首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Semen from five 2.5-yr-old rams selected for use in an AI program was collected over 3 consecutive days using an artificial vagina. The semen was diluted with a skim milk extender containing 7% glycerol (v/v), packed in French mini-straws (approx. 100 mill/straw), and frozen in a programmable freezer. Three freezing operations were carried out per ram. Three straws per freezing operation were subjected to the following thawing procedures: 1) 70 degrees C, 5 sec; 2) 50 degrees C, 9 sec and 3) 35 degrees C, 12 sec. Post-thaw sperm motility was subjectively assessed using a phase contrast microscope; while the combined fluorochromes carboxyfluorescein diacetate and propidium iodide (CFDA/PI), the hypo-osmotic swelling test (HOS) and the presence of normal apical ridges (NAR's) were used to determine the degree of sperm membrane integrity. Significant differences between thawing treatments were found for post-thaw motility (P < .05) and membrane integrity (P < 0.01), and variation among rams was statistically significant. Post-thaw sperm motility as well as the percentage of spermatozoa showing intact membranes were significantly higher (P < 0.01) for straws thawed at 70 degrees C than for those thawed at 35 degrees C (67.0 +/- 1.1 and 63.0 +/- 1.1%, and 50.5 +/- 1.5 and 41.7 +/- 1.5%, respectively). However, no corresponding statistically significant difference could be found for these parameters when 70 degrees C and 50 degrees C thawing were compared. It was concluded that sperm can be thawed at 50 degrees C for 9 sec instead of 70 degrees C for 5 sec without further reducing sperm motility or membrane integrity. This lower thawing temperature would facilitate the widespread use of frozen/thawed ram semen under farm conditions in Sweden.  相似文献   

2.
The magnitude of damage to the viability of cryopreserved bovine spermatozoa by pre- and post-thaw thermal insults was compared. Semen collected by artificial vagina from 5 Holstein bulls was diluted in egg yolk-citrate-7% glycerol extender (EYCG) and cryopreserved in 0.5 mL French straws at a sperm concentration of 40 to 60 x 10(6) cells/mL. In Experiment 1, straws were subjected to 22, 5 or -18 degrees C static air temperature for a duration of 1, 2, 3, 4 or 5 min before or after thawing in a 37 degrees C water bath for 1 min. Control straws were thawed in a 37 degrees C water bath for 1 min without further thermal insult. In Experiment 2, straws were thawed for 1 min in a 37 (control), 20 or 5 degrees C water bath, or were loaded into an insemination gun and plunged into a 37 degrees C water bath for 3 min. In both experiments, straws were returned to a 37 degrees C water bath for incubation prior to viability analysis. Viability evaluations, conducted in triplicate, included the percentage of motile spermatozoa at 1 min and at 3 h post thermal insult and the percentage of intact acrosomal membranes at 3 h post thermal insult. In both experiments, acrosomal integrity was more sensitive than motility to thermal insult. In Experiment 1, a significant interaction was observed between timing of thermal insult (pre- or post-thaw), static air temperature and duration of straw exposure. At 22 and 5 degrees C, thermal insults applied before thawing significantly (P<0.05) reduced acrosomal integrity at > or = 2 and > or = 4 min of exposure, respectively. However, post-thaw exposure to 22 and 5 degrees C for up to 5 min had no effect on any of the sperm viability parameters evaluated. In contrast, at -18 degrees C static air temperature, post-thaw exposure for > or = 3 min decreased acrosomal integrity (P<0.05), while 5 min of pre-thaw exposure was required for alteration of acrosomal integrity. In Experiment 2, each alternative thawing method resulted in significantly (P<0.05) lower incubated acrosomal integrity relative to the controls. These findings suggest that bovine spermatozoa cryopreserved in EYCG extender are more sensitive to pre-thaw than post-thaw thermal insults and that acrosomal integrity following 3-h incubation at 37 degrees C is superior to motility evaluations for detection of damage to sperm viability due to thermal insult.  相似文献   

