首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study evaluates a new synthetic substitute (CRYO3, Ref. 5617, Stem Alpha, France) for animal-based products in rabbit embryo cryopreservation solutions. This evaluation was performed using two approaches: a thermodynamic approach using differential scanning calorimetry and a biological approach using rabbit embryo slow-freezing. During the experiment, foetal calf serum (FCS) was used as a reference. Because FCS varies widely by supplier, three different FCS were selected for the thermodynamic approach. The rabbit embryo slow-freezing solutions were made from Dulbecco''s phosphate buffer saline containing 1.5 M Dimethyl Sulfoxide and 18% (v.v−1) of CRYO3 or 18% (v.v−1) of FCS. These solutions were evaluated using four characteristics: the end of melting temperature, the enthalpy of crystallisation (thermodynamic approach) and the embryo survival rates after culture and embryo transfer (biological approach). In the thermodynamic approach, the solutions containing one of the three different FCS had similar mean thermodynamic characteristics but had different variabilities in the overall data with aberrant values. The solution containing CRYO3 had similar thermodynamic properties when compared to those containing FCS. Moreover, no aberrant value was measured in the solution containing CRYO3. This solution appears to be more stable than the solutions containing a FCS. In the biological approach, the in vitro embryo survival rates obtained with the solution containing CRYO3 (73.7% and 81.3%) and with the solution containing a FCS (77.6% and 71.9%) were similar (p = 0.7). Nevertheless, during the in vivo evaluation, the implantation rate (21.8%) and the live-foetuses rate (18.8%) of the CRYO3 group were significantly higher than the implantation rate (7.1%, p = 0.0002) and the live-foetuses rate (5.3%, p = 0.0002) of the FCS group. The pregnancy rate was also higher in the CRYO3 group compared to the FCS group (81.3% and 43.8%, respectively, p = 0.066). We conclude that CRYO3 can be used as a chemically defined substitute for animal-based products in rabbit embryo cryopreservation solutions.  相似文献   

2.
The objective of this study was to determine the effect of fetal calf serum (FCS) on the quality of in vitro produced bovine embryos. Cumulus oocyte-complexes (COCs, n = 2 449) recovered by ovum pick-up from Bos taurus indicus donors were randomly assigned to experimental groups. Sperm selected by Percoll gradient was used for in vitro fertilization (insemination = Day 0). In Experiment 1 (n = 1 745 COCs), zygotes were cultured in vitro in Synthetic Oviduct Fluid + 4 mg/mL of bovine serum albumin (BSA), or BSA + 2% FCS (BSA+FCS). In Experiment 2 (n = 704 COCs), the COCs were cultured in SOF + BSA, BSA + 2% FCS, or BSA + 2% FCS on D4 (BSA + FCSD4). In Experiment 1, blastocyst yield (51%) and Quality I blastocysts (41%) at Day 7 were higher (P < 0.05) in the BSA + FCS treatment than in BSA (42 and 30%, respectively). In Experiment 2, blastocyst yield was higher (P < 0.05) in the BSA+FCS (47%) treatment. Quality I blastocyst yield was higher (P < 0.05) for BSA + FCS (34%) and BSA+FCSD4 (32%) compared to the BSA treatment (20%). A total of 820 embryos were transferred, with no significant differences among groups in pregnancy rates. In conclusion, in vitro culture in SOFaaci + BSA + FCS enhanced blastocyst yield and Quality I blastocysts; adding FCS to the culture medium increased the efficiency of IVP of bovine embryos.  相似文献   

