首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We examined the expression patterns of porcine sirtuin 1 to 3 (Sirt1-3) genes in preimplantation embryos derived from parthenogenetic activation (PA), in vitro fertilization (IVF) and somatic cell nuclear transfer (SCNT). We also investigated the effects of sirtuin inhibitors (5 mM nicotinamide [NAM] and 100 μM sirtinol) on embryonic development of PA and IVF embryos under in vitro culture (IVC). The expression patterns of Sirt1-3 mRNA in preimplantation embryos of PA, IVF, and SCNT were significantly (P < 0.05) decreased from metaphase stage of oocyte to blastocyst stage. Especially, the expressions of Sirt1-3 in SCNT blastocysts were significantly (P < 0.05) lower and Sirt2 in PA blastocyst was significantly higher compared with the IVF blastocysts. Treatment with sirtuin inhibitors during IVC resulted in significantly (P < 0.05) decreased blastocyst formation and total cell number of blastocyst derived from PA (NAM: 29.4% and 29.6, sirtinol: 31.0% and 30.3, and control: 40.9% and 41.7, respectively) and IVF embryos (NAM: 10.4% and 30.9, sirtinol: 6.3% and 30.5, and control: 16.7% and 42.8, respectively). There was no significant difference in cleavage rate in both PA and IVF embryos. The early and expanded blastocyst formations at Day 7 were significantly lower in the sirtuin inhibitors-treated groups than the control. It was demonstrated that sirtuin inhibitor (NAM) influenced the percentage of blastocyst formation and total cell number of PA derived blastocyst when NAM was added during Day 4 to 7 (22.1% and 32.4) or Day 0 to 7 (23.1% and 31.6) of IVC compared with the control (41.8% and 41.5). No significant difference in cleavage rates appeared among the groups. The blastocysts derived from PA embryos treated with sirtuin inhibitors showed lower (P < 0.05) expressions of POU5F1 and Cdx2 genes. Also, Sirt2 mRNA expression was significantly decreased in sirtinol treated group and Sirt3 mRNA expression was also significantly decreased in both NAM and sirtinol treated groups compared with the control. In conclusion, these results suggest that sirtuins may have a physiological and important role in embryonic development of porcine preimplantation embryos by regulating essential gene expressions of developing embryos. These findings could have implications for understanding the role of sirtuins during embryo development and for improving SCNT and related techniques.  相似文献   

2.
Of eggs ovulated in LT/Sv mice, 10–20% undergo spontaneous parthenogenetic activation, and 40–50% of the parthenotes develop to blastocysts when cultured in simple defined medium from the one-cell stage. Similar percentages of oocytes isolated from Graafian follicles undergo parthenogenetic activation after spontaneous maturation in simple defined medium, but embryonic development proceeds no further than the two-cell stage. The simple defined medium that supported preimplantation development of ovulated eggs and spontaneous maturation of extrafollicular oocytes contained no serum, free amino acids, or vitamins. The present experiments were conducted to determine what conditions during spontaneous maturation of extrafollicular oocytes could promote the ability of oocytes to develop to blastocysts after parthenogenetic activation and mimic the environment of preovulatory follicles. Cumulus-enclosed oocytes that were matured in simple medium supplemented with fetal bovine serum (FBS) developed to blastocysts after spontaneous parthenogenetic activation. Furthermore, minimum essential medium (MEM), a complex medium containing free amino acids and vitamins, could substitute completely for FBS for maturing oocytes from (C57BL/6J × LT/Sv)F1 mice, and to a lesser extent for maturing LT/Sv oocytes. Therefore, even though germinal vesicle breakdown in mouse oocytes and preimplantation development of mouse eggs can occur in the absence of an exogenous supply of free amino acids and vitamins, a complete, or normal, mouse oocyte maturation cannot. These results also demonstrated that gonadotropins are not necessary during oocyte meiotic maturation for parthenogenetically activated eggs to develop through the preimplantation stages. Luteinizing hormone or 17β-estradiol in MEM during oocyte maturation had no effect on the subsequent development of parthenotes. In contrast, follicle stimulating hormone (FSH) and progesterone in the maturation medium decreased the number of ova that subsequently cleaved, and FSH decreased the number of cleaved eggs that developed to blastocysts.  相似文献   

