首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effect of dietary astaxanthin supplementation on reproductive characteristics was investigated in five groups of female rainbow trout broodstock fed diets containing either 0.07, 12.46, 33.33, 65.06 or 92.91 mg astaxanthin kg?1, respectively, and two groups of male rainbow trout broodstock fed diets supplemented with 0.07 and 33.33 mg astaxanthin kg?1, respectively, for 6 months in an artificial photoperiod system until sexual maturation. The eggs from each group of female broodstock were divided into two equal batches. One batch was fertilized with homogenized sperm of four males fed diets with 0.07 mg astaxanthin kg?1 and the other portion with sperm of four males fed diets with 33.3 mg astaxanthin kg?1. The females produced eggs with astaxanthin concentrations ranging from 2.03 to 29.79 mg kg?1. Dietary astaxanthin supplementation had positive effects on investigated reproductive traits. Significant differences in rate of fertilization, percentage of eyed and hatched eggs, and mortality of eyed eggs were found between treatments (P < 0.05), but no significant difference was found on percentage of mortality before hatching (P > 0.05). A significant difference (P < 0.05) in fertilization rate was found for male groups fed 0.07 and 33.3 mg astaxanthin kg?1. The astaxanthin content in the eggs and fertilization rate, eyed‐egg percentage and percentage hatch were significantly correlated (P < 0.05). It is concluded that dietary supplements of astaxanthin are required for optimum reproduction in rainbow trout.  相似文献   

2.
Conditions necessary for procuring, handling, and storing Xenopus laevis gametes have been investigated in order to develop a simple and reliable method for artificial fertilization. Temperature, sperm concentration, and ionic strength influence sperm and/or egg viability. Extension of the fertilizing capacity of sperm suspensions could be correlated with reversible repression of sperm motility. In the case of various salt solutions used for testes maceration, inhibition of sperm motility was primarily a function of the ionic strength. However, there was some specificity in the salt employed as KCl and CaCl2 solutions gave anomalous results in comparison with those obtained with other salt solutions. The fertilizability of Xenopus laevis eggs could be extended by shedding the eggs in DeBoers solution. Using this information a simple reliable method for artificial fertilization of Xenopus laevis gametes has been described.  相似文献   

3.
To analyze the role of the activation potential (a positive shift of the membrane potential which occurs following sperm attachment) in fertilization and development of the sea urchin egg, unfertilized Lytechinus variegatus eggs were voltage clamped at membrane potentials (Em) from +20 to ?90 mV, and then inseminated. Either a fast two electrode voltage clamp, or a single electrode switched voltage clamp was used. The clamp was maintained for 3 to 15 min after initiation of a conductance increase. At Em more positive than +18 mV, even though many sperm may attach, the egg remains completely inert (Jaffe, Nature (London)261, 68–71, 1976). At Em from +17 to ?90 mV, all inseminated eggs elevate normal fertilization envelopes, although substantially increased concentrations of sperm are required at Em from +17 to +12 mV. Whether cleavage occurs depends on the clamped Em. When clamped at Em from +17 to ?25 mV, 100% of activated eggs cleave. However, when clamped at Em from ?26 to ?75 mV the percentage of activated eggs which cleave progressively decreases. At clamped Em between ?76 and ?90 mV, none of the activated eggs cleave. All monospermic voltage clamped eggs that cleave develop to normal swimming blastulae. In all eggs that fail to cleave (clamped at Em more negative than ?30 mV), sperm penetration is blocked, the sperm is lifted off the egg surface as the fertilization envelope rises, and a sperm aster never forms. Preventing formation of the fertilization envelope by prior disruption of the vitelline layer with dithiothreitol does not promote entry of the sperm. In conclusion, preventing the depolarization normally associated with fertilization suppresses sperm entry in the sea urchin egg, yet activation proceeds. Present evidence suggests an effect of the electrical field across the plasma membrane in suppressing sperm entry.  相似文献   