3.
The present study was designed to determine whether different calcium concentrations in the vitrification solutions could improve the developmental competence of in vitro matured ovine oocytes after cryopreservation. In vitro matured oocytes were vitrified with 16.5% ethylene glycol (EG) + 16.5% dimethylsulfoxide (DMSO) vitrification media. The base media contain different calcium concentrations, so that five experimental groups were obtained: TCM/FCS (TCM 199 + 20% fetal calf serum (FCS), [Ca2+] 9.9 mg/dl); PBS/FCS (Dulbecco Phosphate Buffered Saline (PBS) + 20% FCS, [Ca2+] 4.4 mg/dl); PBSCaMg free/FCS (PBS without Ca2+ and Mg2+ + 20% FCS [Ca2+] 2.2 mg/dl); PBS/BSA (PBS + 0.4% bovine serum albumin (BSA), [Ca2+] 3.2 mg/dl) and PBSCaMg free/BSA (PBS without Ca2+ and Mg2+ +0.4% BSA, [Ca2+] 0.4 mg/dl). After warming, the oocytes from the five experimental groups were assessed for survival, spontaneous parthenogenetic activation and developmental capacity via in vitro fertilization. Oocyte survival after vitrification procedures was better preserved in group PBSCaMg free/FCS compared to the others (P < 0.05). In addition, a positive correlation was found between calcium concentration in vitrification solutions and spontaneous parthenogenetic activation (correlation index 0,82; P < 0.001). Development of vitrified oocytes was significantly affected by vitrification media composition (P < 0.01). In particular, oocytes from group PBSCaMg free/FCS led to higher cleavage rates and blastocyst rate compared to the others. Our data showed that lowering calcium concentration in the vitrification medium improves the blastocyst rate of vitrified ovine oocytes, probably reducing the effect of EG + DMSO during vitrification. On the contrary, the replacement of FCS with BSA dramatically reduces the developmental potential of these oocytes.  相似文献   

4.
The objectives of this study were to examine the effects of the presence or absence of serum during the in vitro culturing period of domestic cat embryos on their developmental potential into blastocysts as well as their tolerance to cryopreservation using a slow-freezing method. In vitro-fertilized cat oocytes were incubated in a modified synthetic oviduct fluid (mSOF) containing 4 mg/mL bovine serum albumin (BSA) throughout culturing (BSA group) or in mSOF containing 4 mg/mL BSA for the first 3 days followed by mSOF containing 5% fetal bovine serum (FBS group). The developmental potential of the embryos to the blastocyst and expanded blastocyst stages was evaluated 7 days after in vitro fertilization. The blastocysts were frozen-thawed by the slow-freezing method and cultured for 3 days to examine their viability in vitro. There were no differences in the formation rates of blastocysts or expanded blastocysts, or number of cells in the embryos between the two groups. After cryopreservation, the hatching rates of the expanded blastocysts in the BSA group were significantly higher (P < 0.05) than those of the FBS group. The postthaw viability of blastocysts was lower than that of expanded blastocysts irrespective of culture medium. These results indicate that the developmental potential of cat embryos cultured in serum-free medium is comparable to those cultured in serum-containing medium. Furthermore, expanded blastocysts produced without serum exhibit better postthaw viability than those produced with serum.  相似文献   

5.
《Cryobiology》2012,64(3):170-174
The objectives of this study were to examine the effects of the presence or absence of serum during the in vitro culturing period of domestic cat embryos on their developmental potential into blastocysts as well as their tolerance to cryopreservation using a slow-freezing method. In vitro-fertilized cat oocytes were incubated in a modified synthetic oviduct fluid (mSOF) containing 4 mg/mL bovine serum albumin (BSA) throughout culturing (BSA group) or in mSOF containing 4 mg/mL BSA for the first 3 days followed by mSOF containing 5% fetal bovine serum (FBS group). The developmental potential of the embryos to the blastocyst and expanded blastocyst stages was evaluated 7 days after in vitro fertilization. The blastocysts were frozen-thawed by the slow-freezing method and cultured for 3 days to examine their viability in vitro. There were no differences in the formation rates of blastocysts or expanded blastocysts, or number of cells in the embryos between the two groups. After cryopreservation, the hatching rates of the expanded blastocysts in the BSA group were significantly higher (P < 0.05) than those of the FBS group. The postthaw viability of blastocysts was lower than that of expanded blastocysts irrespective of culture medium. These results indicate that the developmental potential of cat embryos cultured in serum-free medium is comparable to those cultured in serum-containing medium. Furthermore, expanded blastocysts produced without serum exhibit better postthaw viability than those produced with serum.  相似文献   