3.
A multifactorial study analyzed the effects of freezing method, cryoprotective diluent, semen to diluent ratio, and thawing velocity on post-thaw motility, progressive status, and acrosomal integrity of ram spermatozoa. Although semen to diluent ratio (1:3 vs 1:6, v/v) had no effect (P greater than 0.05), overall post-thaw spermatozoal viability was highly dependent on freezing method and cryoprotectant. Improved results were obtained by freezing semen in 0.5-ml French straws compared to dry ice pelleting. Manually freezing straws 5 cm above liquid nitrogen (LN2) was comparable to cooling straws in an automated, programmable LN2 unit. Of the two cryoprotective diluents tested, BF5F (containing the surfactant component sodium and triethanolamine lauryl sulfate) yielded approximately 50% fewer (P less than 0.05) spermatozoa with loose acrosomal caps compared to TEST. Thawing straws in a water bath at a higher velocity (60 degrees C for 8 sec) had no effect (P greater than 0.05) on spermatozoal motility, progressive status ratings, or acrosomal integrity when compared to a lower rate (37 degrees C for 20 sec). For the TEST group, thawing pellets in a dry, glass culture tube promoted (P less than 0.05) percentage sperm motility at 3 and 6 hr post-thawing, but for BF5F diluted semen this approach decreased the % of spermatozoa with normal apical ridges. The results suggest that the poor fertility rates often experienced using thawed ram semen likely result not only from reduced sperm motility, but also from compromised ultrastructural integrity. This damage is expressed by an increased loosening of the acrosomal cap, a factor which appears insensitive to freezing method but markedly influenced by the cryoprotective properties of the diluents tested.  相似文献   

4.
The objective was to determine the effect of sequence of insemination after simultaneous thawing of multiple 0.5 mL semen straws on conception rate in suckled multiparous Nelore cows. The effect of this thawing procedure on in vitro sperm characteristics was also evaluated. All cows (N = 944) received the same timed AI protocol. Ten straws (0.5 mL) of frozen semen from the same batch were simultaneously thawed at 36 °C, for a minimum of 30 sec. One straw per cow was used for timed AI. Frozen semen from three Angus bulls was used. Timed AI records included sequence of insemination (first to tenth) and time of semen removal from thawing bath. For laboratory analyses, the same semen batches used in the field experiment were evaluated. Ten frozen straws from the same batch were thawed simultaneously in a thawing unit identical to that used in the field experiment. The following sperm characteristics were analyzed: sperm motility parameters, sperm thermal resistance, plasma and acrosomal membrane integrity, lipid peroxidation, chromatin structure, and sperm morphometry. Based on logistic regression, there were no significant effects of breeding group, body condition score, AI technician, and sire on conception rate, but there was an interaction between sire and straw group (P = 0.002). Semen from only one bull had decreased (P < 0.05) field fertility for the group of straws associated with the longest interval from thawing to AI. However, the results of the laboratory experiment were unable to explain the findings of the field experiment. Sperm width:length ratio of morphometric analysis was the single sperm characteristic with a significant interaction between sire and straw group (P = 0.02). It was concluded that sequence of insemination after simultaneous thawing of 10 semen straws can differently affect conception rates at timed AI, depending on the sire used. Nevertheless, the effects of this thawing environment on in vitro sperm characteristics, remain to be further investigated.  相似文献   