3.
Intercellular coupling between cumulus cells and oocytes persists after oocyte meiotic maturation has been initiated. The experiments described here focus on the relationship between oocyte-cumulus cell intercellular coupling during maturation and the subsequent embryonic development of spontaneous mouse parthenotes. Several lines of evidence suggest that this coupling during oocyte maturation is required for the acquisition of the capacity for spontaneous mouse parthenotes to develop embryologically. First, the period of time that LT/Sv oocytes remained coupled to cumulus cells during oocyte maturation in vivo corresponded to that required for the acquisition of the capacity for parthenogenetic embryonic development. Second, the longer that cumulus cells were present during Fpontaneous oocyte maturation in vitro, the higher was the percentageofova undergoing subsequent parthenogenetic development. Third, cumulus cell-free oocytes cocultured with cumulus cell-enclosed oocytes during the maturation period in vitro did not develop embryologically. Fourth, intercellular coupling between cumulus cells and oocytes persisted throughout the oocyte maturation period in vitro. Fifth, incubation of oocyte-cumulus cell complexes in medium containing follicle-stimulating hormone (FSH) promoted uncoupling and decreased the percentage of ova undergoing parthenogenetic development. Thus, cell-to-cell communication, mediated via the intercellular coupling pathway between cumulus cells and oocytes, plays an important role during oocyte maturation and relates to subsequent preimplantation development.  相似文献   

4.
The objective was to investigate the effects of oxygen tension and follicle cells (FCs) during in vitro maturation of porcine oocytes in only porcine (Sus scrofa domesticus) follicular fluid (pFF), using static and non-static (rotating) culture systems, on the nuclear maturation and subsequent in vitro fertilization of the oocytes. In the first experiment, cumulus-oocyte complexes (COCs) were matured for 48 h in pFF supplemented with (+) or without (−) FCs (5.2 × 106 cells/mL), using the static (S) and rotating (R) culture systems (+FC/S, −FC/S, +FC/R, and −FC/R) under 5% or 20% O2. Co-culture with FCs in the static culture system (+FC/S) had a detrimental effect on the meiotic competence of oocytes, whereas co-culture with FCs in the rotating culture system (+FC/R) increased maturation rates. In both culture systems, oxygen tension had no apparent effects on meiotic competence of oocytes, irrespective of culture system and FC addition. In the second experiment, COCs were matured under 5% or 20% O2 using the −FC/S or +FC/R culture systems and then fertilized. Oxygen tension had no significant effects on fertilization parameters, irrespective of the culture system. The rotating culture system increased rates of sperm penetration and male pronuclear formation and decreased polyspermic fertilization compared with the static culture system (P < 0.05). In conclusion, both −FC/S and +FC/R culture systems supported meiotic competence, irrespective of oxygen tension. However, the +FC/R culture system may be superior to the −FC/S culture system for promoting fertilization.  相似文献   

5.
The objective was to evaluate mitochondrial distribution, and its relationship to meiotic development, in canine oocytes during in vitro maturation (IVM) at 48, 72, and 96 h, compared to those that were non-matured or in vivo matured (ovulated). The distribution of active mitochondria during canine oocyte maturation (both in vitro and in vivo) was assessed with fluorescence and confocal microscopy using MitoTracker Red (MT-Red), whereas chromatin configuration was concurrently evaluated with fluorescence microscopy and DAPI staining. During IVM, oocytes exhibited changes in mitochondrial organization, ranging from a fine uniform distribution (pattern A), to increasing clustering spread throughout the cytoplasm (pattern B), and to a more perinuclear and cortical distribution (pattern C). Pattern A was mainly observed in germinal vesicle (GV) oocytes (96.4%), primarily in the non-matured group (P < 0.05). Pattern B was seen in all ovulated oocytes which were fully in second metaphase (MII), whereas in IVM oocytes, ∼64% were pattern B, irrespective of duration of culture or stage of nuclear development (P > 0.05). Pattern C was detected in a minor percentage (P < 0.05) of oocytes (mainly those in first metaphase, MI) cultured for 72 or 96 h. In vitro matured oocytes had a minor percentage of pattern B (P < 0.05) and smaller mitochondrial clusters in IVM oocytes than ovulated oocytes, reaching only 4, 11, and 17% of MII at 48, 72, and 96 h, respectively. Thus, although IVM canine oocytes rearranged mitochondria, which could be related to nuclear maturation, they did not consistently proceed to MII, perhaps due to incomplete IVM, confirming that oocytes matured in vitro were less likely to be competent than those matured in vivo.  相似文献   