6.
The objectives of this study were to identify an improved in vitro cell-free embryo culture system and to compare post-warming development of in vitro produced (IVP) bovine embryos following vitrification versus slow freezing. In Experiment 1, non-selected presumptive zygotes were randomly allocated to four medium treatments without co-culture: (1) SOF + 5% FCS for 9 days; (2) KSOM + 0.1% BSA for 4 days and then KSOM + 1% BSA to Day 9; (3) SOF + 5% FCS for 4 days and then KSOM + 1% BSA to Day 9; and (4) KSOM + 0.1% BSA for 4 days and then SOF + 5% FCS to Day 9. Treatment 4 (sequential KSOM-SOF culture system) improved (P > 0.05) morulae (47%), early blastocysts (26%), Day-7 blastocysts (36%), cell numbers, as well as total hatching rate (79%) compared to KSOM alone (Treatment 2). Embryos cultured in KSOM + BSA alone developed slowly and most of them hatched late on Day 9, compared to other treatments. In Experiment 2, the sequential KSOM-SOF culture system was used and Day-7 blastocysts were subjected to following cryopreservation comparison: (1) vitrification (VS3a, 6.5 M glycerol); or (2) slow freezing (1.36 M glycerol). Warmed embryos were cultured in SOF with 7.5% FCS. Higher embryo development and hatching rates (P < 0.05) were obtained by vitrification at 6h (71%), 24h (64%), and 48h (60%) post-warming compared to slow freezing (48, 40, and 31%, respectively). Following transfer of vitrified embryos to synchronized recipients, a 30% pregnancy rate was obtained. In conclusion, replacing KSOM with SOF after 4 days of culture produced better quality blastocysts. Vitrification using VS3a may be used more effectively to cryopreserve in vitro produced embryos than the conventional slow freezing method.  相似文献   

7.
The aim of this study was to examine the effects of co-culture with Vero cells during the in vitro maturation (IVM) and three culture media, B2+5% fetal calf serum (FCS) on Vero cells, synthetic oviduct fluid (SOF)+5% FCS, and SOF+20 gL(-1) bovine serum albumin (BSA), on the developmental competence of the embryos and their ability to survive vitrification/warming. We also tested the effect of morphological quality and the age of the embryo on its sensitivity to vitrification. The IVM system neither affects the embryo development up to Day 7 nor survival rates after vitrification. The culture of embryos in SOF+FCS and in Vero cells+B2 allowed obtaining more Day 6 and Day 7 blastocysts, and a higher % of Day 7 blastocysts vitrified than culture in SOF+BSA. Contrarily, on Day 8, more blastocysts were vitrified in SOF+BSA than in SOF+FCS. Blastocysts quality affected development after vitrification/warming, and Day 7 embryos showed higher survival rates than their Day 8 counterparts. Day 7 blastocysts produced in Vero cells or in SOF+BSA survived at higher rates than those produced in SOF+FCS at 24 and 48 h after warming. Embryo culture with BSA allows obtaining hatching rates after vitrification/warming higher than those obtained after co-culture with Vero cells in B2 and FCS. Moreover, this system provides hatching rates from Day 8 blastocysts comparable to those obtained on Day 7 in Vero cells. Further studies, including embryo transfer to recipients, are needed to clarify factors affecting the freezability of in vitro produced bovine embryos.  相似文献   

8.
This study investigated effects of hexoses, fetal calf serum (FCS), and phenazine ethosulfate (PES) during the culture of bovine embryos on blastocyst development and survival after cryopreservation by slow freezing or vitrification. The basal, control medium was chemically defined (CDM) plus 0.5% fatty acid-free BSA. In vitro-produced bovine zygotes were cultured in CDM-1 with 0.5 mM glucose; after 60 hr, 8-cell embryos were cultured 4.5 days in CDM-2. The 8-cell embryos were randomly allocated to a 2 x 3 x 2 x 3 factorial experimental design with two energy substrates (2 mM glucose or fructose); three additives (0.3 microM PES, 10% FCS, and control); two cryopreservation methods using no animal products (conventional slow freezing or vitrification); and semen from three bulls with two replicates for each bull. A total of 1,107 blastocysts were produced. Fructose resulted in 13% more blastocysts per oocyte than glucose (37.2% vs. 32.9%), and per 8-cell embryo (51.3% vs. 45.3%; P < 0.01). No differences were found for additives (P > 0.1) control, FCS, or PES for blastocysts per oocyte or per 8-cell embryo. There was a significant interaction (P < 0.05) between additives and hexoses for blastocyst production; although trends were similar, the benefit of fructose compared to glucose was greater for controls than for FCS or PES. Culture of embryos with PES, which reduces cytoplasmic lipid content, improved cryotolerance of bovine embryos; post-cryopreservation survival of blastocysts averaged over vitrification and slow freezing (between which there was no difference) was 91.9%, 84.9%, and 60.2% of unfrozen controls (P < 0.01) for PES, control, and FCS groups, respectively.  相似文献   