5.
The cryopreservation of fish sperm provides a tool by which reproduction is optimized and thereby larval production is increased. The aims of this study were to evaluate the effects of cryosolutions, motility-activation media, straw volumes and thawing temperatures on the post-thaw motility of curimba semen. Furthermore, semen cryopreserved in a simple and inexpensive cryosolution and that yielded excellent post-thaw motility was tested for fertility. Semen was diluted in each of the eight cryosolutions in a factorial of two cryoprotectants (DMSO and methylglycol) x four extenders (0.9% NaCl, 5% glucose, BTS and M III). Diluted semen was frozen in 0.5-mL straws in a nitrogen vapor vessel. Sperm motility was evaluated after thawing (60 degrees C water bath for 8s) and activation with a total of four different activation media (distilled water, 0.15% NaCl, 0.29% NaCl or 1% NaHCO(3)). To evaluate straw volume and thawing temperature, semen was diluted in 5% glucose and methylglycol and frozen in 0.5- and 4.0-mL straws. Half of the 0.5-mL straws were thawed in a water bath at 60 degrees C for 8s and the other half at 30 degrees C for 16s. The 4.0-mL straws were thawed at 60 degrees C for 24s only. In the last experiment, semen cryopreserved in 5% glucose and methylglycol, 0.5-mL straws, and thawed at 60 degrees C for 8s was tested for fertility. The results of these comparisons are presented and show that curimba semen can be successfully cryopreserved in a simple glucose solution combined with methylglycol as cryoprotectant, in 0.5-mL straws, yielding motility rates between 86% and 95% and fertilization rates between 47% and 83%.  相似文献   

6.
Optimal freeze-thaw processes for dog semen will yield a maximal number of insemination doses from an ejaculate. The objectives of this study were to compare the effects of two straw sizes (0.25- and 0.5-mL French), two freezing rates (straws suspended 3.5 and 8 cm above liquid nitrogen) and two thawing rates (in water at 37 and 70 degrees C) upon post-thaw quality of dog semen, and to determine the best treatment combination. Quality was expressed in terms of the percentage progressively motile sperm 5 and 60 min after thawing and the percentage of abnormal acrosomes 5 min after thawing. One ejaculate from each of eight dogs was frozen. Two straws from each ejaculate were exposed to each of the eight treatment combinations. Data were analyzed by means of a repeated measures factorial analysis of variance and means compared using Bonferroni's test. Dog affected each response variable (P < 0.01). Neither straw size, nor freezing rate, nor thawing rate affected motility 5 min after thawing (P > 0.05). Half-milliliter straws resulted in 5.7% more progressively motile sperm 60 min after thawing and 6.5% fewer abnormal acrosomes than 0.25-mL straws (P < 0.05, n = 64). The percentage progressively motile sperm 60 min after thawing tended to be higher for semen thawed at 70 degrees C compared to 37 degrees C (P < 0.06, n = 64). Semen thawed in water at 70 degrees C had 6.6% fewer abnormal acrosomes than semen thawed in water at 37 degrees C (P < 0.05, n = 64). Freezing rate interacted with thawing rate (P < 0.05) in their effects upon acrosomal morphology and freezing 8 cm above liquid nitrogen and thawing in water at 70 degrees C was best. Dog semen should be frozen in 0.5-mL straws, 8 cm above liquid nitrogen and thawed in water at 70 degrees C.  相似文献   

7.
8.
The effect of two different thawing temperatures on frozen boar semen viability, in vitro fertilizing capacity and chromatin condensation and stability was studied. Freeze-thaw motility, normal apical ridge (NAR), in vitro fertilizing (IVF) capacity and chromatin condensation and stability were evaluated after thawing at 42 degrees C, 40s and 50 degrees C, 40s. Chromatin condensation degree was determined by flow cytometry, using propidium iodide as fluorochrome intercalating agent, and chromatin stability was evaluated by the same procedure after inducing sperm chromatin decondensation with ethylene diamine tetraacetic acid (EDTA) and sodium dodecyl sulfate (SDS). The results showed that thawing straws at 42 degrees C, 40s significantly reduced motility compared to straws thawed at 50 degrees C, 40s. NAR, penetration, monospermy and polyspermy were not different between the two groups of samples thawed at different temperatures. Chromatin was significantly more compact when thawing was performed at 50 degrees C, but its stability did not show any difference relative to thawing at 42 degrees C. It is suggested that the interactions involved in chromatin overcondensation had a non-covalent nature.  相似文献   