6.
The present study was designed to evaluate the viability, meiotic competence and subsequent development of porcine oocytes vitrified using the cryotop method at different stages of in vitro maturation (IVM). Cumulus–oocyte complexes (COCs) were cultured in IVM medium supplemented with 1 mM dibutyryl cAMP (dbcAMP) for 22 h and then for an additional 22 h without dbcAMP in the medium. Germinal vesicle (GV), germinal vesicle breakdown (GVBD), metaphase I (MI), anaphase I/telophase I (AI/TI) and metaphase II (MII) were found to occur predominantly at 0–22, 26, 32, 38 and 44 h of IVM, respectively. Oocytes were exposed to cryoprotectant (CPA) or vitrified after different durations of IVM (0, 22, 26, 32, 38 and 44 h). After CPA exposure and vitrification, surviving oocytes that were treated before completion of the 44 h maturation period were placed back into IVM medium for the remaining maturation period, and matured oocytes were incubated for 2 h. CPA treatment did not affect the viability of oocytes matured for 26, 32, 38 or 44 h, but significantly decreased survival rate of oocytes matured for 0 or 22 h. CPA treatment had no effect on the ability of surviving oocytes to develop to the MII stage regardless of the stage during IVM; however, blastocyst formation following PA was severely lower (P < 0.05) than that in the control. At 2 h post-warming, the survival rates of oocytes vitrified at 26, 32, 38 and 44 h of IVM were similar but were higher (P < 0.05) than those of oocytes vitrified at 0 or 22 h of IVM. The MII rates of surviving oocytes vitrified at 0 and 38 h of IVM did not differ from the control and were higher (P < 0.05) than those of oocytes vitrified at 22, 26 or 32 h of IVM. After parthenogenetic activation (PA), both cleavage and blastocyst rates of vitrified oocytes matured for 22, 26, 32, 38 and 44 h did not differ, but all were lower (P < 0.05) than those matured 0 h. In conclusion, our data indicate that survival, nuclear maturation and subsequent development of porcine oocytes may be affected by their stage of maturation at the time of vitrification; a higher percentage of blastocyst formation can be obtained from GV oocytes vitrified before the onset of maturation.  相似文献   

7.
Wu GQ  Jia BY  Li JJ  Fu XW  Zhou GB  Hou YP  Zhu SE 《Theriogenology》2011,76(5):785-793
The objective was to determine whether adding L-carnitine in IVM/IVC medium enhanced maturation and developmental competence of porcine oocytes in vitro. Oocyte maturation rates did not differ significantly among groups supplemented with 0, 0.25, 0.5, or 1 mg/mL of L-carnitine added during IVM (although 2 mg/mL of L-carnitine reduced maturation rate). Compared with control oocytes, those treated with 0.5 mg/mL of L-carnitine during IVM had greater (P < 0.05) rates of blastocyst formation after parthenogenetic activation, and these blastocysts had less (P < 0.05) apoptosis. Adding 0.5 mg/mL of L-carnitine during IVM also significantly reduced intracellular reactive oxygen species (ROS), and increased glutathione (GSH) concentrations. With or without glucose supplementation, 0.5 mg/mL of L-carnitine in the IVM medium significantly hastened nuclear maturation of oocytes. Moreover, supplementing the IVM medium with either glucose or L-carnitine increased (P < 0.05) percentages of oocytes that reached the metaphase II (MII) stage, relative to a control group. Final maturation rates in IVM medium containing either glucose or L-carnitine were not significantly different. Adding L-carnitine (0 to 2 mg/mL) to IVC medium for activated porcine oocytes did not significantly affect development. However, 0.5 mg/mL of L-carnitine in IVC medium significantly reduced reactive oxygen species levels and apoptosis in activated blastocysts, although glutathione concentrations were not significantly altered. In conclusion, adding L-carnitine during IVM/IVC improved developmental potential of porcine oocytes, and also the quality of parthenogenetic embryos, probably by accelerating nuclear maturation, and preventing oxidative damage and apoptosis.  相似文献   