9.
Honeybees, major providers of pollination, are endangered in many areas. Embryo cryopreservation may be a very useful tool to maintain their genetic diversity. However, it is complex in insects, because embryos are chill sensitive and are surrounded by two protectant membranes, the chorion and vitelline. These membranes prevent penetration of cryoprotectant in the embryos. This study aimed to test different conditions of embryo preparation before cryopreservation, including low-frequency sonophoresis, a physical method of permeabilization, and passages through cryoprotectant solutions. Apis mellifera ligustica embryos were collected in artificial cell plugs 7.5 h after queens had been caged, in two different seasons (winter, spring) and were then incubated in vitro overnight (16.5 h). Embryos were individually sonicated and then incubated in three cryoprotectant baths (B1 = 10%, B2 = 20% and B3 = 40% of cryoprotectant) and quenched in liquid nitrogen. Artificial cell plugs and in vitro incubation device were efficient in producing future embryos hatching. Embryos stained ruby red with rhodamine B after sonophoresis treatment indicated that low-frequency ultrasound had permeabilized embryos. According to the treatment, different significant hatching rates were obtained after sonophoresis (up to 25%). After three cryoprotectant incubations, best hatching rates were obtained after 10 min in B1 and B2, and 40 s in B3. These results show that sonophoresis is an efficient tool to permeabilize the chorion and vitelline membrane of the day one honeybee embryo allowing a hatching rate of more than 20%. They also show that the season is an important variability factor.  相似文献   

10.
Progesterone enhances in vitro development of bovine embryos   总被引:1,自引:0,他引:1  
Increased pregnancy rates in cattle given progesterone (P4) prior to 5 d after breeding have recently been reported. The objective was to determine if this increase in pregnancy rate could be attributed to a direct positive effect of P4 on the developing embryo. In Experiment 1, 280 bovine oocytes were inseminated in vitro and at Day 3 (insemination = Day 0), good quality 8 cell embryos (n = 206) were randomly allocated to be cultured in either CR1aa+serum with 0 or ∼15 ng/mL (n = 102 and n = 104, respectively). In Experiment 2, 881 bovine oocytes were used; on Day 3, good quality 8 cell embryos (n = 511) were randomly allocated to either the control (CR1aa+FCS, n = 168), vehicle (CR1aa + FCS + ethanol, n = 170), or P4 treatment (CR1aa + FCS + ∼15 ng/mL P4 in ethanol, n = 173). On Day 7, in both experiments, there were increased numbers of blastocysts developing in the P4 group (Experiment 1, 59% and Experiment 2, 71%) compared to the vehicle (Experiment 2, 53%) or control (40 and 62% in Experiments 1 and 2, respectively). The addition of P4 (8%) stimulated the rate of embryo development (early blastocysts or more advanced stages on Day 6) compared to vehicle (3%) and control (0%) and the P4 group had more hatched or hatching blastocysts (33%) on Day 9 compared to the control or vehicle group (21 or 22%). Additionally, the P4 group had greater embryo diameter and significantly more Grade 1 blastocysts on Day 7. In conclusion, P4 had a direct, positive effect on developing bovine embryos cultured in vitro.  相似文献   