9.
Preincubation of spermatozoa is important for capacitation and successful fertilization in vitro. The effects of preincubation time on frozen-thawed boar epididymal spermatozoa as measured by sperm motility, acrosomal integrity and fertilization ability in vitro were examined. Epididymal spermatozoa were collected from three Large White boars and frozen. The thawed spermatozoa were preincubated for 0, 15, 30, 60 and 120 min. Their motility was evaluated by a sperm motility analyzer and then the sperm motility indexes (SMIs) were calculated. The status of their acrosomal integrity was evaluated by triple-staining. Then, their fertilization ability was examined by in vitro fertilization (IVF) using porcine oocytes matured in vitro. SMIs of spermatozoa and the incidences of acrosome-intact live spermatozoa from the three boars were high (21-39 for SMI and 50-61% for acrosome-intact live spermatozoa) just after thawing, but both decreased as the duration of preincubation was prolonged (2-10 and 23-40%, respectively). The incidences of sperm penetration were high (61-89% of inseminated oocytes) when the sperm were preincubated for 0-60 min. However, sperm penetration decreased as the preincubation period was prolonged to 120 min. The degree of this decrease differed depending upon the boar from which the spermatozoa were obtained (10-72%). When the two parameters, sperm motility and acrosomal integrity, were analyzed statistically, the latter parameter rather than the former one showed a significant effect on penetration ability in vitro after each duration of preincubation. These results suggest that preincubation of frozen-thawed boar epididymal spermatozoa is not required for IVF and also that the maintenance of acrosomal integrity in unreacted status, rather than the maintenance of sperm motility, is important for fertilization ability after thawing and during preincubation of boar epididymal spermatozoa.  相似文献   

10.
The objectives of this study were to evaluate the effects and interactions of freezing dog semen using 4 different sperm concentrations (50 x 10(6), 100 x 10(6), 200 x 10(6) and 400 x 10(6) spermatozoa/mL) in 0.5-mL straws and diluting the thawed semen at 4 different rates (1:0, 1:1, 1:2 and 1:4) on post-thaw survival and longevity of dog spermatozoa during incubation at 38 degrees C. Fifteen ejaculates were collected from 12 dogs and pooled. The semen pool was divided into 4 aliquots containing respectively 4,200 x 10(6), 2,100 x 10(6), 1,050 x 10(6) and 525 x 10(6) spermatozoa, which were centrifuged. Sperm pellets were rediluted with TRIS-glucose-egg yolk extender containing 5% glycerol and 0.5% of Equex STM Paste to obtain the designated sperm concentrations. The semen was frozen in 0.5-mL straws 4 cm above liquid nitrogen (LN2). The straws were thawed at 70 degrees C for 8 sec and the contents of each straw were divided into 4 aliquots and diluted with TRIS buffer at 38 degrees C at rates of 1:0, 1:1, 1:2 and 1:4 (semen:buffer), respectively, making a total of 16 treatments. Sperm motility was subjectively evaluated after thawing and at 1-h intervals during 8 h of incubation at 38 degrees C. Plasma membrane integrity and acrosomal status were evaluated at 1, 3, 6, 12 and 18 h post-thaw using a triple-staining procedure and flow cytometry. For data pooled across the post-thaw dilution rate, motility was higher (P< 0.001) in samples frozen with 200 x 10(6) spermatozoa/mu. The integrity of sperm plasma membranes after 18 h incubation was higher (P<0.05) in samples frozen with 200 x 10(6) and 400 x 10(6) spermatozoa/mL. For data pooled across sperm concentration, samples diluted at a rate of 1:2 or 1:4 had better (P<0.001) motilities after 8 h of incubation than undiluted samples or those diluted at 1:1. The integrity of the sperm plasma membranes was higher (P<0.001) at increasing dilution rates. When the 16 treatments were compared, the best longevity was obtained when semen packaged at a concentration of 200 x 10(6) spermatozoa/mL was diluted immediately after thawing at 1:4 dilution rate.  相似文献   