4.
Fertilization of frog eggs by frog sperm is inhibited if the egg's membrane potential is positive (N. L. Cross and R. P. Elinson, 1980, Dev. Biol.75, 187–198); however, fertilization of salamander eggs by salamander sperm does not depend on membrane potential (M. Charbonneau, M. Moreau, B. Picheral, J. P. Vilain, and P. Guerrier, 1983, Dev. Biol.98, 304–318). Since salamander sperm can fertilize frog eggs, we have investigated whether this cross-fertilization is voltage dependent. If, during insemination with Notophthalmus sperm, Xenopus eggs were voltage clamped between +7 and +20 mV, fertilization proceeded in 710 (70%) of the clamped eggs, compared to 3848 (79%) of the neighboring eggs. In control experiments in which voltage-clamped Xenopus eggs were inseminated with Xenopus sperm, fertilization proceeded in only 110 (10%) of the clamped eggs, compared to 5960 (98%) of the neighbors. Similar results were obtained with cross-fertilization experiments between Notophthalmus sperm and Rana eggs. These experiments indicate that the voltage dependence of fertilization depends on the species of sperm.  相似文献   

5.
We have examined the relationship between sperm adhesion and fertilization in the cross species insemination of Arbacia punctulata eggs by Strongylocentrotus purpuratus sperm. As previously reported (Kinsey et al., 1980) the addition of S. purpuratus egg jelly results in induction of the acrosome reaction in sperm and significant numbers of S. purpuratus sperm adhere to A. punctulata eggs. However, in the absence of S. purpuratus egg jelly, S. purpuratus sperm fail to bind to A. punctulata eggs. Although at least 200 S. purpuratus sperm bind to an A. punctulata egg in the presence of S. purpuratus jelly, less than 8% of the eggs are fertilized. The adhesion of S. purpuratus sperm meets the same functional criteria as homologous A. punctulata sperm-egg adhesion. Electron microscopy shows that S. purpuratus sperm that have undergone the acrosome reaction adhere to A. punctulata eggs by their bindin-coated acrosomal process in a manner that is morphologically identical to that observed with homologous A. punctulata sperm. We have also compared the ability of S. purpuratus and A. punctulata sperm to fuse and fertilize with A. punctulata eggs after removal of the vitelline layer. Using high levels of sperm of either species, heterologous as well as homologous fertilization is readily detectable. Under these conditions, where stable binding is not demonstrable, there is no difference in the ability of S. purpuratus and A. punctulata sperm to fertilize A. punctulata eggs. These observations suggest that the failure of S. purpuratus sperm to fertilize A. punctulata eggs under normal conditions may be due to their inability to penetrate the vitelline layer so that they can fuse with the egg plasma membrane. In relation to the possible mechanism of vitelline layer penetration, we have also investigated the mode of action of chymostatin, an inhibitor of chymotrypsin that has been reported to inhibit fertilization of sea urchin eggs (Hoshi et al., 1979). Our findings suggest that the fertilization inhibitory activity of chymostatin is not related to its antichymotrypsin activity. Rather, it appears that this inhibition is due to the induction of an abnormal acrosome reaction in sperm that precludes formation of the acrosome process.  相似文献   

6.
《Developmental biology》1986,117(1):306-318
Protein was isolated from the ring-shaped acrosomal granules of Urechis sperm which bound tightly to Urechis egg surface coats and also initiated development. The acrosomal protein preparation migrated as a single major band in acetic acid-urea PAGE, had a lysine + arginine content of ∼50%, and lacked carbohydrate. The molecular mass of the acrosomal protein was 25,000–30,000 Da in cetyltrimethylammonium bromide PAGE. Acrosomal rings of acrosomereacted sperm were selectively labeled with fluorescamine and the fluorescence persisted throughout the isolation procedure and was observed in the major band on gels. Although the acrosomal protein and Urechis sperm protamine had similar amino acid contents and migrated similarly in acetic acid-urea gels, acrosomal protein differed from protamine by its relative insolubility in hot 5% trichloroacetic acid and cold 0.25 N H2SO4, by its migration in cetyl- and tetratrimethylammonium bromide PAGE and in a major spot on its peptide map following thermolysin digestion. Agglutination of eggs by Urechis acrosomal protein was not species-specific and included various echinoderm eggs and algal zygotes as well as Urechis eggs. Both the acrosomal protein preparation and protein extracted from the major band of gels initiated development of Urechis eggs, causing rounding out, elevation of the surface coat, germinal vesicle breakdown, polar body formation, and establishment of a polyspermy block. Polylysine and calf thymus histones were equally effective in activating Urechis eggs, but Urechis sperm protamine was less effective, and salmon sperm protamine, although highly basic, activated only a small percentage of eggs. Urechis acrosomal protein also induced partial elevation of sea urchin egg fertilization envelopes, similar to the response of sea urchin eggs to Urechis sperm. Sea urchin eggs were not activated by polylysine.  相似文献   