11.
After cryopreservation, embryos become sensitive to the oxidative stress, resulting in lipid peroxidation, membrane injury, and structural destruction. The present study aimed to assess the effect of increasing concentration of melatonin during postwarming culture on embryo's ability to restore its functions after cryopreservation. In vitro–produced blastocysts were vitrified, warmed, and cultured in vitro in TCM 199 with 5 different supplementations: control (CTR): 10% fetal calf serum; bovine serum albumin (BSA): 0.04% (wt/vol) BSA; and MEL−3, MEL−6, MEL−9: BSA plus melatonin 10−3, 10−6, and 10−9 M. The medium with the highest melatonin concentration had the highest trolox equivalent antioxidant capacity, whose values were comparable with those determined in plasma sampled from adult ewes (8.7 ± 2.4 mM). The other media had lower trolox equivalent antioxidant capacity values (P < 0.01), below the range of the plasma. At the same time, embryos cultured with the highest melatonin concentration reported a lower in vitro viability, as evaluated by lower re-expansion and hatching rates, and lower total cell number compared with the other groups (P < 0.05). Their metabolic status was also affected, as evidenced by higher oxidative and apoptotic index and lower ATP concentration. The beneficial effects of melatonin on embryo development during postwarming culture were observed only at low concentration (10−9 M). These results suggest that melatonin at high concentration may exert some degree of toxic activity on pre-implantation embryos. Thus, the dose at which the embryos are exposed is pivotal to obtain the desiderate effect.  相似文献   

12.
13.
The cryopreservation of embryos is a technology developed for long-term genetic preservation. However, high sensitivity to low temperatures due to a large number of intracellular lipids within ruminant embryos compromises the success of this technique. The aim of this study was to examine the effects of using of lipolytic chemical agent forskolin, during in vitro producing of buffalo and bovine embryos on lipid contents, cryotolerance and subsequent developmental competence of these embryos. Buffalo and bovine oocytes were collected by the aspiration technique from follicles and submitted for in vitro fertilisation; the embryos were later divided into four experiments. Experiment 1, buffalo and bovine embryos were pre-treated in the presence and absence of 10 μM forskolin for 24 h. Lipid contents were determined by Nile red staining and confocal microscopy. We found that 10 μM forskolin was capable to reduce lipid contents within developing embryos in both of species (P < 0.01). Lipid contents within Day 2 embryos exhibited greater fluorescence intensity than did Day 7 embryos in both animal species. The purpose of Experiment 2 was to investigate the adverse effects of 10 μM forskolin on embryo development. In Experiments 3 and 4, Day 2 (4- to 8-cell stage) and Day 7 (blastocyst stage) embryos were pre-treated with 10 μM forskolin for 24 h and further cryopreserved with a controlled-rate freezing technique. The successful cryopreservation was determined by post-thawed embryonic development in vitro. The results showed that the blastocyst rate of the 4–8 cell stage in the forskolin-treated group had increased in both species, while the hatching and hatched blastocyst rates of forskolin-treated day 7 bovine embryos were significantly higher than those of the non-treated group (52.1% vs. 39.4%; P < 0.05). However, delipidation with forskolin did not affect the developmental rate of the day 7 buffalo embryos (P = 0.73). Our studies showed that delipidation by forskolin treatment increased the survival rate of cryopreservation in buffalo and bovine in vitro produced embryos.  相似文献   

14.
15.
A series of five experiments measured the high survival of bovine blastocysts produced in vitro after cryopreservation by vitrification. The vitrification solution (designated VS) contained 40% (v/v) ethylene glycol, 6% (w/v) polyethylene glycol and 0.5 M sucrose in phosphate-buffered saline. Embryos developed in vitro at Days 7 and 8 (Day 0 = insemination day) were exposed in one step to VS for 1 min or two steps with 10% ethylene glycol for 5 min and then VS for 1 min. In both cases, the embryos were finally cryopreserved in liquid nitrogen. After the embryos were warmed rapidly and the VS solution diluted, the survival rates were assessed by monitoring hatching rate in vitro. They were 13.0% for the one-step and 72.7% for the two-step procedures (P < 0.001). When embryos were exposed to individual solutions containing 6% (w/v) of each of 4 macromolecules (polyethylene glycol, BSA, polyvinylpyrrolidone or Ficoll) in the two-step protocol and then cryopreserved, the survival rates were 79.3, 34.8, 41.4 and 57.1%, respectively. After embryos had been exposed to the VS in two steps and then cryopreserved, there were no significant differences in survival rates when the solutions were diluted with or without sucrose. These results indicated that a vitrification solution containing polyethylene glycol can be used for cryopreservation of bovine blastocysts produced in vitro, and that a two-step addition of VS improved the in vitro survival of post-warming embryos. It was also shown to be possible to dilute post-warming embryos directly without the use of sucrose solution.  相似文献   