8.
9.
10.
Under organ culture, female fetal gonads in mice cannot develop beyond the preantral follicle stage unless the follicles are individually isolated and cultured again. In this study, we investigated the effect of in vitro culture of female fetal gonads before transplantation on subsequent in vivo development. The gonads derived from female fetuses 12.5 days postcoitum were organ-cultured for 0, 7 and 14 days, and then were grafted underneath the kidney capsules of severe combined immunodeficient mice and recovered at 21, 14 and 7 days post-transplantation, respectively. The histological analysis of the grafts showed that the in vitro culture of the fetal gonads restricted follicular development to the antral follicle stage post-transplantation. In the grafts cultured for 14 days, particularly, no antral follicle was observed. However, the oocytes in these follicles had grown to around 65 µm in diameter and had competence to resume meiosis in vitro . When the fetal gonads were grafted after culture for 7 and 14 days, 13.0% and 6.8% of the oocytes progressed to the metaphase II stage, respectively. These data showed significant differences ( P  < 0.05) in comparison with the control group (25.3%). Our results indicate that the in vitro culture of female fetal gonads before transplantation affects the subsequent in vivo development of both follicular cells and oocytes, and in vitro oocyte maturation. However, this effect seems to be more severe in terms of follicular development when compared with oocyte growth and maturation.  相似文献   

11.
A reduction in co-incubation time has been suggested as an alternative method to reduce polyspermic fertilization. The aim of this study was to evaluate the effect of short periods of gamete co-incubation during pig in vitro fertilization. A total of 2833 in vitro matured oocytes were inseminated with thawed spermatozoa and coincubated for 0.25, 1, 2, 3, 7, 10 min and 6 h. The oocytes from the 0.25–10 min groups were washed three times in modified Tris-buffered medium (mTBM) medium to remove spermatozoa not bound to the zona and transferred to the same medium (containing no spermatozoa) until 6 h of co-incubation time were completed. After 6 h, presumptive zygotes from each group were cultured in NCSU-23 medium for 12–15 h to assess fertilization parameters. After each period of co-incubation, 45–50 oocytes from each group were stained with Hoechst-33342 and the number of spermatozoa bound to the zona was counted. Although the number of zona bound spermatozoa increased (p < 0.05) with the co-incubation time, no increase was observed in penetration rates among groups from 2 min to 6 h of co-incubation time (ranging from 53.5 ± 2.8 to 61.3 ± 2.6%). Similarly, the efficiency of fertilization reached a maximum for the 2 min of co-incubation group with values ranging between 32.3 ± 2.4 and 41.9 ± 2.5%. The reduction of co-incubation time did not affect the monospermy rate (range: 71.3 ± 3.4–80.2 ± 3.8%) and the mean number of spermatozoa/oocyte (range: 1.2 ± 0.4–1.4 ± 0.5). These results show that, under our in vitro conditions, high penetration rate can be obtained with co-incubation times as short as 2 min, although monospermy could not be improved using this strategy.  相似文献   

12.
X-box-binding protein 1 (XBP1) is an important regulator of a subset of genes active during endoplasmic reticulum (ER) stress. In the present study, we analyzed XBP1 level and location to explore the effect of ER stress on oocyte maturation and developmental competency of porcine embryos in an in vitro culture system. First, we examined the localization of XBP1 at different meiotic stages of porcine oocytes and at early stages of parthenogenetic embryo development. Fluorescence staining showed that expression of functional XBP1 was weak in mature oocytes and at the 1-, 2-, and 8-cell stages of embryos but abundant at the germinal vesicle (GV), 4-cell, morula, and blastocyst stages. In addition, RT-PCR revealed that both spliced XBP1 (XBP1-s) and unspliced XBP1 (XBP1-u) were expressed at the GV, 4-cell, morula, and blastocyst stages. Tunicamycin, an ER stress inducer, induced active XBP1 protein in nuclei of 4-cell embryos. Next, porcine embryos cultured in the presence of tauroursodeoxycholate, an ER stress inhibitor, were studied. Total cell numbers and the extent of the inner cell mass increased (P < 0.05), whereas the rate of nuclear apoptosis decreased (P < 0.05). Moreover, expression of the antiapoptotic gene BCL2 increased, whereas expression of the proapoptotic genes BCL2L1 (Bcl-xl) and TP53 decreased. The results indicated that inhibition of ER stress enhanced porcine oocyte maturation and embryonic development by preventing ER stress-mediated apoptosis in vitro.  相似文献   