7.
Although theory and widespread evidence show that the evolution of egg size is driven primarily by offspring and maternal fitness demands, an additional explanation invokes sperm limitation as a selective force that could also influence egg size optima. Levitan proposed that constraints from gamete encounter in external fertilization environments could select for enlargement of ova to increase the physical size of the fertilization target. We test this theory using in vitro fertilization experiments in an externally fertilizing fish. Sockeye salmon (Onchorhyncus nerka) females show considerable between-individual variation in ovum size, and we explored the consequences of this natural variation for the fertilization success of individual eggs under conditions of sperm limitation. By engineering consistent conditions where in vitro fertilization rate was always intermediate, we were able to compare the sizes of fertilized and unfertilized eggs across 20 fertilization replicates. After controlling for any changes in volume through incubation, results showed that successfully fertilized eggs were significantly larger than the eggs that failed to achieve fertilization. Under conditions without sperm limitation, fertility was unaffected by egg size. Our findings therefore support Levitan''s theory, demonstrating empirically that some element of egg size variation could be selected by fertilization demands under sperm limitation. However, further research on sperm limitation in natural spawnings is required to assess the selective importance of these results.  相似文献   

8.
Sperm are a simple cell type with few components, yet they exhibit tremendous between-species morphological variation in those components thought to reflect selection in different fertilization environments. However, within a species, sperm components are expected to be selected to be functionally integrated for optimal fertilization of eggs. Here, we take advantage of within-species variation in sperm form and function to test whether sperm components are functionally and genetically integrated both within and between sperm morphologies using a quantitative genetics approach. Drosophila pseudoobscura males produce two sperm types with different functions but which positively interact together in the same fertilization environment; the long eusperm fertilizes eggs and the short parasperm appear to protect eusperm from a hostile female reproductive tract. Our analysis found that all sperm traits were heritable, but short sperm components exhibited evolvabilities 10 times that of long sperm components. Genetic correlations indicated functional integration within, but not between, sperm morphs. These results suggest that sperm, despite sharing a common developmental process, can become developmentally and functionally non-integrated, evolving into separate modules with the potential for rapid and independent responses to selection.  相似文献   

9.
In 27% DeBoer's saline (DBS), which yields maximum fertility rates, Xenopus eggs fertilized in vitro are monospermic, regardless of sperm concentration. One block to polyspermy (the “slow” block), described previously, occurs at the fertilization envelope that is elevated in response to the cortical reaction. This paper describes properties of an earlier, “fast” block at the plasma membrane and evaluates the functional significance of the two blocks at physiological sperm concentrations in natural mating conditions. Unfertilized eggs have a resting membrane potential of ?19 mV in 27% DBS. Fertilization triggers a rapid depolarization to +8 mV (the fertilization potential, FP); the potential remains positive for ca. 15 min. Activation of eggs with the ionophore, A23187, produces a slower but similar depolarization (the activation potential, AP). As in other amphibian eggs, the FP appears to result from a net efflux of Cl?, since the peak of the FP (or the AP in ionophore-activated eggs) decreases as the concentration of chloride salts in the medium is increased. In 67% DBS no FP or AP is observed; eggs fertilized in 67% DBS become polyspermic and average 2 sperm entry sites per egg. In the 5–37 mM range, I? and Br?, but not F?, are more effective than Cl? in producing polyspermy. In 20 mM NaI the plasma membrane hyperpolarizes in response to sperm or ionophore; 100% levels of polyspermy and an average of 14 sperm entry sites per egg are observed. NaI does not inhibit or retard elevation of the fertilization envelope; the cortical reaction and fertilization envelope are normal in transmission electron micrographs. In 67% DBS, which also inhibits the fast block, the slow block was estimated to become functional 6–8 min after insemination. Eggs fertilized by natural mating in 20 mM NaI exhibit polyspermy levels of 50–90% and average 5 sperm entry sites per egg. Since eggs become polyspermic when fertilized by natural mating under conditions that inhibit the fast, but not the slow, block to polyspermy, we conclude that the fast block is essential to the prevention of polyspermy at the sperm concentrations normally encountered by the egg.  相似文献   