16.
Supplementation of synthetic oviduct fluid (SOF) medium plus amino acids and bovine serum albumin (BSA) with either fetal calf serum (FCS) or charcoal-treated FCS (CT-FCS) from Day 5 of development was investigated to determine if either in vitro or post-transfer development was altered. Development to the compact morula stage or beyond was similar for all 3 treatments. However, blastocyst development at Day 7 was accelerated when serum was added to the medium (21.6, 40.1 and 39.4% blastocysts from cleaved embryos for BSA, FCS and CT-FCS, respectively; P < 0.01), but cell number of the resulting embryos was unaffected. Furthermore, addition of CT-FCS decreased the between replicate variation in embryo development and produced more Grade 1 and 2 quality embryos (25.8%) than BSA supplementation (18.1%; P < 0.05). The transfer of Grade 1 and 2 embryos at Day 7 following culture resulted in similar pregnancy and embryo survival rates for the 3 treatments, with a tendency for lower embryo survival of embryos cultured in FCS (embryo survival at Day 50 = 37.7% vs 53.3% and 57.6% for FCS, BSA and CT-FCS, respectively; P = 0.1). Significant fetal loss from Day 50 to term occurred within all 3 treatments. There were no birth weight differences for calves amongst the 3 culture treatments; however, one of the sires produced calves that were significantly heavier than expected, suggesting a possible sire-by-embryo interaction. These results demonstrate that addition of FCS may promote blastocyst development; however, there was also a tendency for lower embryo survival. Thus charcoal treatment of FCS is recommended, because it decreases variability in embryo development between runs and results in embryo survival rates to term similar to that BSA-supplemented media.  相似文献   

17.
Technologies for in vitro embryo production have the potential to enhance the efficiency of cattle production systems. However, utilization of in vitro-produced embryos for transfer remains limited throughout much of the world. Despite improvements over the past two decades, problems associated with the production of bovine embryos in vitro still exist which limit the widespread commercial application of this technology. In particular, bovine embryos produced in vitro have a reduced capacity to establish and maintain pregnancy as compared with their in vivo-derived counterparts. Embryo competence for survival following transfer is improved by in vivo culture in the sheep oviduct, thus indicating that standard embryo culture conditions are sub-optimal. Therefore, one strategy to improve post-transfer survival is to modify embryo culture media to more closely mimic the in vivo microenvironment. The maternal environment in which the bovine embryo develops in vivo contains various growth factors, cytokines, hormones, and other regulatory molecules. In addition to affecting bovine embryo development in vitro, recent research indicates that embryo competence for survival following transfer can also be improved when such molecules are added to embryo culture medium. Among the specific molecules that can increase post-transfer embryo survival are insulin-like growth factor-1 (IGF-1), colony stimulating factor-2 (CSF-2) and hyaluronan. This paper will review the effects IGF-1, CSF-2 and hyaluronan on post-culture embryo viability and discuss the potential mechanisms through which each of these molecules improves post-transfer survival.  相似文献   

18.
The aim of the current work was to evaluate applicability of triacetate cellulose hollow fiber vitrification (HFV) method for cryopreservation of groups of in vitro matured bovine oocytes (12–17 oocytes per device). We also attempted to optimize HFV protocol by altering concentration of non-permeating cryoprotectant (sucrose) in vitrification solution and concentration of extracellular Ca2+ by using a calcium-free base medium for preparation of vitrification/rewarming solutions with ethylene glycol (EG) as a single permeating cryoprotectant. Neither of modifications of HFV protocol significantly affected survival or fertilization rates of the vitrified bovine oocytes. Embryo development rates in the vitrification groups were lower than those in the control (31.2% of blastocysts at Day 8 post IVF). Use of vitrification/rewarming solutions with lower Ca2+ concentration and EG did not significantly improve embryo development rates. An increase of sucrose concentration in vitrification solution from 0.5 to 1.0 M significantly improved blastocyst yield on Day 8 post IVF (21.1–23.4% vs 3.1–3.5%; p < 0.05). Obtained results indicated that sufficient dehydration of the oocytes and/or the solution surrounding them in hollow fiber before immersion into liquid nitrogen is an important factor for successful vitrification. Use of HFV method allowed simplification and standardization of vitrification/rewarming procedures. Triacetate cellulose hollow fibers can be used successfully for cryopeservation of groups of in vitro matured bovine oocytes.  相似文献   