13.
L. Zhang  Y. Liu 《Theriogenology》2010,73(8):1096-1103
Brain-derived neurotrophic factor (BDNF) can promote developmental competence in mammalian oocytes during in vitro maturation, but the signal transduction pathways are not clear. In this study, we investigated (using western blots) the effects of BDNF on the phosphorylation of protein kinase B (PKB) and mitogen-activated protein kinase (MAPK) in mouse oocytes and cumulus cells cultured in vitro. Treatment with BDNF enhanced phosphorylation of PKB in oocytes at 2 h (P = 0.0006) and 3 h (P < 0.0001) of in vitro maturation, compared with control oocytes. However, the pan-specific tyrosine kinase (Trk) inhibitor K252a together with BDNF completely inhibited phosphorylation of PKB in the oocytes. Furthermore, BDNF increased phosphorylation of MAPK in oocytes at 16 h of in vitro maturation (P = 0.0041), but K252a together with BDNF did not reduce phosphorylation of MAPK in the oocytes. For cumulus cells, BDNF significantly prolonged the phosphorylation of PKB and MAPK and increased the total amounts of PKB and MAPK proteins after 16 h of in vitro maturation. However, BDNF did not affect apoptosis of the cumulus cells during oocyte maturation in vitro. In conclusion, the PKB pathway is likely to be one signaling cascade activated by BDNF in combination with the TrkB receptor, whereas the MAPK pathway is not involved. These findings may have relevance for BDNF-induced promotion of developmental capacity of in vitro-matured oocytes.  相似文献   

14.
This paper is a review of the current status of technology for mammalian oocyte growth and development in vitro. It compares and contrasts the characteristics of the various culture systems that have been devised for the culture of either isolated preantral follicles or the oocyte-granulosa cell complexes from preantral follicles. The advantages and disadvantages of these various systems are discussed. Endpoints for the evaluation of oocyte development in vitro, including oocyte maturation and embryogenesis, are described. Considerations for the improvement of the culture systems are also presented. These include discussions of the possible effects of apoptosis and inappropriate differentiation of oocyte-associated granulosa cells on oocyte development. Finally, the potential applications of the technology for oocyte growth and development in vitro are discussed. For example, studies of oocyte development in vitro could help to identify specific molecules produced during oocyte development that are essential for normal early embryogenesis and perhaps recognize defects leading to infertility or abnormalities in embryonic development. Moreover, the culture systems may provide the methods necessary to enlarge the populations of valuable agricultural, pharmaceutical product-producing, and endangered animals, and to rescue the oocytes of women about to undergo clinical procedures that place oocytes at risk. © 1996 Wiley-Liss, Inc.  相似文献   

15.
Hydroxyurea (HU) is an FDA-approved drug used to treat a variety of diseases, especially malignancies, but is harmful to fertility. We used porcine oocytes as an experimental model to study the effect of HU during oocyte maturation. Exposure of cumulus–oocyte complexes (COCs) to 20 µM (P<0.01) and 50 µM (P<0.001) HU reduced oocyte maturation. Exposure to 20 µM HU induced approximately 1.5- and 2-fold increases in Caspase-3 (P<0.001) and P53 (P<0.01) gene expression levels in cumulus cells, respectively, increased Caspase-3 (P<0.01) and P53 (P<0.001) protein expression levels in metaphase II (MII) oocytes and increased the percentage of apoptotic cumulus cells (P<0.001). In addition, HU decreased the mitochondrial membrane potential (Δφm) (P<0.01 and P<0.001) and glutathione (GSH) levels (P<0.01 and P<0.001) of both cumulus cells and MII oocytes, while increasing their reactive oxygen species (ROS) levels (P<0.001). Following parthenogenetic activation of embryos derived from MII oocytes, exposure to 20 µM HU significantly reduced total blastocyst cell numbers (P<0.001) and increased apoptosis of blastocyst cells (P<0.001). Moreover, HU exposure reduced the rate of development of two-celled, four- to eight-celled, blastocyst, and hatching stages after parthenogenetic activation (P<0.05). Our findings indicate that exposure to 20 µM HU caused significant oxidative stress and apoptosis of MII oocytes during maturation, which affected their developmental ability. These results provide valuable information for safety assessments of HU.  相似文献   