11.
The present study was undertaken to examine whether the cooling and freezing extenders containing a mixture of antioxidants (AOs) catalase, Na-pyruvate and mercaptoethanol and one of three types of cryoprotectants (CPs) would be able to improve the quality of frozen-thawed boar sperm. The collected semen, only the sperm-rich fraction, was diluted 1:1 with Androhep plus? extender, stored at 15°C for 2 h and centrifuged. The centrifuged sperm pellet was re-suspended in lactose-egg yolk extender and divided into four groups for mixing with freezing extenders containing different kinds of CPs at 5°C: (I) glycerol (GLY) as control; (II) GLY with AOs; (III) dimethyl formamide (DMF) with AOs and (IV) dimethyl acetamide (DMA) with AOs. Processed sperm were packaged in 0.25-mL straws and frozen using a controlled rate freezer. After thawing, the diluted thawed sperm were incubated at 38°C for 10 min and was assessed for motility by CASA, membrane/acrosome integrity by FITC-PNA/PI and DNA integrity (DFI) by SCSA. All sperm parameters evaluated, except DFI, were negatively affected (P<0.001) when using DMF (III) or DMA (IV) as CPs instead of GLY (I and II). Total sperm motility was lower (P<0.001) in the samples supplemented with AOs (32.4 ± 1.2, 23.9 ± 1.5, 6.9 ± 0.7, and 10.3 ± 0.9%, for treatments I, II, III and IV, respectively). The quality of sperm frozen in DMF was not different from DMA (P>0.05). There was no difference in DFI among the studied groups (P>0.05). In conclusion, based on the present results, addition of AOs to cooling and freezing extenders and/or replacement of GLY with DMF or DMA could not improve quality of frozen-thawed boar sperm.  相似文献   

12.
Different thawing methods are used for stallion semen, however, it is unclear which method is the optimal one. To determine if the thawing temperature has an effect on semen quality, we compared 2 thawing temperatures, 75 degrees C and 37 degrees C. The following parameters were used to measure sperm quality: sperm motility, sperm viability, plasma membrane integrity and sperm morphology. Twenty-three ejaculates from 10 Dutch Warmblood stallions were thawed either at 37 degrees C for 30 sec or at 75 degrees C for 7 sec. Sperm motility was evaluated by a Hamilton Thorn Motility Analyser. Plasma membrane integrity and sperm viability were evaluated by using a live/dead fluorescein stain containing a calcein AM probe and ethidium homodimer-1 probe. The eosinaniline blue staining method was used to evaluate the percentage of live and dead cells, as well as sperm morphology. There was no significant difference (P = 0.84) between sperm motility after thawing at 37 degrees C and 75 degrees C. There was also no significant difference (P = 0.053) between the percentage of live spermatozoa using the calcein AM/ethidium homodimer stain after thawing at 37 degrees C and 75 degrees C. There was, however, a significant difference (P = 0.032) between the percentage of live spermatozoa using the eosin-aniline blue stain after thawing at 37 degrees C compared with that at 75 degrees C. In conclusion, our laboratory results indicated that stud farms using frozen semen should thaw the straws at 37 degrees C instead of 75 degrees C. The lower temperature is easier to work with, as thawing at the higher temperature requires special equipment and has to be timed very carefully to avoid damage to the spermatozoa.  相似文献   

13.
In large herds, inseminators frequently thaw multiple straws of semen and prepare several insemination guns at once. The aim of this study was to measure the effect of breeding order, the order that thawed straws are used, on conception rate in commercial dairy herds. A single professional inseminator, utilizing semen from five suppliers, performed 2629 inseminations over 30 months. Up to four straws were thawed at one time with the restriction that straws were used within 20 min of thawing. Straws were thawed per supplier's recommendations, with 66.4% of the straws pocket thawed and the remainder warm-water thawed. Conception was determined by a pregnancy check at 42 days. Data were modeled by multiple logistic regression analysis, which included herd, breeding order, lactation number, times bred, month bred and year bred. Breeding order had no significant effect on the probability of conception: Cows 1-4 achieved adjusted conception rates of 0.36, 0.41, 0.37, and 0.39, respectively. Odds ratios (and 95% confidence intervals) were 1.00 (1.00-1.00), 1.22 (0.99-1.49), 1.04 (0.82-1.32), and 1.12 (0.86-1.45), respectively. Associated laboratory studies, which evaluated the effect of post-thaw holding time on percentage of sperm with progressive motility, found mean values at 20 min holding time to be largely unchanged from mean values at 5 min. Thawing temperatures were 6, and 35 degrees C and holding temperatures were 6, 22, and 35 degrees C. The length of the trial and the wide use of semen from multiple suppliers with differing thawing methods suggests that under similar conditions, a careful and experienced inseminator can thaw multiple straws of semen and prepare insemination guns sufficient to breed up to four cows within 20 min, without an adverse effect on conception.  相似文献   