10.
Evidence for sperm-borne proteolytic enzymes exposed during the acrosome reaction in sea urchin sperm has been accumulating. To investigate the possible role(s) such enzymes have in fertilization, we studied the effects of several protease inhibitors on sperm-related events. Soybean trypsin inhibitor, Nα-p-tosyl-l-lysine, chloromethyl ketone, phenylmethylsulfonyl fluoride, and chymostatin neither reduced the number of acrosome reactions nor interfered with gamete binding. p-Nitrophenyl-p′-guanidinobenzoate caused sperm to fuse into irregular clumps, rendering them unable to fertilize eggs. However, l-1-tosylamide-2-phenylethyl chloromethyl ketone (TPCK), an inhibitor of chymotrypsin, prevented the acrosome reaction in Strongylocentrotus purpuratus, S. droebachiensis, and Lytechinus pictus. The effects of TPCK on sperm in subsequent steps of fertilization were also investigated. First, gamete binding assays were performed on fixed eggs. This precluded any effects TPCK might have had on egg-derived secretions (e.g., proteases). Binding of prereacted sperm occurred with both fixed and living eggs. However, fertilization of living eggs in the presence of TPCK was greatly reduced, even though sperm had been prereacted with egg jelly. Vitelline coats were then removed from eggs by trypsin treatment. Eggs in TPCK fertilized and developed normally after the above treatment. These observations are consistent with the hypothesis of a sperm protease participating in the acrosome reaction and the penetration of the egg vitelline coat in the sea urchin.  相似文献   

11.
12.
That a small amount of external calcium ions is requisite for the fertilization by spermatozoa with reacted acrosomes was found by some simple experiments using jelly-treated sperm of the sea urchin, Hemicentrotus pulcherrimus. When eggs were inseminated with the jelly-treated sperm in artificial seawaters containing calcium at various concentrations, the percentage of fertilization decreased concomitant with the reduction in the amount of external calcium ions, 50% at 40 μM calcium and almost 0% at less than 10 μM. On the other hand, it was observed that both the morphology of the reacted acrosome and the binding capacity of the jelly-treated spermatozoa to eggs were not influenced by the calcium deficiency. These results suggest that external calcium ions are indispensable even for the fertilization processes following sperm binding to eggs after the acrosome reaction, such as penetration of reacted spermatozoa through vitelline layer and/or membrane fusion between egg and spermatozoon.  相似文献   

13.
14.
Concanavalin A (Con A) affected sperm-egg interactions of Arbacia punctulata and Strongylocentrotus purpuratus by inhibiting insemination at minimally saturating sperm concentrations. However, this inhibition was overcome by increasing the sperm density. Sperm concentrations (106/ml) yielding 100% fertilization of control preparations resulted in only 72% insemination of Con A-treated ova (104/ml). Although a cortical granule reaction occurred in fertilized, Con A-treated eggs, the distance the fertilization membrane separated from the zygote's surface was not as great as observed in controls. These results may be the basis for previous reports of Con A inhibiting fertilization in sea urchins.  相似文献   

15.
Sperm-egg interaction in mammals is initiated by binding of sperm to the zona pellucida, an acellular coat completely surrounding the plasma membrane of unfertilized eggs and preimplantation embryos. Fertilization results in transformation of the zona pellucida (“zona reaction”), such that additional sperm are unable to bind to the zona pellucida of fertilized eggs and embryos, and sperm that had partially penetrated the zona pellucida of eggs prior to fertilization are prevented from further penetration after fertilization. The failure of sperm to bind to fertilized mouse eggs and embryos is attributable to modification of the sperm receptor, ZP3, an 83,000-molecular weight glycoprotein present in zonae pellucidae isolated from both eggs and embryos [Bleil, J. D., and Wassarman, P. M. (1980). Cell, 20, 873–882]. In this investigation, ZP2, the major glycoprotein found in mouse zonae pellucidae [Bleil, J. D., and Wassarman, P. M. (1980). Develop. Biol., 76, 185–202] was analyzed by gel electrophoresis under a variety of conditions in order to determine whether or not it undergoes modification as a result of fertilization. Under nonreducing conditions, ZP2 present in solubilized zonae pellucidae that were isolated individually from mouse oocytes, eggs, and embryos migrates on SDS-polyacrylamide gels with an apparent molecular weight of 120,000. However, under reducing conditions, ZP2 from embryos, but not from oocytes or unfertilized eggs, migrates with an apparent molecular weight of 90,000 and has been designated ZP2f. The evidence presented suggests that modification of ZP2 following fertilization involves proteolysis of the glycoprotein, but that intramolecular disulfide bonds prevent the release of peptide fragments. It is shown that the same change in ZP2 can be generated in vitro by artificial activation of unfertilized mouse eggs with the calcium ionophore A23187, thus eliminating the possibility that a sperm component is responsible for the modification of ZP2 following fertilization. These results suggest that some of the changes in the biochemical and biological properties of zonae pellucidae, observed following fertilization or activation of mouse eggs, result from modification of the major zona pellucida glycoprotein, ZP2.  相似文献   