19.
《Theriogenology》2012,77(9):1602-1609
Technologies for in vitro embryo production have the potential to enhance the efficiency of cattle production systems. However, utilization of in vitro-produced embryos for transfer remains limited throughout much of the world. Despite improvements over the past two decades, problems associated with the production of bovine embryos in vitro still exist which limit the widespread commercial application of this technology. In particular, bovine embryos produced in vitro have a reduced capacity to establish and maintain pregnancy as compared with their in vivo-derived counterparts. Embryo competence for survival following transfer is improved by in vivo culture in the sheep oviduct, thus indicating that standard embryo culture conditions are sub-optimal. Therefore, one strategy to improve post-transfer survival is to modify embryo culture media to more closely mimic the in vivo microenvironment. The maternal environment in which the bovine embryo develops in vivo contains various growth factors, cytokines, hormones, and other regulatory molecules. In addition to affecting bovine embryo development in vitro, recent research indicates that embryo competence for survival following transfer can also be improved when such molecules are added to embryo culture medium. Among the specific molecules that can increase post-transfer embryo survival are insulin-like growth factor-1 (IGF-1), colony stimulating factor-2 (CSF-2) and hyaluronan. This paper will review the effects IGF-1, CSF-2 and hyaluronan on post-culture embryo viability and discuss the potential mechanisms through which each of these molecules improves post-transfer survival.  相似文献   

20.
Nowshari MA  Brem G 《Theriogenology》2000,53(5):1157-1166
Biological products like serum and BSA are routinely used in embryo freezing solutions. These products are undefined and can potentially expose the embryos to infectious agents. Therefore, this experiment was designed to evaluate in vitro and in vivo survival of mouse embryos frozen in solutions supplemented with a chemically defined macromolecule, polyvinyl alcohol (PVA). Morula-stage embryos from superovulated mice were collected, frozen by a rapid freezing procedure, and cryoprotectant diluted out (after thawing) in media supplemented with either 10% fetal calf serum (FCS), 0.1 mg/mL PVA, or a combination of 10% FCS and 0.1 mg/mL PVA. Frozen-thawed (good to excellent quality) and nonfrozen (control, collected in FCS supplemented medium) embryos were cultured in medium M16 (32) supplemented with either 4 mg/mL BSA or 0.1 mg/mL PVA for 72 h. Embryos frozen in solutions supplemented with FCS or PVA and nonfrozen embryos were transferred to pseudopregnant recipients. Recipients were humanly killed on Day 15 after transfer, and the rate of implantation and percentage of live fetuses were recorded. The supplementation of collection, freezing and cryoprotectant dilution solutions with FCS, PVA or FCS plus PVA did not influence (P > 0.05) the rate of survival and in vitro development of embryos to hatched/hatching blastocyst-stage. However, a higher (P < 0.01) in vitro development rate to hatching/hatched-stage was recorded when frozen-thawed embryos were cultured in medium supplemented with BSA than with PVA. There was no difference (P > 0.05) in the rate of implantation (68 vs 72%) or percentage of live fetuses (62 vs 60%) between pregnant recipients with embryos frozen in medium with FCS or PVA. The rate of implantation and development of embryos frozen in medium supplemented with PVA or FCS was comparable (P > 0.05) to that of nonfrozen embryos. It may be concluded that PVA can be substituted for FCS in medium for freezing mouse embryos; however, it can not be completely substituted for BSA in the in vitro culture of embryos to the hatched blastocyst stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号