16.
17.
Optimization of culture conditions is important to improve oocyte maturation and subsequent embryo development. In particular, this study analyzed the effects of increasing concentrations of PIO in the maturation medium on spindle formation and chromosome alignment, glutathione, and intracellular ROS levels and expression of selected genes related to maternal markers, apoptosis, and lipid metabolism. The percentage of oocytes displaying normal spindle formation and chromosome alignment was higher in the 1 µM PIO (1 PIO)‐treated group than in the control group. The glutathione level was significantly higher in the 1 PIO‐treated group than in the control group, while the reactive oxygen species level did not differ. Expression of maternal marker (MOS and GDF9), antiapoptotic (BIRC5), and lipid metabolism‐related (ACADS, CPT2, SREBF1, and PPARG) genes was higher in the 1 PIO‐treated group than in the control group, while expression of a proapoptotic gene (CASP3) was lower. The blastocyst formation rate and the percentage of blastocysts that reached at least the hatching stage on Days 6 and 7, and the percentage of blastocysts containing more than 128 cells were significantly higher in the 1 PIO‐treated group than in the control group. These results indicate that PIO treatment during in vitro maturation improves porcine oocyte maturation and subsequent parthenogenetic embryo development mainly by enhancing lipid metabolism and antioxidant defense in oocytes.  相似文献   

18.
This study evaluated the effects of reversible meiotic inhibition and different culture media (PZM3 or NCSU23) on production of porcine embryos by either in vitro fertilization (IVF) or parthenogenetic activation (PA). Oocytes from abattoir-derived ovaries were allocated into two groups for maturation: CHX (5 μg/ml cycloheximide for 10 h) or Control (no CHX). The percentage of metaphase II (MII) oocytes was determined at 36, 40 or 44 h of in vitro maturation. For IVF and PA, denuded oocytes were fertilized with purified sperm for 6 h or activated by electric stimuli. Zygotes were then subdivided into two culture groups: NCSU23 or PZM3. No effect of treatment with CHX and culture media was observed on cleavage (D3) and blastocyst (D7) rates in IVF and PA groups. There are no differences of quality or development rates between IVF-derived embryos cultured in NCSU23 or PZM3. However, we observed high quality PA embryos in PZM3 compared with NCSU23. Maturation arrest with CHX decreased the average blastocyst cell number in IVF while it was increased in PA embryos. As older oocytes are more effectively activated, CHX- blocked oocytes reached the mature stage faster than the control group. In conclusion, the CHX treatment for 10 h, followed by oocyte maturation for 40 h, is an efficient protocol to produce high quality parthenote embryos, especially when they are cultured in PZM3. However, this protocol is not satisfactory for IVF embryos production. In this case, a shorter maturation period could provide better embryo quality.  相似文献   

19.
20.
Regulatory effect of GH on follicular growth and development in the cow is well documented. The aim of this study was to investigate the role of GH on in vitro bovine oocyte maturation. Therefore bovine cumulus oocyte complexes (COCs) were cultured in M199 without FCS and gonadotropins and in the presence of 10, 100, or 1,000 ng/ml bovine GH (NIH-GH-B18). The COCs were incubated at 39°C in a humidified atmosphere with 5% CO2 in air and nuclear stage was assessed after 2, 4, 8, 16, 22, and 24 hr of incubation using DAPI staining. To assess the effect of GH on developmental capacity of the oocytes, COCs were incubated in the presence of GH for 22 hr, followed by IVF and in vitro embryo culture. Cultures without GH served as controls. For subsequent development, the embryos were cultured in M199 supplemented with 10% FCS on a monolayer of BRL cells. Embryos were scored morphologically and the efficiency of the culture system was evaluated as (1) the percentage of cleaved embryos 4 days after IVF, (2) the percentage of blastocysts on day 9 expressed on the basis of the number of oocytes at the onset of culture, and (3) the percentage of hatched blastocysts on day 11 expressed on the basis of the total number of blastocysts present at day 9. GH (100 and 1,000 ng/ml) significantly accelerated nuclear maturation (P < 0.001). A 4 and 8 h the percentage of oocytes in GV stage after GH treatment (54% and 19%) was significantly lower than the control (64% and 41%). Similarly at 16 and 22 h the percentage of oocytes in MII stage was significantly higher in the GH-treated group; (58% and 77%) and (46% and 62%) for GH and control respectively. The number of oocytes in MII beyond 22 hr of culture did not differ; 100 and 1,000 ng/ml GH induced significant cumulus expansion (P < 0.05), which was not observed in the absence of GH. Addition of 100 and 1,000 ng/ml GH during maturation significantly (P < 0.01) enhanced subsequent cleavage rate from (64% and 67%) in control to (75% and 81%) in GH-treated group; embryonic development in terms of day 9 blastocyst formation was also significantly increased in the presence of GH (29% and 34%) compared to the control (18% and 24%). The hatchability of the blastocysts was not influenced by GH. From the present data, it can be concluded that GH present during IVM has a beneficial effect on subsequent development. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号