and the changes in sex hormone receptors were studied in the uteri of bitches under progesterone treatment. Twelve weeks after the onset of treatment, there was atrophy of the endometrium and increased thickness of the myometrium, without cystic dilatation of endometrial glands. This was accompanied by a dramatic reduction in estrogen-alpha and progesterone receptors in all cell types of the uterine wall. By 24 weeks after the onset of treatment, however, the endometrium was thickened due to the development of cysts of endometrial glands, while the myometrium thickness had returned to normal. The estrogen-alpha and progesterone receptors in most cell types of the uterine wall were again within the normal range. These results clarify and reconcile some apparent contradictions in the literature. They show that sex hormone receptors in most cell types of the uterine wall, especially endometrial gland cells and stromal cells, escape progestin (down) regulation after prolonged exogenous administration of progesterone.  相似文献   

17.
Endometrial glands are critical for uterine function and develop between birth (Postnatal Day [P] 0) and P56 in the neonatal ewe. Endometrial gland morphogenesis or adenogenesis involves the site-specific budding differentiation of the glandular epithelium from the luminal epithelium followed by their coiling/branching development within the stroma of the intercaruncular areas of the endometrium. To determine whether WNT signaling regulates endometrial adenogenesis, the WNT signaling system was studied in the neonatal ovine uterus. WNT5A, WNT7A, and WNT11 were expressed in the uterine epithelia, whereas WNT2B was in the stroma. The WNT receptors FZD2 and FZD6 and coreceptor LRP6 were detected in all uterine cells, and FZD6 was particularly abundant in the endometrial epithelia. Secreted FZD-related protein-2 (SFRP2), a WNT antagonist, was not detected in the P0 uterus, but was abundant in the aglandular caruncular areas of the endometrium between P7 and P56. Exposure of ewes to estrogens during critical developmental periods inhibits or retards endometrial adenogenesis. Estrogen-induced disruption of endometrial adenogenesis was associated with reduction or ablation of WNT2B, WNT7A, and WNT11, and with an increase in WNT2 and SFRP2 mRNA, depending on exposure period. Collectively, results implicate the canonical and noncanonical WNT pathways in regulation of postnatal ovine uterine development and endometrial adenogenesis. Expression of SFRP2 in aglandular caruncular areas may inhibit the WNT signaling pathway, thereby concentrating WNT signaling and restricting endometrial adenogenesis in the intercaruncular areas of the uterus. Further, estrogen-induced inhibition of adenogenesis may be mediated by a reduction in WNT signaling caused by aberrant induction of SFRP2 and loss of several critical WNTs.  相似文献   

18.
Estrogen induces proliferation of uterine epithelium through a paracrine action of estrogen receptor (ERalpha) in the underlying stroma. In ovariectomized mice primed with progesterone, estrogen stimulates proliferation in both the epithelium and the stroma. We set out to test whether a paracrine mode of action is involved in estrogen-induced proliferation of the uterine stroma. Epithelial and mesenchymal tissues derived from uteri of neonatal ERalpha null mice (ERalphaKO) or wild-type mice were separated and recombined in all four possible configurations (ERalpha+ or ERalpha- epithelium with ERalpha+ or ERalpha- mesenchyme) and grafted into female athymic mice. After 5 wk, hosts were ovariectomized and challenged with hormone treatment, and cellular proliferation was monitored by thymidine autoradiography. Results showed that, although the full response of the epithelium was dependent on an ERalpha-positive mesenchyme, stromal cell proliferation was independent of tissue ERalpha. This latter observation suggests that the response of the stroma was due to a systemic factor induced in the ERalpha-positive hosts. To test this possibility, pieces of whole uterus from neonatal wild-type or ERalphaKO mice were grafted into syngeneic wild-type or ERalphaKO hosts. In these whole-uterus grafts, estradiol stimulated ERalphaKO uterine stroma when they were grown in wild-type hosts but not when grown in ERalphaKO hosts. The epithelium of whole-uterus ERalphaKO grafts did not respond to estrogen, regardless of the host phenotype. These observations suggest that treatment of progesterone-primed mice with estradiol stimulates production of a systemic factor that is capable of inducing uterine stromal cell proliferation and that this systemic factor is produced by an ERalpha-dependent mechanism.  相似文献   

19.
Measurements performed using cell lines or animal tissues have shown that the progesterone receptor (PR) can be induced by estrogens. By use of immunohistochemistry we studied the effects of estrogens on the PR levels in the individual cell types of the target organs uterus and breast. In the uteri of rats, ovariectomy induced a decrease in PR immunoreactivity within the myometrium and outer stromal cell layers. In contrast, in the uterine luminal and glandular epithelium and surrounding stromal cell layers the PR immunoreactivity was significantly enhanced. The same picture emerged when intact rats were treated with the pure estrogen receptor antagonist, ZM 182780 (10 mg/kg/d). Treatment of ovariectomized rats with estradiol resulted in high PR levels in the myometrium and stroma cells but low PR immunoreactivity in the epithelial cells. The ER-mediated repression of the PR immunoreactivity was evidently restricted to the uterine epithelium, as we found that in the epithelial cells of the mammary gland and in cells of N-nitrosomethylurea-induced mammary carcinomas the PR expression was induced by estrogens and was blocked by the pure antiestrogen ZM 182780. These results clearly show that in the rat the activated ER induces diverging effects on PR expression in different cell types even within the same organ.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号