14.
The objective of this study was to verify the effect of different freezing curves, straw sizes, and thawing rates on the cryopreservation of collared peccary semen. Twelve ejaculates were obtained from captive adult males by electroejaculation, and evaluated for sperm motility, kinetic rating, viability, morphology, and functional membrane integrity. The ejaculates were diluted in a coconut water extender (ACP-116c) with egg yolk and glycerol, packaged into 0.25 mL or 0.50 mL plastic straws and cryopreserved in liquid nitrogen following a slow (−10 °C/min) or a fast (−40 °C/min) freezing curve. After one week, samples were thawed at 37 °C/1 min or 70 °C/8 s and evaluated as reported for fresh semen, and also for kinematic parameters (computerized analysis). A significant decrease in sperm motility and kinetic rating was observed after glycerol addition at 5 °C and also after thawing for all the treatments (P < 0.05). Regarding post-thaw semen variables, no differences were verified between freezing curves when the same straw size and thawing rate were taken as reference (P > 0.05). In general, values for sperm characteristics found after thawing at 37 °C were better preserved than at 70 °C (P < 0.05), both in the use of 0.25 mL or 0.50 mL straws, which were similar for semen packaging (P > 0.05). The evaluation of the kinematic parameters of sperm motility confirmed these results at values varying from 20% to 30% motile sperm for the samples thawed at 37 °C, and values fewer than 12% motile sperm for samples thawed at 70 °C (P < 0.05). In conclusion, we recommend the use of a fast freezing curve that reduces the time spent on the cryopreservation of collared peccary semen, which could be packaged both in 0.25 mL or 0.50 mL straws, but the thawing should be conducted at 37 °C/1 min.  相似文献   

15.
The effect of thawing velocities ranging from 10°C/min to 1.800°C/min on the motility and acrosomal integrity of boar spermatozoa frozen at 1°C/min (suboptimal), 5°C/min, and 30°C/min (optimal) rate was studied with the sperm suspended for freezing in diluent containing 2, 4, or 6% of glycerol (v/v). The influence of thawing on sperm survival depends on the rate at which the sperm had been frozen. In semen frozen at a suboptimal rate of 1°C/min, the percentage of motile sperm (FMP) initially fell to 3.5–4.0% when the thawing rose to 200°C/ min, but, with further increases in thawing rate, increased and reached peak values (10.3–11.0% FMP) after thawing at 1,800°C/min. The percentage of sperm with normal apical ridge (NAR) also increased moderately with thawing rate, but the degree of improvement decreased as the glycerol level was increased. In semen frozen at 1°C/min, acrosomal integrity (NAR) was best maintained in 2% glycerol, reaching 22.9% NAR after thawing at 1,800°C/min. In semen frozen at the optimal rate of 30°C/min, the increases in thawing rates above 200°C/min substantially improved motility. Motility was generally higher in semen protected by 4 or 6% glycerol, with the peak values of 44 or 46% FMP, respectively, after thawing at 1,200°C/min. The proportion of sperm with NAR also increased with thawing rate, but as in the case of suboptimally frozen sperm it was influenced negatively by the glycerol concentration. The peak value 53% NAR was recorded in semen protected by 2% glycerol, frozen at 30°C/min, and thawed at 1,200°C/min. In view of the inverse relationship between FMP and NAR, selection of optimal conditions from among the interacting variables, freezing rate, glycerol concentration, and thawing rate requires compromising between maximal FMP and maximal NAR. Accordingly, we have adopted as optimal a protocol with a thawing rate of 1,200°C/min, a freezing rate of 30°C/min and concentrations of 3% glycerol. © 1993 Wiley-Liss, Inc.  相似文献   