16.
Streaked prochilod (Prochilodus lineatus) is a freshwater fish inhabiting many South American rivers. The objective was to determine the effectiveness of coconut water (ACP™), combined with methylglycol, as a freezing medium for streaked prochilod sperm. A secondary objective was to compare a computer-assisted sperm analyzer (CASA) system versus subjective microscropic examination as a means of assessing sperm motility. As a control, glucose and methylglycol was used, according to our previous study. Sperm diluted in each medium was loaded into 0.5 mL straws, frozen in liquid nitrogen vapor (in a dry shipper), and stored in liquid nitrogen (-196 °C). Half of the samples were evaluated for sperm motility, both subjectively and with CASA; the remainder were evaluated for fertility. There was no difference (P > 0.05) between subjective or CASA assessment of post-thaw sperm motility. Although sperm motility was higher in sperm cryopreserved in ACP™ (85%) than in glucose (75%), cryopreservation in either extender yielded similar fertilization rates (46-48%) and sperm velocities. There were positive correlations (r = 0.56-0.8) between all sperm velocities and fertilization rate. In conclusion, streaked prochilod sperm cryopreserved in glucose or ACP™ and methylglycol was fertile, and thus could be used for research or commercial settings. Furthermore, although the CASA system provided objective data regarding sperm motility, in the present study, subjective evaluation of sperm motility was practical and a good indication of sperm quality; it could readily be done by well-trained personnel under field or laboratory conditions.  相似文献   

17.
The pathway of sperm entry during sea urchin fertilization was analyzed by using sperm covalently labeled with fluorescent and radioactive tracers. Sperm that have been covalently labeled on their surfaces with fluorescein isothiocyanate (FITC) or a radioactive congener, diiodofluorescein isothiocyanate (125IFC), transfer labeled components to the egg that persist throughout early development. In order to study the transfer of sperm components and their fate after fertilization, cytochalasin B-dependent inhibition of fertilization, previously shown to permit the cortical reaction of sea urchin eggs but block sperm pronuclear incorporation, was investigated. Under certain conditions cytochalasin B or D (CB or CD) results in about half of the activated eggs having both the sperm nucleus and the fluorescently labeled sperm components arrested apparently at the level of the egg plasma membrane. This arrest of internalization was reversed by removal of CB or CD, and the sperm derivatives entered the egg. When sperm were labeled noncovalently with ethidium bromide or rhodamine 123, fluorescence was transferred to the egg in the cytochalasin-inhibited state in a fashion similar to that found in normal fertilization; in both cases the sperm fluorescence disappeared within a few minutes of fertilization, due to the repartitioning of the noncovalent dyes into the egg cytoplasm. It is concluded that cytochalasin arrests fertilization at an intermediate step in which the sperm has fused with the egg to achieve cytoplasmic continuity, but in which the subsequent internalization of sperm components is inhibited. After removal of cytochalasins the fluorescent sperm components move from the egg surface to an internal site, a process that can be monitored by time-lapse video microscopy with an image intensifier to permit extended observations of sperm fluorescence. The cytoplasmic location of labeled sperm components was substantiated by autoradiography of early embryos fertilized with 125IFC-labeled sperm; transfer of sperm components to an internal site was seen after fertilization of either sea urchin or mouse eggs. Taken together, the data suggest that the fate of the labeled sperm surface components, as well as that of the sperm nucleus, is to be transferred to the egg cytoplasm, and that this transfer is mediated by the actin-dependent cytoskeleton of the egg.  相似文献   