16.
A continuous decline in the number and range of capercaillie (Tetrao urogallus L.) in many European countries can be observed, mostly due to habitat destruction by human activity, unecological forestry management, and increased density of natural predators. Ex situ in vitro gene banks provide a unique opportunity to preserve the genetic material for future generations. Simple and effective cryopreservation methods for capercaillie semen are discussed. Semen was collected from seven males kept in the Capercaillie Breeding Centre at Forestry Wisła in Poland. Within five minutes after collection, ejaculates were diluted with EK diluent, then divided into two parts, and subjected to two freezing procedures: in pellets and in straws. In fresh semen, ejaculate clearness, viscosity, color and volume, as well as sperm concentration, motility and morphology, were evaluated, while in frozen-thawed semen only motility and morphology of sperm were determined. Fertilizing ability of thawed semen was examined for samples frozen in straws. Significant (P<0.05) differences between individual males were found in relation to the majority of fresh semen traits: ejaculate volume averaged 102.1 µL (varying from 49.0 to 205.0); average sperm concentration was 632.5 x106 mL-1 (178.8–1257.1); percentage of live normal cells varied from 39.2 to 70.3% (58.7% on an average); percentage of motile cells ranged from 76.0 to 85.7%) and motility parameters were male dependent, as well. Both cryopreservation methods had a negative effect on morphology and motility of frozen-thawed semen; however, the straw method yielded 60.7% and the pellet method 42.5% of live cells in total in thawed semen (P<0.05), while the number of live normal (intact) cells was similar (22.4 and 22.2%, respectively). Egg fertility varied between 77.8 and 91.7% (average 84.4%). Both freezing procedures seem to be effective in obtaining acceptable viability and high fertilizing potency of thawed sperm and can be used to create a gene bank of capercaillie semen.  相似文献   

17.
The process of cryopreservation impairs sperm cell function, potentially leading to a reduction in fertility. The objectives of the present study were to evaluate the effects that cryopreservation using two different extenders has on sperm motility and mitochondrial function, as well as on the integrity of plasma membranes, acrosomal membranes and chromatin, using practical and objective techniques. The focus of the present study was to identify correlations between alterations in sperm membranes and sperm motility in cryopreserved bovine spermatozoa. Seven ejaculates were collected from eight Simmental bulls (n=56). After collection, semen volume and concentration were assessed for purposes of dilution. Sperm motility was evaluated subjectively and by computer-assisted semen analysis, morphological characteristics were evaluated by differential interference microscopy, the integrity of plasma and acrosomal membranes, as well as mitochondrial function, were determined using a combination of fluorescent probes containing fluorescein isothiocyanate-Pisum sativum agglutinin, propidium iodide or 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide. Chromatin integrity was evaluated using the acridine orange technique. The semen was subsequently divided into two aliquots and diluted with one of two extenders (Bioxcell or Botu-Bov), after which both were packaged in 0.5 mL straws and frozen using an automated system. Two straws of semen from each treatment were thawed, and the semen parameters were evaluated as described above. Cryopreservation of sperm reduced motility, damaging plasma and acrosomal membranes, as well as decreasing mitochondrial function. The Botu-Bov extender was more effective in preserving sperm motility and membrane integrity than was the Bioxcell extender.  相似文献   