18.
The fertilization rates with ICSI range from 30% to 70% and suggest that, despite injecting sperm into mature oocytes, significant fertilization failure still occurs in humans. The objective of this study was to determine technical and physiological factors which may contribute to lower fertilization following ICSI. Eggs that failed to show two pronuclei (PN) 48 hours after ICSI were studied at two different time intervals: at ICSI program inception (group A) and after 8 months (group B). The eggs were analyzed by staining with DNA fluorochromes, Hoescht 33258 and DAPI. The extent of sperm head as well as maternal chromatin decondensation in unfertilized ICSI eggs was determined by high resolution fluorescence microscopy. The average fertilization rate (FR) from all ICSI cycles in these two groups was 45%. The FR in Groups A and B were 35% and 59%, respectively (P < 0.05). In Group A, 65% of the unfertilized eggs were characterized by condensed sperm chromatin with 11% showing partial decondensation. In Group B, only 28% of the unfertilized eggs demonstrated condensed sperm chromatin while 45% were partially decondensed. Sperm chromatin was not detected in 24% of all unfertilized eggs studied. The maternal chromatin remained at metaphase II in 84% of all unfertilized eggs analyzed. These observations suggest that the technical problem of deposition of the sperm inside the egg is not the major cause for failure of fertilization rates in ICSI cycles. The increased percentage of eggs undergoing sperm head decondensation may be related to subtle changes in technique as experience is gained over time. The failure of sperm head decondensation in some of the ICSI eggs may be associated with cytoplasmic immaturity but not nuclear maturity.  相似文献   

19.
Studies have identified chemicals within the stony coral genus Montipora that have significant biological activities. For example, Montiporic acids A and B and other compounds have been isolated from the adult tissue and eggs of Montipora spp. and have displayed antimicrobial activity and cytotoxicity in cultured cells. The ecological role of these toxic compounds is currently unclear. This study examines the role these toxins play in reproduction. Toxins were found in the eggs and larvae of the coral Montipora capitata. Releasing these toxins by crushing both the eggs and larvae resulted in irreversible inhibition of photosynthesis in endogenous and exogenous zooxanthellae within minutes. Moreover, these toxins were stable, as frozen storage of eggs and larvae did not affect toxicity. Photosynthetic competency of Porites compressa zooxanthellae treated with either frozen or fresh, crushed eggs was inhibited similarly (P > 0.05, ANCOVA). Addition of toxic eggs plugs to live P. compressa fragments caused complete tissue necrosis under the exposed area on the fragments within 1 week. Small volumes of M. capitata crushed eggs added to sperm suspensions reduced in vitro fertilization success by killing the sperm. After 30 min, untreated sperm maintained 90 ± 1.9% SEM motility while those treated with crushed eggs were rendered immotile, 4 ± 1.4% SEM. Flow cytometry indicated membrane disruption of the immotile sperm. Fertilization success using untreated sperm was 79 ± 4% SEM, whereas the success rate dropped significantly after exposure to the crushed eggs, 1.3 ± 0% SEM. Unlike the eggs and the larvae, M. capitata sperm did not reduce the photosynthetic competency of P. compressa zooxanthellae, suggesting the sperm was nontoxic. The identity of the toxins, cellular mechanism of action, advantage of the toxins for M. capitata and their role on the reef are still unknown.  相似文献   

20.
The question of whether the acrosome reaction, which leads to fertilization, occurs in intact sperm bound to the zona pellucida of the egg or in intact sperm before contact with the egg, was addressed by assessing the effect of 3-quinuclidinyl benzilate (QNB) on the two types of acrosome reaction. QNB is a specific inhibitor of the fertilization of zona-intact mouse eggs by mouse sperm. Mouse spermatozoa in suspension underwent acrosome reactions at a low rate, which could be accelerated by addition of 5 μM divalent cation ionophore A23187; the occurrence of such acrosome reactions was not inhibited by QNB. The rate at which acrosome reactions occurred in sperm bound to the zona pellucida of cumulus-free eggs, bound to isolated zonae, or exposed to acid-solubilized zona components, was greatly accelerated relative to that observed in the absence of zonae. These acrosome reactions were strongly inhibited by QNB at concentrations which inhibit the fertilization of zona-intact mouse eggs in vitro. These data suggest that the zona pellucida can induce acrosome reactions in mouse spermatozoa and that these acrosome reactions are the ones which lead to the fertilization of zona-intact eggs. In contrast, the acrosome rection in sperm which are not in contact with the zona is not associated with fertilization of zona-intact eggs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号