18.
The effects of different freezing and thawing rates on the post-thaw motility and membrane integrity of boar spermatozoa, processed as split samples in Maxi-straws or flat PET-plastic packages (FlatPack) were studied. A programmable freezing device was used to obtain freezing rates of either 20, 50 or 80 degrees C/min. Thawing of the samples was performed in a bath of circulating water; for 40s at 50 degrees C or 27s at 70 degrees C for Maxi-straws and 23s at 35 degrees C, 13s at 50 degrees C or 8s at 70 degrees C for the FlatPacks. Sperm motility was assessed both visually and with a computer assisted semen analysis (CASA) apparatus, while plasma membrane integrity was assessed using the fluorescent probes Calcein AM and ethidium homodimer-1. Temperature changes during freezing and thawing were monitored in both forms of packaging. Values for motile spermatozoa, sperm velocity and lateral head displacement variables were significantly (p<0.05) higher for samples frozen in FlatPacks than in Maxi-straws, with superior results at higher thawing rates. Freezing at 50 degrees C/min yielded better motility than 20 or 80 degrees C/min, although the effect was rather small. Neither freezing rate nor thawing rate had any effect on membrane integrity (p>0.05). A significant boar effect was seen for several parameters. The most striking difference in temperature courses between containers was a 4-5-fold lowering of the thawing rate, between -20 and 0 degrees C, in the center of the Maxi-straw, compared with the FlatPack. This is apparently due to the insulating effect of the thawed water in the periphery of the Maxi-straw. The improvement in sperm motility seen when using the FlatPack appears to be related to the rapid thawing throughout the sample, which decreases the risk of cell damage due to recrystallization during thawing. Since sperm motility patterns have been reported to be correlated with fertility both in vitro and in vivo it is speculated that the use of the FlatPack might improve the results when using frozen-thawed boar spermatozoa for artificial insemination.  相似文献   

19.
Previous studies have shown sperm quality post-cryopreservation differs depending on the fraction of the seminal plasma boar spermatozoa are fortuitously contained in. As such, spermatozoa contained in the first 10 mL of the sperm-rich fraction (portion I) have better sustained handling procedures (extension, handling and freezing/thawing) than those contained in the ulterior part of a fractionated ejaculate (second portion of the sperm-rich fraction and the post-spermatic fraction, portion II). However, those studies were performed using pooled samples. In the present study, individual ejaculates were used. Split ejaculates (portions I and II) from five boars were frozen and thawed using a conventional freezing protocol, followed by computer-assisted motility and morphology analysis (CASA and ASMA, respectively), as well as an Annexin-V assay for spermatozoa from each boar and ejaculate portion. Significant differences between portions were observed in all ASMA-derived variables, except in one boar. Also significant differences were observed between boars and ejaculate portions in sperm quality post-thaw. We identified, however, boars showing best results of motility and sperm membrane integrity post-thaw in portion I, while in other boar the best results was observed in portion II. It is concluded that the identification of the ejaculate portion more suitable to sustain cryopreservation in each individual boar may be a readily applicable and easy technique to diminish variation in sperm freezability among boars.  相似文献   

20.
Hu JH  Li QW  Jiang ZL  Li WY 《Cryobiology》2008,57(3):257-262
The sperm-rich fraction, collected from eight mature Yorkshire boars, was frozen in an extender containing 9% LDL (w/v), 100 mM trehalose, or 20% yolk (v/v), respectively. Sperm DNA integrity was assessed using the single-cell gel electrophoresis (SCGE). Other sperm quality characteristics such as motility, acrosome and membrane integrity were also monitored. The results showed that freezing–thawing caused an increase in sperm DNA fragmentation, and extender containing 9% LDL could significantly protect sperm DNA integrity (P < 0.05) from the damage caused by cryopreservation and decrease DNA damages compared with extender containing 100 mM trehalose and 20% yolk (v/v). No significant difference in damaged DNA was detected between frozen and unfrozen semen samples for extender of 9% LDL and 100 mM trehalose, but cryopreservation could increase the degree of DNA damage (P < 0.05), the percentage of damaged DNA degree of grade 2 and 3 was significantly increased. The deterioration in post-thaw sperm DNA integrity was concurrent with reduced sperm characteristics. The data here demonstrated that the cryoprotectant played a fundamental role in reducing boar sperm DNA damage and protecting DNA integrity. It can be suggested that evaluation of sperm DNA integrity, coupled with correlative and basic characteristics such as motility, acrosome integrity and membrane integrity, may aid in determining the quality of frozen boar semen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号